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Abstract

We consider the problem of tracking mobile objects using a sensor network. We present a
distributed tracking algorithm, called Mobile Object Tracking using Sensors (MOT), that scales
well with the number of sensors and also with the number of mobile objects. MOT maintains a
hierarchical structure of detection lists of objects that can efficiently track mobile objects and
resolve object queries at any time. MOT guarantees that the cost to update (or maintain) its
data structures will be at most O(min{logn, logD}) times the optimal update cost and query
cost will be within O(1) of the optimal query cost in the constant-doubling graph model, where
n and D, respectively, are the number of nodes and the diameter of the network. MOT achieves
polylogarithmic approximations for both costs in the general graph model. MOT balances
the object and bookkeeping information load at each node in the expense of only O(logn)
increase in the update and query costs. The experimentation evaluation in both one by one and
concurrent execution situations shows that MOT performs well in practical scenarios. To the
best of our knowledge, MOT is the first algorithm for this problem in a distributed setting that
is traffic-oblivious, i.e. agnostic to a priori knowledge of objects movement patterns, mobility
and query rate, etc., and is load balanced. All previous solutions for this problem assumed
traffic-consciousness in constructing the tracking data structure.
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1 Introduction

We consider the problem of tracking locations of mobile objects using a sensor network so that
the presence of particular (mobile) objects (animals, vehicles, etc.) can be detected by nearby
sensors [5, 7, 18, 21–23, 36, 37]. This kind of location tracking of mobile objects is a very important
problem and has many applications in different areas including military intrusion detection, vehicular
networks, and habitat monitoring, e.g. [9, 13, 16, 25, 34]. Our objective in this location tracking
problem is to track the mobile objects in such a way that any node in the network can locate any
object of interest, among the set of objects available in the network, at any time with the minimum
cost possible. This tracking problem needs a data structure to achieve location tracking objective
with low cost and the data structure needs to be updated frequently due to mobility of objects. The
updates in (i.e., maintenance of) the data structure when objects move from one location to another
is done through maintenance operations and the objects of interest are located whenever needed
through query operations in the maintained data structure. By “locating an object of interest” we
mean the finding of the sensor node that has (i.e., detects) the object of interest. This problem is
similar to the in-network data processing problem studied in several prior papers, e.g. [18, 38].

We model the problem of tracking mobile objects by a weighted graph G, where graph nodes
correspond to sensor nodes and graph edges correspond to adjacencies between sensor nodes. Each
sensor node has its detection range. Two sensors are said to be adjacent if objects can move from
the detection range of one of the two sensors to that of the other without needing to transit through
any third sensor. A sensor node that currently has (or detects) a mobile object is called the proxy
node for that object. We consider a nearest-sensor model in which the sensor that is nearest to
the object becomes its proxy [6, 21] breaking ties arbitrarily, i.e., a node that receives the strongest
signal from the object becomes the proxy node for that object. The proxy nodes change over time
as objects move. Proxy nodes are the subset of the sensor nodes which currently have (at least) a
detected object. The objective is to find the proxy nodes in G.

Consider a set of m different mobile objects in a sensor network G. What we mean here by
different mobile objects is that they are distinguishable from each other, i.e., they have different IDs.
Theoretically, the lowest tracking costs for these mobile objects possible would be as follows: (1) The
location maintenance must have a cost equal to the minimum distance the objects traverse if they
followed shortest paths in G, and (2) Any query must be answered with a cost that is proportional
to the shortest distance from the requesting node to the proxy node. We give a tracking algorithm
which is efficient in both these costs.

1.1 Our Results

We measure the costs of maintenance and query operations of any tracking algorithm as follows.

• Maintenance cost: We measure the cost of a maintenance operation with respect to the
communication cost, which is the total number of messages sent in the network G by a tracking
algorithm. We assume that total number of messages sent in the network are proportional
to the total distance between the sender and receiver node in the tracking data structure.
Therefore, when an object moves from one proxy node to another proxy node, the optimal
communication cost to update the location of that object is at least the distance between these
proxy nodes. This is because the distance between the old and new proxy nodes is the actual
minimum distance in G the object traverses and hence any tracking algorithm needs to send
messages at least this distance to reflect the location change. We compare the communication
cost of a tracking algorithm for a set of maintenance operations to the optimal communication
cost for that set of operations to obtain the maintenance cost ratio, which is the approximation
of the tracking algorithm for location maintenance of mobile objects.

• Query cost: We compare the communication cost of a tracking algorithm for a query op-
eration to the optimal communication cost for that operation to obtain the query cost ratio,
which is the approximation of the tracking algorithm for queries to locate objects of interests.
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In this present work, we present a new distributed tracking algorithm, called “Mobile Object
Tracking using sensors” (MOT), that scales well with the number of sensors and with the num-
ber of mobile objects. MOT essentially maintains a data structure as we mentioned above for
the tracking task. When applied to constant-doubling networks, which have been widely used as a
model of a sensor network in the literature (e.g., [7, 11, 12, 27, 40]), MOT provides a cost ratio of
O(min{log n, logD}) in maintaining the data structure for any arbitrary set of maintenance opera-
tions comparing its communication cost to the optimal cost, where n and D, respectively, are the
number of nodes and the diameter of the network. This result assumes the case where each mainte-
nance operation of an object arrives only after the previous maintenance operation for that object is
finished. This “one by one case” is the scenario where event inter-arrival times are large compared
with the message propagation times [12, 18]. The cost ratio given above considers a sequence of
maintenance operations because they provide small amortized maintenance cost compared to the
analysis of a single maintenance operation.

MOT achieves the query cost ratio of O(1) in constant-doubling networks, i.e. if the object of
interest is at a proxy node u at distance d from the query node v then MOT finds that object with
the total cost of only O(d). We consider query operations individually and they have always small
cost. This query cost ratio is optimal within a constant factor.

Moreover, we analyze the load of MOT through the total number of objects as well as the
bookkeeping information it stores in the network nodes of data structure it maintains for the tracking
purpose. The average load on each node is O(logD) in constant-doubling networks, independent of
the number of objects m. This load balancing property of MOT is obtained in the expense of only
a O(log n) factor increase in the maintenance and query cost ratios given above.

These results for MOT can also be extended to general networks. For any set of maintenance
operations, MOT provides a cost ratio of O(log2 n ·min{log n, logD}), and for any query operation,
it provides a cost ratio of O(log4 n). This maintenance cost ratio is within a poly-log factor of
Ω( logn

log logn ), the lower bound given in Alon et al. [2] for a similar problem. These results also assume

the one by one case. Moreover, the average load in network nodes is only O(log2 n · logD), assuming
that the maximum number of objects stored at any node is polynomially bounded in the number of
nodes n in the network. This load balancing property of MOT increases the maintenance and query
costs given above by a factor of O(log n) only.

The maintenance cost ratio results given above for the one by one case in both constant-doubling
and general network models extend also to “concurrent case” where a maintenance operation for an
object may arrive before previous maintenance operation for that object is finished. The analysis
for this concurrent case makes use of the technique presented in [30]. This implies that our tracking
algorithm MOT is applicable in any object movement situations. Moreover, the query cost ratio
results given above for both constant-doubling and general network models assume that query oper-
ations for an object do not overlap with any maintenance operation of that object. Even in the case
where a query operation overlaps with one or more maintenance operations, using the concurrent
analysis technique given in [32], we can prove that same cost ratios can be obtained for queries,
making our algorithm applicable for queries in any execution situation.

All of our maintenance and query cost ratio results are deterministic worst-case bounds and
outperform existing results presented in [18, 21, 23, 37]. The detailed comparison of MOT results
with the prior results is given in Section 1.3 but we provide here highlights of the benefits of our
algorithm in brief. Our algorithm is the first solution to this tracking problem in a distributed setting
that is traffic-oblivious, i.e., our algorithm is agnostic to a priori knowledge of objects movement
patterns, mobility and query rates, etc. All previous solutions [18, 21, 23, 37] to this problem assumed
traffic-consciousness in constructing the tracking data structure. The traffic-obliviousness property
of our solution makes it suitable for object tracking in environments where a priori knowledge
of object movement patterns, mobility and query rates, etc. is not available or difficult to obtain.
Moreover, our algorithm balances the object load in the nodes of the tracking data structure whereas
previous solutions do not address this issue.

Finally, we supply simulations which demonstrate that MOT performs well compared to previous
approaches in real-world scenarios, besides its theoretical guarantees. The simulations are performed
considering both one by one and concurrent execution situations of object operations to cover wide
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range of practical applications. We performed the simulations in grid networks of sizes ranging from
10 nodes to 1024 nodes using 100 and 1000 mobile objects. We compared the performance of MOT
with two previous approaches: STUN algorithm due to Kung and Vlah [18], and Z-DAT and Z-DAT
with shortcuts algorithms due to Lin et al. [21] (the details on how these algorithms work is given in
Section 1.3). To see how theoretical properties translate to practice, the performance metrics that
are considered in the comparison are cost ratios of maintenance and query operations, and object
and bookkeeping information load at network nodes. Note that all previous algorithms considered in
the experimental evaluation in this paper (i.e., STUN, Z-DAT, and Z-DAT with shortcuts) assume
traffic-consciousness in constructing their tracking data structure, whereas our algorithm MOT is
traffic-oblivious.

1.2 Techniques

Our technique is to employ a hierarchical structure for the tracking data structure such that this
structure can provide efficient tracking despite object mobility. This hierarchical structure is updated
appropriately after every time objects move so that they can be queried with low cost whenever
needed. We assume, similar to [18], that the maximum distance any object can traverse in a
given amount of time is bounded. This allows us to efficiently update the hierarchical structure we
maintain.

We construct an overlay structure HS on the sensor network G as a tracking data structure. This
structure HS has many levels where the top-most level is called the root level and the lower-most
level is called the bottom level. All sensors nodes of G act as the bottom level nodes in HS and
a subset of sensor nodes of G act as nodes in the other levels in HS. Some of the sensor nodes
(possibly all) of G that are in the bottom level of HS are the proxy nodes when they detect at least
an object, i.e., proxy nodes are always in the bottom level of HS. A normal sensor node (not proxy)
at bottom level of HS becomes a proxy node when it detects (at least) an object in its detection
range and a current proxy node becomes a normal sensor node when all the objects in its detection
range are moved from it to other proxy or normal sensor nodes. Moreover, a sensor node of G may
act as a node in all the levels of HS. The nodes that are in all the levels up to the root level except
the bottom level are called internal nodes. These internal nodes are used to to store the presence of
the detected objects and to communicate with other nodes. For example, when a proxy node at the
bottom level also acts as an internal node in HS, then when it performs operations as an internal
node it can only store the detected objects that are in the detection lists of its child nodes in HS.
HS has a root node, which we denote by r. In a real application, the sink node is often the root

of HS. Each internal node stores the set of objects that were detected by its descendants. The set
of objects at any node (proxy or internal) is called the detection set of that node. Therefore, for a
proxy node, the detection set is the set of objects in its detection range, but for the root node, the
detection set is the set of objects that are available in the whole region.
HS is initialized by having the proxy nodes send detection messages towards the root of HS. An

internal node that is visited by a detection message adds the object associated with that message in
its detection list and passes that message to its ancestor internal node, until that message reaches
the root.

Now when an object moves, the new proxy node of that object sends a detection message towards
that root. When a detection message is received, there are two possible outcomes. First, if the node
does not yet have a reference for the object, it adds it to its list, and forwards the message to its
parent. Second, if it already has a reference, it sends a delete message to the old proxy node, and
does not forward the message to its parent. The delete message propagates downward until all traces
of the old location are erased.

Consider Fig. 1 for the illustration of this approach. Fig. 1a depicts the initialization of HS in
the beginning of tracking. Proxy nodes 1, 3, 5, and 7 send detection messages up to the root r. The
internal nodes visited by those messages add the objects to their detection lists. When an object
o1 moves from node 1 to node 4, detection messages are sent towards r from node 4. The internal
nodes w1 and v2 add o1 in their detection list. The detection messages are terminated by u3 as
o1 does not modify its detection list. The object o1 is also removed from the detection lists of u1
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(a) Initialization of HS (b) HS after object o1 moves to 4 (c) Illustration of queries

Figure 1: Illustration of the mobile object tracking problem.

and u2 to keep the detection sets up to date. The objects are removed through delete messages
by traversing the internal nodes towards the bottom level which have the objects that need to be
removed in their detection lists. The upward propagation of detection messages for any object ends
at a common ancestor (u3 in Fig. 1b for o1 that moved from 1 to 4).

The purpose of maintaining the detection sets is to allow efficient querying. A query that is
routed from a requesting node to an object oi first sends a query message upward towards the root
until an internal node which has the object oi in its detection list is found. After that the query is
routed downward from that internal node following child nodes which have oi in their detection lists
until the query reaches the proxy node of oi. Fig. 1c shows how queries from nodes 1 and 6 for the
objects o3 and o4, respectively, are served using detection lists of internal nodes of HS. Without the
information contained in the detection sets of internal nodes, the queries would need to be flooded
to all proxy nodes, which would increase the cost dramatically.

If a query arrives while a move request is being processed, it may arrive at an incorrect proxy
node and fail to find the desired object. In this case, the query pauses and waits for the delete
message to arrive. The delete message will contain the id of the correct proxy node. In this way,
queries can be successful even while a move is in progress. This is one simple approach to solve this
problem of a query arriving at an incorrect proxy node. We can have improved algorithm to solve
this problem without ever reaching the incorrect proxy node. This improved algorithm will use the
fact that queries can be directed to correct proxy nodes without reaching proxy nodes in the bottom
level and waiting for the delete message to arrive.

Following the tracking approach based in HS described above, the internal nodes in higher
levels of HS bear a greater load in the sense that the number of objects and the bookkeeping
information that needs to be stored in their detection lists can be O(m) for m different mobile
objects. Alternatively, the load can be evenly shared by letting the internal nodes distribute the
object and bookkeeping information to other nodes in their vicinity. To facilitate this, We embed
a de Bruijn graph [19] of appropriate size using the neighborhood of every internal node. Using
this embedding, we guide the maintenance and query requests within the neighborhood to relevant
objects via hashed pointers. The search process within any neighborhood is efficient due to the
properties of the embedded de Bruijn graph. Note that we will consider neighborhood sizes that
grow proportionally (2i for level i) to the level of HS.

We now briefly describe how we constructHS which plays a vital role in the performance of MOT.
We construct HS organizing nodes of G into levels using a simple distributed maximal independent
set algorithm [24] for the constant-doubling network model. According to this construction, HS has
O(logD) levels, where at each level there are leader nodes. The leaders of higher levels are subsets
or refinements of leaders at lower levels. Leader nodes in each level i cover all the nodes within a 2i

radius, we call these nodes a node cluster. All nodes of G are, by default, leaders in the proxy level
(level 0) of HS and there is a single leader node of G at the top level (level h = O(logD)) which is
called the root. For the general networks model, we use the (O(log n),O(log n)) partition scheme of
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[4, 15, 33] such that there are O(logD) levels in HS and each node of G belongs to exactly O(log n)
node clusters with the radius of each node cluster O(2i · log n).

1.3 Related Work

One prominent feature of MOT is that it is traffic-oblivious while constructing the overlay structure
HS, i.e., it is agnostic to any a priori knowledge of object movement patterns, mobility and query
rates, etc. All of the prior techniques [18, 21, 23, 37] are traffic-conscious, i.e., these techniques take
into consideration the object movement patterns in building their structures to achieve efficiency
in tracking. The object movement patterns are measured with respect to how many times objects
move between adjacent sensor nodes, which is referred to as the detection rate. Each edge of G is
assigned the weight that represents the frequency of object movement between a pair of adjacent
sensors. Now to yield low communication cost, internal nodes near the root act as the connecting
points for the adjacent sensors that have low detection rates, and internal nodes near the bottom
level act as the connecting points of the adjacent sensors that have high detection rates. Therefore,
prior techniques may not necessarily minimize the communication costs of maintenance and query
operations where such information is not available or difficult to compute. Recall that our approach
builds the hierarchy without any a priori knowledge of detection rates.

Hierarchical structures developed in prior techniques are mostly spanning trees of the sensor
nodes in G (also called message-pruning trees). Due to the use of spanning trees, cost ratios for
maintenance and query operations can be as large asO(D) in those approaches, e.g. in ring networks,
where D is the diameter of the network G. Similarly, prior approaches do not balance the load; the
number of objects that need to be stored at any node of the message-pruning tree can be O(m).
Our approach balances this load as well.

Kung and Vlah [18] were the first to study this location tracking problem of mobile objects. They
proposed a tracking algorithm, called Scalable Tracking Using Networked sensors (STUN), based on a
technique called Drain-And-Balance (DAB) which constructs a hierarchical tree using detection rate
information. A subset of sensor nodes are merged into balanced subtrees until all nodes are included
in the hierarchical tree. Subsets are obtained by partitioning the sensors of G using appropriate
detection rate thresholds and high detection rate subsets are merged first. However, DAB does not
take the query cost into account and hence it may not minimize the query cost in many cases. Lin
et al. [21] extended the technique of [18] by proposing two new techniques: Deviation-Avoidance
Tree (DAT) and Zone-based Deviation-Avoidance Tree (Z-DAT). They build DAT and Z-DAT trees
using a two stage approach such that they can focus on maintenance cost minimization in the first
stage and query cost minimization in the second stage. In DAT, they arrange edges in decreasing
order from the highest weight to the lowest weight and connect the highest weight edges first. In
Z-DAT, they divide the sensing region into rectangular zones, and recursively combine those zones
into a tree. Later, Lin et al. [22] extended the approach of [21] to multi-sink sensor networks.

Liu et al. [23] used a hierarchical tree called a message-pruning tree with shortcuts, which is
a modification of the tree developed in [18, 21], to further minimize the maintenance and query
costs. Later, Yen et al. [37] developed a technique to remove the assumptions of [18, 21, 23] on
traffic-consciousness. However, they derived a traffic-based knowledge using a mathematical model
on topological information. Note that this knowledge may not necessarily reflect the real traffic
pattern. Our approach does not need any traffic knowledge, neither the derived traffic knowledge
of [37] nor the real traffic knowledge of [18, 21, 23]. Moreover, it is not clear in these works how
concurrent situations in the execution of object operations are handled.

Finally, we would like to note here that this present work is different from several problems
related to tracking solved in the following papers [1, 3, 6, 8, 10, 17, 20, 26, 35, 39]. The tracking
schemes presented in [3, 6, 26, 39] only try to estimate the trajectory path of the object while it is
moving. These works [8, 35] try to locate nearest sensor nodes which do not generally change over
time. These papers [1, 10, 17, 20] studied the problem of providing a location service for ad hoc
networks to allow any source node to know the location of any destination node whose location is
unknown.
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1.4 Paper Organization

The rest of the paper is organized as follows. We discuss the model and the hierarchical structure
construction details in Section 2. We present details of our MOT algorithm in Section 3 and its
analysis in Section 4. We then discuss how to extend MOT to achieve load balancing in Section 5.
We provide extensions to general graphs in Section 6. After that we discuss how to extend MOT to
handle dynamism in networks in Section 7 and provide some experimental results in Section 8. We
conclude the paper in Section 9 with a short discussion.

2 Preliminaries

2.1 Model

We consider a static graph G = (V,E,w) to represent the topology of the sensors deployed in a
region, where V indicates the vertices (a set of n sensor nodes), E indicates edges (two sensors
are connected by an edge if an object can pass directly from either of them to the other without
going through a third sensor), and w indicates the weight function (where w : E → R+ supplies the
distances between adjacent vertices of the edges in E). We normalize the edge weights such that the
length of the shortest edge in G is 1 (and the weights of other edges are normalized proportionally to
that edge). Therefore, even if the network is scaled by some factor δ, the bounds given in this paper
hold independent of the scaling factor δ. Note that w here is different from previous approaches
where w represents the detection rates. We assume that each sensor has a unique identifier (ID) and
sensors are aware of their geographical locations. We assume that w(u, u) = 0 for any node u ∈ V .
We have m different mobile objectsM. Objects are tracked by nearby sensor nodes which are proxy
nodes. We assume that G is connected, i.e., there is a path of nodes that connects any pair of nodes
in G. Let distG(u, v) be the shortest path length (distance) between nodes u and v with respect to
the weight function w in G. The k-neighborhood of a node v is the set of nodes which are within a
distance of at most k from v (including v). The diameter is the maximum shortest path distance
over all pairs of nodes in G (D = maxu,v∈V distG(u, v)). We assume that nodes and edges of G
do not crash in most of our results. This assumption of nodes and edges do not crash may be too
strong for practical wireless sensor networks as nodes are prone to battery depletion and availability
of links vary; we discuss in Section 7 how our algorithm can be adapted to handle the situations of
nodes and edges crash to make it suitable for fault-prone and dynamic sensor networks.

2.2 Construction of Overlay Structure

For simplicity, we build here HS on a constant-doubling network1; we describe HS construction
for more general networks in Section 6. Constant-doubling networks have been widely used as an
appropriate model of a sensor network metric, e.g. see [7, 11, 12, 27, 40]. We use a distributed
maximal independent set algorithm due to Luby [24] to select the nodes of G to include in HS; some
recent algorithms [15, 29] can also be used to construct HS. This structure was used before in, e.g.
[14, 31], for different problems.

We define a sequence of connectivity graphs I := {I0 = (V0, E0), I1 = (V1, E1), . . . Ih = (Vh, Eh)},
where 0 is the lowest (bottom) level and h ≤ dlogDe + 1 is the highest (top) level. At level 0, we
include all nodes of G in I0, i.e. V0 := V . We define E` to be the set of all edges in V`, such that for
each pair of nodes (u, v) in V`, distG(u, v) < 2`+1. We define V` (where 1 ≤ ` ≤ h) to be a subset of
V`−1, such that one node from each edge in E`−1 is excluded from V`, but all nodes excluded from
V` are connected to nodes in V` by an edge in E`−1. Thus, V` is a maximal independent subset of
V`−1, e.g. MIS`−1. Vh contains exactly one node, which is the root node r, and Eh is the empty
set.

1Let the space within radius δ of a point be called the ball centered at that point. A point set Γ has doubling
dimension ρ if any set of points in Γ that are covered by a ball of radius δ can be covered by 2ρ balls of radius δ

2
. We

say that a metric is doubling and has a low dimension if ρ is bounded by a constant and is small.
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We define the default parent and parent set for each node w ∈ V`, which will be useful in for-
warding the detection messages towards the root in HS. In particular, default parents are necessary
for being able to execute maintenance and query operations. However, the parent sets are useful in
further minimizing the costs of query and maintenance operations by allowing the detection mes-
sages from different nodes to meet at some particular level. We discuss this in detail later in Section
3.1. The default parent of w ∈ V` is a node in V`+1 that is closest to w breaking ties arbitrarily, i.e.,
it is a node at distance at most 2`+1 away from w. The parent set of w ∈ V` is a subset of nodes in
V`+1 that are within 4 · 2`+1 of w, including the default parent.
HS = (VT , ET ) is a layered node structure on I, where VT are all the nodes in I, and ET are

the edges between parent-child pairs in every two consecutive level connectivity graphs I` and I`+1

(and are not necessarily related to the edges E` defined above). An HS edge can be a logical edge
over multiple sensor nodes which will be simulated by physical edges in G. Moreover, the nodes at
each level ` ≥ 1 can be again the logical nodes which are simulated by physical nodes of G. That
is, some nodes in G participate as parent nodes for many levels in HS and some edges participate
in connecting many parents in different levels. For a constant-doubling network G, HS can be
constructed with the polynomial communication cost in expectation as the maximal independent
set algorithm due to Luby [24] used for the construction of HS is randomized and outputs a maximal
independent set in O(log n) rounds in expectation.

The default parent of a level-` node x in HS is denoted by home`(x). The default parents
for a bottom level sensor node x for each level are defined recursively up to the root such that
home0(x) = x and home`(x) is the default parent of home`−1(x). These home`() nodes are useful in
defining parent sets. We denote by parentset`(x) the parent set of home`−1(x) (the nodes at level
` within 4 · 2`+1 from home`−1(x)). According to the HS construction, we can have the following
observation about the number of nodes in a parent set.

Observation 1 In HS constructed above, there are at most 23ρ nodes in parentset`+1(x) for any
node x at level 0 ≤ ` < h.

The above observation can be obtained as follows. From the construction of HS, we have that
all level `+ 1 parents of a level ` node can be covered by at most 23ρ radius 2`-neighborhood balls.
Moreover, different level ` + 1 parents of a level ` node are at least distance 2`+1 from each other
since they are maximal independent sets at level `. Therefore any level ` node has no more than 23ρ

level `+ 1 parents.
The nodes in HS from level ` = 1 to ` = h are internal nodes. We now specify which internal

nodes will by visited by detection messages from any proxy node in the bottom level of HS on their
way up to the root. Any detection message from a node u visits the ascending sequence of its parent
sets starting from parentset0(u)(= u) at level 0 to parentseth(u) = r at level h (the root level); the
nodes in the parent set at each level are visited according to their IDs in increasing order starting
from the smallest ID node. Thus, the highest ID node in parentset`(u) is connected to the smallest
ID node in parentset`+1(u). We now define a notion of detection path as follows.

Definition 1 If we connect the internal nodes visited by a detection message from a proxy node u
to reach root level h one after another by shortest paths between them, we obtain a path which we
call the detection path and denote by DPath(u).

For example, in Fig. 1a, 7→ x1 → x2 → w3 → r is the detection path of node 7, i.e., DPath(7).
Any detection message for any object in the detection range of node 7 follow this path while main-
taining the detection lists in internal nodes of HS that are parents of 7. We say that two detection
paths from two different nodes meet at level i if they visit the same internal node at level i.

Lemma 2.1 For any two nodes u, v ∈ V , their detection paths DPath(u) and DPath(v) meet at level
dlog(distG(u, v))e+ 1 of HS.

Proof. Let ` = dlog(distG(u, v))e + 1 ≤ h and u` be u’s level-` default parent. By definition of
default parents,

distG(u, u`) <

i=∑̀
i=1

2i < 2 · 2`.
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Let v`−1 be v’s level-(`− 1) default parent, we get

distG(v, v`−1) < 2`.

In the case where the two detection paths DPath(u) and DPath(v) do not intersect at level `, then
u` /∈ parentset`(v). Since parentset`(v) contains nodes at level ` within distance 4 · 2` of v`−1, then
by definition of parent sets,

distG(v`−1, u`) ≥ 4 · 2`,

and by triangle inequality,

distG(u, v) ≥ distG(v, u`)− distG(u, u`)

≥ distG(v`−1, u`)− distG(v, v`−1)− distG(u, u`)

> 2`.

Therefore, DPath(u) and DPath(v) of nodes u, v ∈ V must intersect at level ` = dlog(distG(u, v))e+1.
ut

Moreover, we have the following lemma for the length of any detection path.

Lemma 2.2 The length of the detection path of any bottom level sensor node (proxy or non-proxy)
u up to any level j in HS is length(DPathj(u)) ≤ 2j+3ρ+6.

Proof. We have that the distance between a level-` child and its level-(` + 1) parent is at most
cb · 2` for some constant cb. This is because the length of an edge (i.e., the shortest path distance)
between a level-` child and level-(` + 1) parent is at most 2 · 2`+2 if the parent node is the default
parent of the child node and at most 4 ·2`+2 if the parent node is in the parent set of the child node.
Moreover, from Observation 1, we have that there are at most 23ρ nodes in the parent set at level
`+ 1 for the child node. Now recall that DPath(u) for any node u visits all the nodes in the parent
set parentset`(u) according to their node IDs starting from the smallest ID node and ending in the
highest ID node before going to level-(` + 1). Therefore, the total length of DPath(u) between the
first node in level ` and the first node in level `+ 1 is at most

4 · 2`+2 + 23ρ · 2`+1 ≤ 23ρ · 2`+5 ≤ 2`+3ρ+5,

by adding the length of the paths. Note that the length of DPathj(u) is obtained by adding the
length of detection path fragments for each level starting from level-0 up to level-j. Therefore, the
path length of DPathj(u) is

length(DPathj(u)) ≤
j∑
i=1

2i+3ρ+5 ≤ 2j+3ρ+6.

ut

3 MOT Algorithm

Consider a setM = {o1, o2, . . . , om} of |M| = m different mobile objects. The proxy of each object
oi is the sensor node in the bottom level of HS which currently detects it. The goal of MOT is to
maintain the detection lists of objects in HS (Fig. 1) at all times, even when the objects move. This
is done by maintaining object information (for each object oi) at each internal node of HS in the
detection path of the proxy of that object up to the root r.

We use two kinds of detection messages: publish, and maintenance for tracking these m mobile
objects. There are two types of maintenance messages: insert and delete. We also support a query
operation. The publish operations are used to form the initial detection lists in HS. Only after this
initialization, maintenance and query operations can be supported. The maintenance operation is
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used to update the detection list when an object is moved from the current proxy node to some new
proxy node. The query operation is issued by any sensor node in the bottom level of HS (proxy or
non-proxy) to obtain any object of interest among the m objects.

Any publish operation works as follows: A proxy node sends a publish message upward following
its detection path until it reaches the root. This message stores the object in the detection list of
all the internal nodes it visits in its detection path. Note that the publish operation is applied for
each object only once in the beginning. Fig. 1a depicts the HS after publish operations from the
proxy nodes that are at the bottom level of HS. The publish operation from node 1 adds o1 in the
detection lists of internal nodes u1, u2, u3 and r in the detection path of node 1, DPath(1).

Suppose an object oi moved from proxy node x to some node y. Now y becomes the proxy node
of oi and begins a maintenance operation by sending an insert message to update oi in the detection
lists maintained in HS (see Fig. 1b where node 4 issues an insert when o1 moves from 1 to 4). Let
w be the lowest ancestor node of y in DPath(y) such that oi is in the detection list of w (u3 in
Fig. 1b). The node w is guaranteed to exist because in the worst-case scenario it may be the root
r. The maintenance is implemented by first sending insert upward from y up to node w and then
sending delete downward from w to the previous proxy node x of oi. While going up, insert adds
oi to the detection lists of each internal node it visits in DPath(y), and while going down, delete
removes oi from the detection lists of each node that has oi. In Fig. 1b, when o1 moves from 1 to 4,
the insert message travels from 4 towards root r through DPath(4), and adds o1 to the detection lists
of w1 and v2, before it finds o1 in the detection list of w, after that delete messages travel downward
visiting nodes u2, u1, and 1 which have o1 in their detection lists and removing o1 from them. The
path from the root r to the object oi, after the maintenance operation is finished, consists of two
detection path parts: a part of y’s detection path, DPath(y), from w to y and a part of node x’s
detection path, DPath(x), from r to w. This path can be further divided into multiple parts due to
subsequent maintenance operations.

A query operation issued by any node x (not necessarily a proxy) for any object of interest oi
among m available (distinct) objects uses its DPath(x) to reach to oi. It works as follows. First
query goes upward, similar to maintenance, following internal nodes in the DPath(x) and checking
whether oi is in the detection lists of the internal nodes it visits. As soon as query reaches the first
internal node w which has oi in its detection list, query goes downward following the nodes which
have oi in their detection lists until it reaches the proxy node of oi. After it reaches the proxy of
oi, it checks to see if oi is still present. If it is, it sends the result to x. If it is not, query waits for
the delete message to arrive. The delete message will contain the new location of oi, and the query
will forward that location to x. In Fig. 1c, the query operation issued by 1 for object o3 follows its
DPath(1) up to u3 (which is the first internal node in the DPath(1) that has o3 in its detection list),
after that it goes downward following v2 and w1 (since these nodes have o3 in their detection lists)
and reaches the node 5, which is the proxy node of o3. Note that a query operation does not add or
delete information from the nodes it visits, hence does not modify the HS.

This above described approach provides the minimum communication cost for maintenance op-
erations for each object oi. However, this approach may not provide any guarantee on the cost of
query operations, i.e., the object of interest of a requesting node may be in its neighboring node
but the query operation may need to reach up to the root r to find that object. This is due to the
possible enormous fragmentation of detection paths after several maintenance operations such that
the nearby nodes do not have the information about the object that is in its neighboring node.

For the illustration of this scenario, consider the example execution scenario given in Fig. 2. Let
the object (denoted by star) be originally at node 4 and the maintenance operations are issued by
nodes 1, 2, and 3 in a sequence one after another. Here, DPath(4) := {4, x1, w2, w3, u4, . . . , r}. When
the object moved to node 1, DPath(1) := {1, u1, u2, u3, u4, . . . , r} in which u4, . . . , r is the DPath(4)
fragment and 1, u1, . . . , u4 is the DPath(1) fragment. When the object moved to node 2 from node 1,
DPath(2) := {2, w1, v2, u3, u4, . . . , r}, the combination of DPath(4) fragment from u4 to r, DPath(1)
fragment from u3 to u4, and DPath(2) fragment from 2 to u3. Now, when the object finally moved
to 3, then the detection path DPath(3) is the combination of four detection path fragments. Suppose
that original DPath(3) := {3, w1, w2, x3, w4, . . . , r} and assume that node 5 issues a query operation
after the maintenance operation from node 3 is finished. Then, according to Lemma 2.1, the query
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Figure 2: An efficient query operation due to a special parent node

should have the information about the object at node w2 which is the node where DPath(5) and
DPath(3) intersect. However, w2 does not have the information about the object because, although
the object of interest is at node 3, the information about that object is not recorded in its original
DPath(3) but in the different path DPath(3) := {3, w1, v2, u3, u4, . . . , r} due to the fragmentation of
detection paths of previous owners of the object. This fragmentation of the detection path for an
object can go further when many maintenance operations from different nodes are executed for that
object.

We reduce the effect of path fragmentation situation and guarantee efficient query cost along
with low maintenance cost using the concept of a special parent node, such that whenever an object
oi is added in the detection list of an internal node t ∈ DPath(x) of a proxy node x, the special
parent node of t is also informed about t holding oi in its detection list. The special parent node
is selected in the DPath(x) in such a way that any query close to t will either reach t or its special
parent. As shown in Fig. 2, since the special-parent node have the information about w1 having the
information about the object, the query operation from node 5 is served by only reaching w4 (the
special-parent of w1); otherwise, the query operation would have to reach up to the root r to find
the information about the object. Details on how special-parents are selected will be provided in
the following while giving the formal details of the algorithm.

The formal details of MOT are given in Algorithm 12. Algorithm 1 focuses only on minimizing
maintenance and query cost; we treat load balancing issues later in Section 5. We assume that each
node in HS knows its parent and special-parent, except the root node, whose parent and special-
parent are both ⊥ (null). Note that special parent nodes for some internal node nearby to root n are
undefined and it does not affect our algorithm. For simplicity, assume that there is only one parent
internal node p`(x) for a node x at any level `. Therefore, DPath(x) is simply the concatenation of
p0(x) = x, p1(x), up to ph(x) = r, where pk(x) is the level k parent internal node of x, pk−1(x) and
pk+1(x) are, respectively, its child and parent internal nodes. We have the following definitions for
parent and special-parent nodes.

Definition 2 A parent node of a bottom level node x at level i in HS is the node pi(x) that is in
DPath(x) at level i.

Definition 3 The special-parent node of a level i parent node pi(x) of the bottom level node x given
in Definition 2 is the level k parent node pk(x) of x in DPath(x), where k = i + 3ρ + 6 and ρ is a
doubling constant. This special-parent node is denoted as SP (pi(x)).

Definitions 2 and 3 can be extended when considering parentseti(x) (instead of pi(x)) as follows.
The parent node of a node y ∈ parentseti(x) is the node z ∈ parentseti(x) that has ID greater than

2Note that we present publish, maintenance, and query procedures of Algorithm 1 as an iteration over the nodes
for the sake of simplicity in understanding the algorithm. This can be immediately converted to a message-passing
based distributed algorithm by modifying the procedures from the perspective of what a node in any level of HS does
when it receives a publish, maintenance, or query message from either its child or its parent node.
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Algorithm 1: MOT algorithm for each oi, 1 ≤ i ≤ m
// We describe publish and maintenance operations assuming only one node pk(vi)

of parentsetk(vi) in DPath(vi) of each node vi at each level.

1 Publish object oi at proxy node vi:
2 k ← 1;

3 Until node pk(vi) is a root node do

4 pk(vi).DL← pk(vi).DL ∪ {oi};
5 k ← k + 1;

6 Maintenance of object oi by proxy node vi received from proxy node vj:
7 Insert by vi:
8 k ← 1;

9 Until oi ∈ pk(vi).DL do

10 pk(vi).DL← pk(vi).DL ∪ {oi}; SP (pk(vi)).SDL← SP (pk(vi)).SDL ∪ {oi};
11 k ← k + 1;

12 Issue a delete for vj from level k node pk(vi);

13 Delete for vj:
14 Until a proxy node is reached do

15 Find a child node x from the current internal node pk(vi) such that oi ∈ x.DL;
16 x.DL← x.DL\{oi};
17 SP (x).SDL← SP (x).SDL\{oi} for the special parent of x which has oi in its detection

set;
18 k ← k − 1;

19 Query an object of interest oi by proxy node vi:
20 k ← 1;

21 Until oi ∈ t.DL or oi ∈ t.SDL for any t ∈ parentsetk(vi) do
22 k ← k + 1;
23 If oi ∈ t.DL then Go to the proxy node following internal nodes downward starting from t

which have oi in their DL and send information to vi;
24 Else Go to the proxy node following internal nodes which have oi in their DL downward

starting from the special-child of t that added oi in t.SDL and send information to vi;

the ID of node y but smaller than the IDs of other nodes in parentseti(x). In case of a special-parent
node, the nodes in parentsetk(x) act as SP (.) of the nodes in parentseti(x). More precisely, for
a node y ∈ parentseti(x), SP (y) is one of the nodes in parentsetk(x). As we visit the nodes in
parent sets according to the order of their IDs, for the smallest ID node in parentseti(x), we can
have its special-parent the smallest ID node in parentsetk(x). If the nodes in parentsetk(x) are not
sufficient to provide distinct special-parents for the nodes in parentseti(x), we can start again from
the smallest ID node until all the nodes in parentseti(x) have their special-parents in parentsetk(x).

We will use the symbols DL and SDL to represent the detection list and special detection list
of each internal node in HS. The mobile objects in M are added in these lists initially by publish
operations and dynamically updated through maintenance operations. The pseudocode for a publish
operation by a proxy node vi for an object oi is given in Lines 1–5 of Algorithm 1. Similarly, the
pseudocode for a maintenance operation by a node vi for an object oi received from node vj is given
in Lines 6–18 of Algorithm 1. While going upward, maintenance operation adds oi to DL and SDL
of all the nodes and their special-parent nodes it visits and while going down, removes oi from the
nodes and their special-parent nodes which contained oi. The pseudocode for a query operation
is given in Lines 19–24 of Algorithm 1, which is processed similar to a maintenance operation but
without adding or removing the object of interest at the detection lists of nodes it visits in its
detection path.

We will prove in Section 4 that maintenance and query operations in Algorithm 1 are efficient
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but still the nodes in higher levels of HS bear greater load due to the number of objects and the
bookkeeping information they store in their detection lists. For example, the root r needs to store
all m objects in its detection list. We extend HS to have clusters associated with each of its nodes
selected through a maximal independent set algorithm using an embedding of a de Bruijn graph [19]
to distribute the detection list to other nodes inside the cluster. This technique of extending HS
to have clusters is only needed for the constant-doubling graph model. In general network model,
the overlay structure we use has clusters associated with leader nodes already and hence it is not
needed. The modifications in Algorithm 1 required to achieve load balancing and other details are
given in Section 5 for the constant-doubling graph model; the bound in the general graph model is
proven in Section 6.

3.1 Benefits of Having Parent Sets

As discussed in the aforementioned paragraphs, special parents are useful in guaranteeing efficient
query costs, controlling the severe effect of the fragmentation of detection paths in the query cost;
without special parents, a query operation may need to reach up to the root node to find the
information about the object of interest in some situations.

We discuss in this section benefits of having parent sets, parentset`(.), in each level ` instead
of only one default parent, home`(.). Firstly, parent sets guarantee that detection paths of distinct
nodes that are at distance distG(.) meet at level dlog distG(.)e + 1. Secondly, they are useful in
finding the information about the object in the lowest level possible. For example, using only the
default parents (home`(.)), when a maintenance or a query operation for an object oi reaches level `
and there is no information about oi in home`(.), then the operation has to simply go to home`+1(.).
However, using the parentset`(.), a maintenance or a query operation has the chance of having the
information about oi in the other nodes of parentset`(.) even if there is no information about oi
in home`(.) and hence the operation does not need to go to level ` + 1 if the object information is
found in any of the nodes in parentset`(.). This reduces the cost incurred in serving the operations.
However, these parent sets in any level need to be visited by an operation in some order to avoid
race conditions − one operation may miss the detection path set by some other operation while
searching in the same level, especially in concurrent situations with two maintenance and/or query
operations from different nodes simultaneously probing the parent sets at some level.

A simple approach will be to visit the nodes in the parent sets in an arbitrary order with only a
restriction that default parent will be visited last. That is, when a default parent is visited by an
operation at any level, then it guarantees that no other node in the parent set have the information
about the object of interest for that operation. Then this operation can jump to the next level
and start searching for the information about the object of interest at that level. This approach is
sufficient for one by one executions, however it might introduce race conditions as described in Fig. 3
in concurrent executions. Let parentsetk(j) and parentsetk(m) be the parent sets of nodes j and
m at level k, and pk(j) and pk(m) be the default parents. Assume also that pk(j) ∈ parentsetk(m)
and pk(m) ∈ parentsetk(j). Let the query operation from node j and the maintenance operation
from node m be probing their parent sets parentsetk(j) and parentsetk(m) simultaneously at some
time step t. In this situation, the query operation from j will miss the detection path that will be
set by the maintenance operation, as the maintenance operation updates the information at pk(m)
only after all other nodes in parentsetk(m) are visited and the query operation from j does not see
this change as it visits pk(m) before the change happened. This scenario may repeat in the higher
levels. One way to resolve this race condition is to serialize the probing of level k parent sets for
the operations at level k − 1. This needs extensive locking of the nodes. Our technique of visiting
the nodes of the parent sets in the order of their IDs starting from the smallest ID node and ending
at the highest ID node avoids this kind of race conditions at all times. The reason is that all the
operations, even from different nodes, visit the nodes in their parent sets in the same order and hence
the update at pk(m) by the maintenance operation from m is not missed by the query operation
from j.

Recall that we did not use parentsetk(x) in Algorithm 1. If we use parentsetk(vi), then we need
to add oi to the DL of all the nodes of parentsetk(vi) and also to the SDL of the special-parent
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Figure 3: An illustration of a possible race condition in concurrent execution of object operations

nodes of the nodes in parentsetk(vi). As there are constant number of nodes in the parent sets at
any level, this will increase the maintenance and query costs by a constant factor only.

4 Analysis of the MOT Algorithm

We analyze the performance of the MOT algorithm (Algorithm 1) for maintenance and query op-
erations in both one by one case and concurrent case. We provide the details of the analysis of the
one by one case and give an overview of how the same cost ratio bounds can be achieved in the
concurrent case. Recall that in the one by one case each maintenance operation of an object arrives
only after the previous maintenance operation for that object is finished whereas in the concurrent
case where a maintenance operation of an object may arrive before previous maintenance operation
for that object is finished.

In the analysis, we do not take into account the cost for probing special-parents when the
maintenance operations are processed at a given level in their cost ratio computation. If we take
this cost into account, the cost ratios of maintenance operations increase by a constant factor in
constant-doubling networks (as the special parents are O(1) levels higher than the current level
where the operation is being processed); this cost increase will be a factor of O(log n) in general
networks (as special-parents here can be O(log n) levels higher than the current level where the
operation is being processed).

We proceed by analyzing the cost of publish operations. MOT is initialized using publish op-
erations from proxy nodes to insert the objects in HS such that they will be useful for future
maintenance and query operations. The cost of a publish operation is the sum of the message costs
for inserting the objects oi in HS. Therefore, the total communication cost for a publish operation
is obtained immediately from Lemma 2.2, by noticing that the number of levels h ≤ dlogDe+ 1 in
HS. This is the one time cost.

Theorem 4.1 The publish cost of Algorithm 1 is O(D) for each object in constant-doubling net-
works.

4.1 Maintenance Cost

For the sake of analysis, an execution of a set E of κ maintenance operations is represented as
E = {r1 = (u1, v1, t1), r2 = (u2, v2, t2), . . . , rκ = (uκ, vκ, tκ)}, where ri = (ui, vi, ti), 1 ≤ i ≤ κ, are
the subsequent maintenance operations for mobile objects oj , 1 ≤ j ≤ m, with old proxy nodes ui,
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new proxy nodes vi, and ti ≤ tj , j ≥ i, is the arrival time of maintenance operation ri. When ti+1 is
much greater than ti such that ri+1 is initiated only after ri is finished execution then it represents
the one by one case and captures the widely-considered scenarios where event inter-arrival times are
much greater than the message propagation time [12, 18]. This one by one case requires maintenance
operations for a given object oi to complete sequentially, but otherwise puts no constraint on when
or which object will move. When arrival time is same for all operations in E then this represents
the completely concurrent case otherwise it represents the continuous arrival case of maintenance
operations in arbitrary moments of time.

For the analysis, in both the one by one case and concurrent case, we divide the execution
set E into m different sets {E1, E2, . . . , Em} one for each mobile object such that Ej contains the
maintenance operations from E that are for object oj , 1 ≤ j ≤ m, only. We then compute, for
each object oj , the total cost of MOT (Algorithm 1) and the corresponding optimal cost, and later
combine these costs to the corresponding total and optimal costs of the m− 1 other sets to obtain
the overall maintenance cost ratio. The separate analysis for each object is possible because changes
in HS due to operations of one object do not interfere with the changes made by any other object.

Formally, let C∗(Ej) denote the total communication cost of performing all the operations in Ej
using the optimal algorithm in G. Let C(Ej) denote the total communication cost of performing
all the operations in Ej using Algorithm 1. The total communication cost is measured through the
total distance traversed by all the messages. Then then cost ratio of Algorithm 1 to perform all

the maintenance operations in Ej will be
C(Ej)
C∗(Ej) . Combining this cost with the cost ratios for other

objects, the overall cost ratio of Algorithm 1 will be

C(E)

C∗(E)
=

∑m
j=1 C(Ej)∑m
j=1 C

∗(Ej)
,

where C(E) is the total cost and C∗(E) is the optimal cost due to all Ej , 1 ≤ j ≤ m. The optimal
costs C∗(Ej) for 1 ≤ j ≤ m need to be summed as these optimal bounds are for different objects.
We will also show that the cost ratio of other object ok, k 6= j, is the same as the cost ratio for

object oj . Since E that we considered is arbitrary, the bound C(E)
C∗(E) translates to the cost ratio of

Algorithm 1 for any set E of maintenance operations, i.e., the bound for E translates to the bound

maxE
C(E)
C∗(E) for any arbitrary set E of maintenance operations. We prove the maintenance cost ratio

for one by one case in Section 4.1.1 and for concurrent case in Section 4.1.2.

4.1.1 One by One Case

In the one by one case, time component in the representation of maintenance operation ri does not
play any role and hence it can be dropped from consideration and simply write ri = (ui, vi). We
analyze the total and optimal costs for the maintenance operations in Ej for the object oj . We
denote by sk,j , 1 ≤ k ≤ h the number of maintenance operations in Ej that reached or traversed
level k while updating HS after oj moves. Thus, sk,j ≤ sk′,j for any k > k′. The peak level for an
operation ri ∈ Ej is the maximum level reached by ri. The peak level reached by a publish operation
is h (the maximum level in HS). The peak level for a maintenance is the level it reaches before
going downward. We prove the following lemmas for the total and optimal communication costs for
the operations in Ej .

Lemma 4.2 C(Ej) ≤
h∑
k=1

sk,j · 2k+3ρ+7, where h = dlogDe+ 1 and ρ is a doubling constant.

Proof. Let Ck(Ej) be the total communication cost of Algorithm 1 for the maintenance operations
in Ej that reach level k in HS. From Lemma 2.2, Ck(Ej) ≤ sk,j · 2k+3ρ+7. By combining the costs
for each level, the total communication cost of Algorithm 1 is

C(Ej) =

h∑
k=1

Ck(Ej) ≤
h∑
k=1

sk,j · 2k+3ρ+7.
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ut

Lemma 4.3 C∗(Ej) ≥ max
1≤k≤h

sk,j · 2k−1, where h = dlogDe+ 1 and ρ is a doubling constant.

Proof. Let C∗k(Ej) be the optimal communication cost for the maintenance operations in HS. Let
the old proxy node be u, the new proxy node be v, and let the peak node be found at level k. The
distance distG(u, v) ≥ 2k−1, because otherwise the detection paths of u and v would intersect at
level k − 1 or lower (Lemma 2.1).

Therefore, all the operations sk,j have destination nodes at least at a distance distG(u, v) ≥ 2k−1.
Hence,

C∗k(Ej) ≥ sk,j · 2k−1,

the total shortest path distance between the destination nodes of sk,j operations that reached level
k in sensor graph G. Considering all the levels 1 ≤ k ≤ h,

C∗(Ej) ≥ max
1≤k≤h

C∗k(Ej) ≥ max
1≤k≤h

sk,j · 2k−1.

ut

Theorem 4.4 C(Ej) ≤ h · 23ρ+8C∗(Ej), where h = dlogDe+ 1 and ρ is a doubling constant.

Proof. Since

C(Ej) ≤
h∑
k=1

sk,j · 2k+3ρ+7

≤ h · max
1≤k≤h

sk,j · 2k+3ρ+7,

then
C(Ej) ≤ h · 23ρ+8C∗(Ej)

using Lemma 4.3. ut

The total communication cost C(Ej) of Algorithm 1 for the operations in Ej given in Theorem
4.4 is O(h) = O(logD) factor away from the optimal communication cost C∗(Ej). C(Ej) is already
small compared to C∗(Ej) if D < nO(1). We now argue that C(Ej) is at most O(log n) factor away
compared to C∗(Ej) even when D > nO(1), where n is the number of nodes in the network. This
analysis is more involved in the sense that we need to separate the operations in Ej into ranges
according to the distance between the source and destination proxies. Then we will argue that when
D is asymptotically greater than n then the maintenance operations in Ej that reach to the higher
levels in HS need to use high weight edges of G in both the optimal algorithm and MOT, and hence
the optimal cost for the maintenance operations that reach to higher levels can not be combined to
the optimal cost for the maintenance operations that visit only lower levels.

We start with describing a setup that is useful in the formal proof of C(Ej) ≤ O(log n) ·C∗(Ej).
We partition the number of levels h ≤ dlogDe + 1 of HS into two types of groups, G1 and G2, as
described below.

• G1 groups: There are ϑ = d h
logne + 1 groups in G1 such that G1 = {G1

1, G
2
1, . . . , G

ϑ
1}, where

group Gi1 contains levels in the range [h−(i−1) · log n,max{h−i · log n−1, 0}] for 1 ≤ i ≤ ϑ. In
other words, each group Gi1, 1 ≤ i ≤ ϑ, except Gϑ1 contains exactly log n number of consecutive
levels starting from the root level h at any time. The last group Gϑ1 contains all the levels
from level h− (ϑ− 1) · log n to level 0 such that the number of levels in Gϑ1 are at most log n.

According to this division, we have that
∑ϑ
i=1 |Gi1| = h.

• G2 groups: There are at most ϑ + 1 groups in G2 such that G2 = {G1
2, G

2
2, . . . , G

ϑ+1
2 }, where

group Gi2 contains levels in the range [h − (i−1)
2 · log n,max{h − ( (2∗i−1)

2 · log n) − 1, 0}] for
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1 ≤ i ≤ ϑ+ 1. In other words, there are exactly logn
2 levels in group G1

2, exactly log n levels in

each group from G2
2 to Gϑ2 , and at most logn

2 levels in group Gϑ+1
2 . We can see G2 groups as

the shifted version of G1 groups by logn
2 levels starting from the highest level h. We also have

that
∑ϑ+1
i=1 |Gi2| = h.

The maintenance operations in Ej are assigned to G1 and G2 as follows. The assignment is
done according to the peak level reached by each maintenance operation in HS. Recall that the
peak level of a maintenance operation is the level in HS where insert of that maintenance meets its
corresponding delete operation. Formally, we assign the maintenance operations in Ej that have peak
level in the range [h− (i−1) · log n,max{h− i · log n−1, 0}] to group Gi1 for 1 ≤ i ≤ ϑ. Similarly, the

maintenance operations with peak level in the range [h− (i−1)
2 · log n,max{h−( (2∗i−1)

2 · log n)−1, 0}]
are assigned to group Gi2 for 1 ≤ i ≤ ϑ + 1. We denote by pk,j the number of operations of Ej
whose peak level is k for 1 ≤ k ≤ h. Here pk,j is in fact sk,j after removing the count of the number
of operations from sk,j for which the peak level is not k. The total and optimal cost due to the
operations in pk,j is considered only in the group where k falls ignoring its impact on the cost in the
lower levels, therefore this assignment has the impact of a constant factor increase (at most 2 times)
in the total communication cost due to properties that HS satisfies.

For the sake of analysis, we proceed by dividing G1 and G2 into two subgroup sets, which we denote
by G1,A, G1,B , and G2,A, G2,B , respectively, such that G1,A = {G1

1, G
3
1, . . .}, G1,B = {G2

1, G
4
1, . . .},

G2,A = {G1
2, G

3
2, . . .}, and G2,B = {G2

2, G
4
2, . . .}. That is, for each G1 and G2, the first subgroup A

contains odd numbered groups and the second subgroup B contains even numbered groups. This
subgroup set division is helpful later in bounding the optimal communication cost to serve all the
operations in Ej . For convenience, we analyze the costs for these subgroup sets separately. Hence, the
maintenance cost of the MOT algorithm for the operations in Ej is at most CG1,A(Ej) +CG1,B (Ej) +
CG2,A(Ej) + CG2,B (Ej), where CG1,A(Ej) is the total communication cost of the MOT algorithm for
serving all the operations of Ej inside G1,A; other costs are defined similarly. Moreover, C∗G1,A(Ej)
is the optimal cost for serving all the operations of Ej inside G1,A; optimal costs for other groups
are defined similarly. In the lemma below, we analyze the total communication cost due to only one
subgroup set G1,A.

Lemma 4.5 CG1,A(Ej) ≤ 2 ·
ϑ∑

l=1, odd l

max{h−l·logn−1,0}∑
k=h−(l−1)·logn

pk,j · 2k+3ρ+7, where h = dlogDe + 1 and ρ

is a doubling constant.

Proof. We first focus on a single group Gl1 ∈ G1,A. When we use l in the following we mean any
odd l from 1 ≤ l ≤ ϑ. For the operations in Ej inside Gl1 ∈ G1,A, analyzing the total communication
cost CGl

1
(Ej) similar to Lemma 4.2, we have that

CGl
1
(Ej) ≤ 2 ·

max{h−l·logn−1,0}∑
k=h−(l−1)·logn

pk,j · 2k+3ρ+7.

Combining the total communication cost of each group Gl1, we have that

CG1,A(Ej) ≤
ϑ∑

l=1, odd l

CGl
1
(Ej)

≤ 2 ·
ϑ∑

l=1, odd l

max{h−l·logn−1,0}∑
k=h−(l−1)·logn

pk,j · 2k+3ρ+7.

ut

Lemma 4.6 C∗G1,A(Ej) ≥
1

2
·

ϑ∑
l=1, odd l

max
h−(l−1)·logn≥k≥max{h−l·logn−1,0}

(pk,j − 1) · 2k−1, where h =

dlogDe+ 1 and ρ is a doubling constant.

138



International Journal of Networking and Computing

Proof. Analyzing along the lines of Lemma 4.3 for the optimal communication cost C∗
Gl

1
(Ej) for

the operations inside Gl1 ∈ G1,A, we have that

C∗Gl
1
(Ej) ≥

1

2
· max
h−(l−1)·logn≥k≥max{h−l·logn−1,0}

(pk,j − 1) · 2k−1.

We now show that C∗G1,A(Ej) is at least the sum of the optimal cost C∗
Gl

1
(Ej) of all the groups Gl1 in

the subgroup set G1,A, i.e.,

C∗G1,A(Ej) ≥
ϑ∑

l=1, odd l

C∗Gl
1
(Ej)

≥ 1

2
·

ϑ∑
l=1, odd l

max
h−(l−1)·logn≥k≥max{h−l·logn−1,0}

(pk,j − 1) · 2k−1.

The argument behind this is as follows. Consider any two consecutive groups Gl1, Gl+2
1 ∈ G1,A. For

any two operations r1 ∈ Gl1 and r2 ∈ Gl+2
1 , according to the division of groups, their peak level

difference is at least log n levels. We now show that the edges in the graph G that are used by the
operations in Gl1 are different than the edges in G that are used by the operations in Gl+2

1 .
As there are n nodes in the graph and the diameter D is asymptotically greater than n, the

average length of the edges used by the maintenance operation r1 ∈ Gl1 to connect its source proxy
node with its destination proxy node is at least 2h−l·logn−1. Similarly, the average length of the
edges is at most 2h−(l+1)·logn for the operation r2 ∈ Gl+2

1 . In other words, if the average length is
d for the edges used by r1, then the average length is at most d/n for the edges used by r2 in G.
Recall that the total communication cost and the optimal communication cost for the operations
that are inside each group Gl1 is considered only in the group where they fall. This will increase the
total communication cost CGl

1
(Ej) for each group Gl1 by the factor of 2 only; moreover, the optimal

communication cost C∗
Gl

1
(Ej) for each group Gl1 will decrease by at most the factor of 2. Therefore,

if any maintenance operation r1 ∈ Gl1 would have used the edges used by r2 ∈ Gl+2
1 for any odd l

in 1 ≤ l ≤ ϑ, then it would not have reached to the level inside Gl1. Therefore, the set of edges used
by any of the operations inside two different groups in G1,A is different and hence the optimal cost
for different groups in G1,A needs to be added. ut

Theorem 4.7 C(Ej) ≤ 23ρ+13 · log n · C∗(Ej), where ρ is a doubling constant.

Proof. First we compare cost CG1,A(Ej) with the optimal cost C∗G1,A(Ej). Similar to Theorem 4.4,
since

CG1,A(Ej) ≤ 2 ·
ϑ∑

l=1, odd l

max{h−l·logn−1,0}∑
k=h−(l−1)·logn

pk,j · 2k+3ρ+7

≤ 23ρ+11 · log n ·
ϑ∑

l=1, odd l

max
h−(l−1)·logn≥k≥max{h−l·logn−1,0}

pk,j · 2k,

then
CG1,A(Ej) ≤ 23ρ+11 · C∗G1,A(Ej).

Now the total and optimal communication costs for other subgroup sets can be analyzed similarly.
Combining the cost bounds of all four subgroup sets, we obtain that C∗(Ej) is at least

C∗(Ej) ≥ max
{
C∗G1,A(Ej), C∗G1,B (Ej), C∗G2,A(Ej), C∗G2,B (Ej)

}
,

and C(Ej) is at most

C(Ej) ≤ 4 ·max
{
CG1,A(Ej), CG1,B (Ej), CG2,A(Ej), CG2,B (Ej)

}
.
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We obtain the same bounds as

CG1,A(Ej) ≤ 23ρ+11 · C∗G1,A(Ej)

for all the remaining subgroup sets G1,B ,G2,A, and G2,B . Therefore,

C(Ej) ≤ 23ρ+13 · log n · C∗(Ej).

ut

We are now ready to provide the overall cost ratio maxE
C(E)
C∗(E) of Algorithm 1.

Theorem 4.8 The maintenance cost ratio of Algorithm 1 is O(min{log n, logD}) in constant-
doubling networks.

Proof. We have that E is arbitrary. Moreover, each subset Ej is arbitrary. Therefore, using the
values of C(Ej) (Theorems 4.4 and 4.7) we can prove that

C(E) =

m∑
j=1

C(Ej)

≤ c ·min{log n, logD} ·
m∑
j=1

C∗(Ej)

= c ·min{log n, logD} · C∗(E),

for some positive constant c. Moreover, lower bound costs C∗(Ej) for different objects need to be
summed up for the total lower bound cost for the operations in E because lower bound costs for
different objects can not be combined. Hence, the theorem follows. ut

4.1.2 Concurrent Case

In the concurrent case, whether the current maintenance operation overlaps with any previous
maintenance operation is determined through the arrival time of the maintenance operation. We can
drop the destination proxy from the definition of the maintenance operations in E in the concurrent
case as destination proxies depend on the ordering of requests under concurrent execution. Therefore,
time of arrival plays the vital role in the analysis of cost ratios of concurrent maintenance operations.
We already saw in Section 4.1.1 that the analysis of Algorithm 1 is intriguing. The concurrent case
further complicates the analysis. However, assuming a synchronous execution and using the analysis
technique recently presented in Sharma and Busch [30], we can prove that the same cost ratio bound
given in Theorem 4.8 holds for maintenance operations in concurrent executions.

We provide here the overview of the analysis approach presented in [30]. We start with some
definitions. Lets assume that a time unit is of duration a message requires to reach a destination
node that is unit distance far from the source node which sent that message. Now we can define
a period of time for each level i which is of duration Φ(i) = 2i+3ρ+6 (this period is proportional
to DPathi(.) length up to level i). In other words, the period at each level i denotes the time a
maintenance operation needs to reach and modify the information of all the parent nodes at level i
following the detection path of the node which issued that maintenance operation. This division of
time into periods is helpful in obtaining the upper bounds on the costs of maintenance operations.
We assume that the execution of maintenance operations starts from 0 and increases continuously
unit by unit. In every level i, a period of duration Φ(i) starts immediately after the current period
of Φ(i) expires. Moreover, since the neighborhood in the HS construction increases/decreses by
the factor of 2 between two consecutive levels, each period at level i− 1 is exactly of half duration
compared to that of level i and each period at level i is exactly of double duration compared to that
of level i−1. We call by a round a duration of Φ(h), i.e., the period for the root level h = dlogDe+1.
Therefore, in a round, there will be only one period of duration Φ(h) at level h, 2 periods of duration
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Φ(h − 1) each at level h − 1, 4 periods of duration Φ(h − 2) each at level h − 2, and so on. If we
take any level 0 ≤ k ≤ h, we have 2h−k periods of duration Φ(k) each. Lets denote the consecutive
periods at some level k by Φ0(k),Φ1(k), . . ., such that Φ0(k) starts at time 0, Φ1(k) starts as soon
as Φ0(k) expires, and so on.

Now when an operation is processed at level k during some period Φj(k), it will be sent to level
k+ 1 at the end of the period Φj(k). Similarly, the operation is forwarded to level k−1 again at the
end of the period Φj(k). That is, when an operation is processed and ready to be forwarded before
the current period expires, the operation waits until the period expires. After that the operation
is forwarded to its parent/child nodes. This controls the way operations are forwarded between
two consecutive levels of HS but it does not affect the lower bound analysis (that is, lower bound
cost computation does not depend on this approach) and increases the upper bound cost by only a
constant factor.

If all the maintenance operations are issued simultaneously (one maintenance operation per node)
at time zero, we can have as a lower bound for the maintenance operations that reach any level k
the cost that is given by the Steiner tree of the nodes in the network that issued those maintenance
operations; this cost is actually the cost that is similar to the one given in Lemma 4.3 for one by one
executions. For the upper bound on the cost for MOT, we have the cost that is similar to the cost
given in Lemma 4.2 for one by one executions. Summing the upper bound costs for all the levels
and dividing it by the lower bound cost similarly as we did in Theorem 4.8, we obtain the O(logD)
bound in cost ratio for maintenance operations when they are issued simultaneously at time 0 and
no further operations are issued. This can again be made O(log n) using the analysis technique
similar to the one given in Lemmas 4.5 and 4.6, and Theorem 4.7 for the O(log n) analysis for one
by one maintenance operations.

If all the operations are not issued simultaneously but are issued over time, we can divide the
periods of each level into dense and sparse based on how many maintenance operations reach to a
particular level within the duration of a particular period, as it is done in [30]. In this case, the lower
and upper bound analysis depends on both time and distance and provides similar bounds as in the
case of one by one executions. Sharma and Busch [30] called a period of a level dense when there
are three or more maintenance operations that reach to that level during that period; otherwise the
period is called sparse. Moreover, they showed that when a maintenance operation r1 reaches a level
at period Φp(.) and another maintenance operation r2 reaches that level at period Φq(.) such that
q− p ≥ 3, then r1 is always ordered before r2 in the sense that r1 finishes execution before r2 starts
execution. That is, the analysis for this case captures both the time and distance restrictions in
ordering the maintenance operations that are issued over time. Therefore, we can prove the following
corollary for the maintenance operations in concurrent situations using the analysis technique and
results of [30]; more details can be found in [30].

Corollary 4.9 The maintenance cost ratio of Algorithm 1 is O(min{log n, logD}) in constant-
doubling networks even in concurrent executions.

4.2 Query Cost

We bound here the query cost ratio C(℘(oj))/C
∗(℘(oj)), where C(℘(oj)) is the total communication

cost of serving a query operation ℘(oj) for some object oj , 1 ≤ j ≤ m, through MOT (Algorithm
1) and C∗(℘(oj)) is the optimal cost of serving ℘(oj). If a query operation is issued before any
maintenance operation arrives in the system (that is, after all publish operations are finished), due
to Lemma 2.1, it is trivial to see that a query operation ℘(oj) from a sensor node x finds oj in the
detection list of an internal node in the detection path DPath(x) of x at level dlog(distG(x, v))e+ 1,
where distG(x, v) is the distance of the proxy node v of oj from x in G.

If a query operation is issued after some maintenance operations are executed in the system,
there are two possible scenarios. In the first scenario, the maintenance operation inter-arrival time
is such that the query does not overlap with any maintenance operation. In the second scenario, the
query operation overlaps with other (possibly many) maintenance operations. We first analyze the
cost ratio of a query operation in the first scenario in Section 4.2.1 and deal with the cost ratio in
the second scenario in Section 4.2.2.
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4.2.1 When Queries do not Overlap with Maintenance Operations

In this case, following the internal nodes which have oj in their detection lists downward from level
dlog(distG(x, v))e+1, any query operation ℘(oj) can reach to the proxy v of oj at any time, according
to our assumption of event inter-arrival times. Therefore, the question is how many levels the query
℘(oj) from x needs to visit to find oj in the detection list of any internal node in DPath(x) when
query is issued after at least a maintenance operation is executed in HS. We prove the following
lemma.

Lemma 4.10 A query operation ℘(oj) from any sensor node x for the object oj at proxy node v at
distance distG(x, v) ≤ 2i is guaranteed to find oj in the detection list of an internal node in DPath(x)
at level k ≤ i+3ρ+6 in the scenario where queries do not overlap with any maintenance operations.

Proof. Assume that w = pk(x) be a internal node of x at level k = i+ 3ρ+ 6 in DPath(x), which is
the special parent of a level i node vi which has object oj in its detection list. All the nodes between
vi to v also have oj in their detection lists. For a query operation ℘(oj) to find the special parent
of vi at w, x must be within the 2k+1-neighborhood of w. It suffices to show that the neighborhood
2k+1 of w is at least the distance distG(vi, x) between vi and x to guarantee that w is a internal
node in DPath(x). As the length of a detection path from a proxy level node to any level i node
is bounded by 2i+3ρ+6 (Lemma 2.1) and distG(x, v) = 2i, distG(vi, x) ≤ 2i+3ρ+6 + distG(x, v) ≤
2i+3ρ+6 + 2i ≤ 2i+3ρ+7 ≤ 2k+1 for k = i + 3ρ + 6. That is, some node should be within at most
2i+3ρ+6 to have such information, and thus, that node will be at level k = i + 3ρ + 6. The lemma
follows. ut

Theorem 4.11 The cost ratio of Algorithm 1 for any query operation is O(1) in constant-doubling
networks.

Proof. An object oj can be found at level k ≤ i + 3ρ + 6 through either the detection list
DL or the special detection list SDL. Therefore, C(℘(oj)) is at most the sum of the distances
length(DPathk(x)) (the length of DPath(x) up to level k), distG(w, vi) (the path length between
the level k internal node w in DPath(x) and the level i internal node vi which is the special-child
of w from special parent and child relation), and the length of the path the query operation ℘(oj)
follows downward from vi to v. We have that length(DPathk(x)) ≤ 2k+3ρ+6, distG(x, vi) ≤ 2k, and
length(DPathi(v)) ≤ 2i+3ρ+6. Therefore,

C(℘(oj)) ≤ 2i+6ρ+13

substituting k by i+ 3ρ+ 6, where ρ is a doubling constant. As x and v are distG(x, v) = 2i apart,
the optimal cost for ℘(oj)

C∗(℘(oj)) ≥ 2i.

Therefore, C(℘(oj)) ≤ O(1) · C∗(℘(oj)). The theorem follows. ut

4.2.2 When Queries Overlap with Maintenance Operations

In this case, a query operation chases a moving object as many maintenance operations may
change the destination that the query operation was supposed to reach. We need a distance no-
tion which we define as follows. Assume that a query operation ℘(oj) from some node w starts
at start(℘(oj)) (when w sends it to its parent node in DPath(w) for the very first time) and
ends at end(℘(oj)) when the read-only copy of oj arrives at w. A maintenance operation p is-
sued by some node v is said to be overlapping with ℘(oj) if v has oj at any time during the interval
∆(℘(oj)) = [start(℘(oj)), end(℘(oj))] or if p is outstanding at any time during the interval ∆(℘(oj));
the operation is outstanding after it is issued and before it is served. Therefore, we need to redefine
the distance distG(., .) of such query operation ℘(oj) from any node w ∈ G to the maximum shortest
path distance from w to the source node of any overlapping maintenance operation in G. Now
adapting the analysis technique used in [32, Section 5.4.2], we can prove the following theorem.

Theorem 4.12 The cost ratio of Algorithm 1 for any query operation is O(1) in constant-doubling
networks even when the query operation overlaps with one or more maintenance operations.
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5 Load Balancing

We now show how to modify MOT to solve the tracking problem in a way that balances the load
among the network nodes by distributing the detection list of the internal nodes to other nodes in
their neighborhood. We prove the load result for growth-restricted networks, which are a slightly
restricted variations of constant-doubling networks. Let N(x, r) be the radius r-neighborhood of x.
In growth-restricted networks, there exists a constant which bounds the ratio between N(x, 2r) and
N(x, r) for arbitrary node x and arbitrary radius r.

We give a simple variation of MOT to achieve load balancing. In HS, we form a cluster around
each internal node by including all the nodes that are within the specified radius of the central node.
The radius of a cluster is defined according to the level of the central node. According to this cluster
construction, if a central node is at level i, then all the nodes in G that are within radius 2i of that
central node are included in the cluster. We now allow the central node to distribute its detection list
to other nodes within the cluster so such that the object load at each node is minimized. This can
be done through a hash function. We assign a unique key to each object such that key(oi) ∈ [1...m].
Likewise, we assign identifiers to each node in a cluster X such that ident(X) ∈ [0...|X| − 1], where
|X| is the number of nodes in the cluster. Each object oi is now stored in the detection list of a
node with label key(oi) mod |X| where X is the relevant cluster. The purpose of the hash function
is to distribute the objects evenly among the nodes in the cluster, so that the load at any node is
minimized.

The load of the MOT algorithm is the total number of objects and the bookkeeping information
that it needs to store in each physical (proxy) node to track m mobile objects. We assume that
each node may act as a proxy for up to m1 objects (maximum number of objects proxied by any
one node). We compare the total information stored by MOT in any node, including its detection
list and proxy list, to m1 to obtain the load ratio.

Theorem 5.1 MOT achieves load ratio of O(logD) on average in growth-restricted networks.

Proof. According to the construction of HS, each physical node x ∈ G has constant number of
parents (at most 23ρ number of parent in the parentsetj(x) for 1 ≤ j ≤ h) in each level. Moreover,
summing over x’s role up to h levels, the total number of parents is O(h) = O(logD). Taking the
expectation over uniform object key distribution through a universal hash function, following the
analysis approach of [14], the expected object storage load at x at level ` is O(m1) for fixed `, where
m1 is the maximum number of objects proxied at any one physical node of G. Assuming that nodes
generate uniform load and this load condition holds at all times, the expected object load at x is
O(m1 · logD) when summing over all different levels. ut

To retrieve the object information that is distributed to other nodes inside the cluster efficiently,
we embed a de Bruijn graph in each cluster. If a de Bruijn graph is not embedded, then large
tables are needed to translate the virtual node levels provided to the nodes within the cluster in the
distribution process into physical addresses. However, the embedding of a de Bruijn graph makes
objects distributed in the cluster nodes searchable in O(log n) time in every cluster by allowing every
node of the cluster to store only a constant number of IDs of the neighboring nodes inside the cluster.
Therefore, we obtained the desired bound for load in Theorem 5.1. Without this embedding, every
node may need to store about as much as O(n) IDs of the neighboring nodes. The expense of a de
Bruijn graph embedding is an increase of a O(log n) factor in maintenance and query costs.

The embedding is done as follows using ideas from Rajaraman et al. [28]. We embed a d =
dlog |X|e-dimensional de Bruijn graph into each cluster X, where |X| is the number of nodes in that
cluster. The d-dimensional de Bruijn graph consists of 2d vertices whose labels are binary strings of
length d. In other words, the nodes in the cluster X are assigned integers from [|X|]. Any de Bruijn
graph vertex with label ` ∈ [|X|] is hosted by the cluster node u with level `. Any de Bruijn graph
vertex with label ` > |X| is hosted by the cluster node u with level l except the most significant
bit. Note that the labels of the nodes are all integers. In the de Bruijn graph, there is a directed
edge from each vertex with label u1u2 . . . ud to the vertices with labels u2 . . . ud0 and u2 . . . ud1.
The diameter of this directed graph is log |X| and there is a unique shortest path between every
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pair of vertices which can be computed easily. If a node v in cluster X needs to send a message
to node `(X) (the leader of the cluster X), for some object oj , then this message follows the edges
on the shortest path from v to `(X) in the de Bruijn network. To follow the shortest path, every
node in this shortest path only needs to know the physical address of the next node on the path.
This information is obtained when every node in the path stores the physical address of the nodes
incident on its outgoing edges. Since the in-degree and out-degree of each vertex in the de Bruijn
graph is at most 2, the neighborhood table at each node is of constant size.

The cost of routing messages along shortest paths in the de Bruijn network is O(DX · log |X|)
instead of O(DX) because a shortest path visits up to O(log |X|) intermediate nodes, where DX is
the diameter of the cluster X. Therefore, we have the following corollary.

Corollary 5.2 Due to de Bruijn graph embedding in constant-doubling networks, the maintenance
cost ratio of Algorithm 1 becomes O(min{log n, logD} · log n) and the query cost ratio becomes
O(log n). However, the increase of a O(log n) factor in maintenance and query cost ratios allows to
balance the load in the nodes of HS such that the load ratio is O(logD) on average per node.

6 Extensions to General Networks

We now show the scalability of our tracking algorithm in general network topologies. We use a
(O(log n),O(log n)) partition scheme of [4, 15, 33] to maintain an overlay structure HS. A similar
scheme is used by [27] to solve the problem of distributing information from a collection of sources
to mobile users in a wireless mesh network. This scheme can also be computed through a distributed
algorithm in a message efficient manner following the technique presented in Gao et al. [12].

There are h ≤ dlogDe + 1 levels in this (O(log n),O(log n))-partition scheme. At the bottom
level (level 0), each node in V belongs to exactly one cluster which consists only of the node itself.
At the top level (level h), there is only one cluster that contains all the nodes in V . In any level
`, 1 ≤ ` ≤ h − 1, each node u ∈ V belongs to exactly O(log n) clusters. The O(log n) clusters at
each level are provided with different integer labels. A leader node is selected arbitrarily for each
cluster from the nodes that are in that cluster so that HS can have a hierarchical structure of leader
nodes of all clusters at all the levels. These leader nodes act similar to the internal nodes of HS we
developed in Section 2.

Similar to Section 2, the parent set parentset`(x) of node x in HS consists of all the parent
nodes within distance O(2` · log n) of x. According to this construction, the total number of nodes
in the parent set is O(log n). Parent child pairs here are also connected similarly to Section 2. The
DPath(u) for each bottom level sensor node (proxy or non-proxy) u ∈ V visits the leader nodes in
parentset`(u) at level ` that u belongs to according to the label of the clusters starting from the
smallest label cluster and ending at the largest label cluster. The cluster labeling is derived from
labeling of the O(log n) partition hierarchies of (O(log n),O(log n))-partition scheme. The details
can be found in [33]. We have these following results in general networks.

Lemma 6.1 For any two nodes u, v ∈ V in general networks, their detection paths DPath(u) and
DPath(v) intersect at level min{h, dlog(distG(u, v))e+ 1}. Moreover, the length of the detection path
of any node u ∈ V up to any level j is length(DPathj(u)) ≤ O(2j · log2 n).

Proof. The first part follows arguing similar to Lemma 2.1. The proof of the second part is also
similar to Lemma 2.2, but now length(DPathj(u)) increases by the factor of O(log2 n) in general
networks. This is because, in contrast to HS for constant-doubling networks, there are O(log n)
nodes in the parent set at level ` + 1 for any leader node at level ` in HS for general networks.
Moreover, any node in the parent set at level `+ 1 can be as much as O(2`+2 · log n) distance away
from a child node at level `. Therefore, summing up the lengths of the root path segments for
each level, length(DPathj(u)) for any node u up to level j increases by the factor of O(log2 n) in
comparison to the detection path length of Lemma 2.2. ut

Theorem 6.2 The maintenance cost ratio of Algorithm 1 is O(log2 n ·min{log n, logD}) in general
networks in any (one by one or concurrent) execution.
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Proof. For the upper bound, similar to Lemma 4.2, we have that for all the operations in Ej that
reach level k following their respective detection paths,

Ck(Ej) ≤ sk,j · O(2k · log2 n).

This is because DPathk(u) for any node u is O(2k · log2 n) (Lemma 6.1). Therefore, the total
communication cost of Algorithm 1 in a general network is

C(Ej) ≤
h∑
k=1

Ck(Ej) ≤
h∑
k=1

sk,j · O(2k · log2 n).

For the lower bound, arguing similarly as in Lemma 4.3 using intersection property of detection
paths given in Lemma 6.1, we have that for the maintenance operations that reach level k in HS it
holds that

C∗k(Ej) ≥ (sk,j − 1) · 2k−1.

Therefore, considering all the levels 1 ≤ k ≤ h,

C∗(Ej) ≥ max
1≤k≤h

(sk,j − 1) · 2k−1.

Comparing these two bounds, we have that

C(Ej) ≤ ≤
h∑
k=1

Ck(Ej) ≤
h∑
k=1

sk,j · O(2k · log2 n)

≤ c1 · h · log2 n · max
1≤k≤h

sk,j · 2k

≤ c2 · h · log2 n · C∗(Ej)

with a reduction similar to Theorem 4.4, where h ≤ dlogDe + 1, and c1 and c2 are some positive
constants.

The total communication cost C(Ej) of Algorithm 1 for the operations in Ej calculated above is
already small if D < nO(1). We now argue that O(h) = O(logD) factor in C(Ej) can be replaced
with O(log n) even when D > nO(1). This can be proved from a fine-tuned analysis similar to the one
given in Theorem 4.7 (Section 4.1.1) for constant-doubling networks. Therefore, combining these
two different cost bounds for C(Ej) and using the argument of Theorem 4.8, we obtain that the
maintenance cost ratio of Algorithm 1 is O(min{log3 n, log2 n · logD}) in general networks. Note
that this analysis is for the one by one case. For the concurrent case, adapting the proof technique
outlined in Section 4.1.2, we can prove the same cost ratio of O(min{log3 n, log2 n · logD}) for
Algorithm 1 in general networks. ut

Lemma 6.3 A query operation ℘(oj) from any sensor node x for the object oj at proxy node v
at distance distG(x, v) = 2i is guaranteed to find oj in the detection list of an internal node in
DPath(x) at level k ≤ i + 2 + 2 log log n + log c, for some positive constant c in the scenario where
query operations do not overlap with any maintenance operations.

Proof. We argue similar to Lemma 4.10. Lets assume that w is a leader node of cluster X at level
k = i+ 2 + log log n+ log c, which has special-child the level i leader node vi (set by some previous
insert operation). For the query operation ℘(oj) to find the special-child to vi at w, w must include
x since the root path DPath(x) of x visits the leaders of all clusters that contain it. It suffices to
show that the neighborhood 2k−1 of X is at least the distance distG(vi, w) between vi and w to
guarantee that w is a parent node in DPath(x). As the length of the downward path towards v from
level i node vi is also at most c · 2i · log2 n (the length of the detection path given in Lemma 6.1)
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and distG(x, v) = 2i, we get

distG(vi, w) ≤ c · 2i · log2 n+ distG(x, v)

≤ c · 2i · log2 n+ 2i

≤ c · 2i+1 log2 n

≤ 2i+1+2 log logn+log c

≤ 2k−1,

for k = i + 2 + 2 log log n + log c. Hence, some node should be within at most 2i+2+2 log logn+log c

distance to have that information, i.e., such node will be at level k = i+ 2 + 2 log log n+ log c. ut

Theorem 6.4 The cost ratio of Algorithm 1 for any query operation is O(log4 n) in general networks
in any (non-overlapping or overlapping) execution of query operations with maintenance operations.

Proof. First we consider the non-overlapping execution of the query operation ℘(oj) with mainte-
nance operations. Similar to Lemma 4.12, C(℘(oj)) ≤ length(DPathk(x))+distG(w, vi)+length(DPathi(v))
since the length of the downward path to the object from the level i node is also at most the length
of the detection path from proxy node to a level i internal node. As k ≤ i + 2 + 2 log log n + log c,
length(DPathk(x)) ≤ O(2k · log2 n), distG(w, vi) ≤ O(2k · log n), and distG(v, vi) ≤ O(2i · log2 n), we
have that

C(℘(oj)) ≤ O(2k · log2 n) +O(2k · log n) +O(2i · log2 n)

≤ O(2k · log2 n)

≤ O(2i+2+2 log logn+log c · log2 n)

≤ O(2i · log4 n).

Moreover, as x and v are 2i apart, C∗(℘(oj)) ≥ 2i−1. Therefore C(℘(oj))/C
∗(℘(oj)) ≤ O(2i ·

log4 n)/2i−1 = O(log4 n), as needed. When the query operation ℘(oj) overlaps with one or more
maintenance operations, following the technique outlined in 4.2.2, we can prove the same cost ratio
of O(log4 n) for C(℘(oj))/C

∗(℘(oj)) using the result of [32]. The theorem follows. ut

Theorem 6.5 Algorithm 1 achieves load ratio of O(log2 n · logD) in general networks.

Proof. Suppose that the maximum number of objects that can be stored in the memory of any
sensor node is m1. According to our construction of HS for general networks, any sensor node of G is
contained in O(log n · logD) clusters. From the result of [28, Lemma 8], using an O(log(n ·m1))-wise
independent hash function to distribute the objects to the nodes of the clusters, it can be shown that,
for every cluster X, each node v ∈ X holds information (both object and bookkeeping) about at

most O( (m1+logn)·log(n·m1)
logn ) objects with high probability. Moreover, the representation of this hash

function can be done using O(log(n ·m1)) words and the de Bruijn neighborhood can be store using
only two words; note that a de Bruijn graph can be embedded to each cluster through a procedure
similar to the one described in Section 5. Therefore, total object load at any node is

O
(

log n · logD ·
(

(m1 + log n) · log(n ·m1)

log n
+ 2

)
+ log(n ·m1)

)
.

Assuming that m1 ≤ nO(1), i.e., polynomially bounded on n, we have that the load ratio is O(log2 n ·
logD). Hence, the theorem follows. ut

Due to the embedding of the de Bruijn graph in each cluster, the cost of routing messages along
the shortest paths increases by a factor of O(log n) when compared to routing messages without
the de Bruijn graph embedding (Section 5). Therefore, we have the following corollary for the
maintenance and query cost ratios in general networks.
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Corollary 6.6 Due to the de Bruijn graph embedding in general networks, the maintenance cost
ratio of Algorithm 1 becomes O(log3 n·min{log n, logD}) and the query cost ratio becomes O(log5 n).
However, the increase of O(log n) factor in maintenance and query ratio allows to balance the load
in the nodes of HS such that the load ratio is O(log2 n · logD) on average per node.

7 Handling Node and Edge Failures

We assumed so far that nodes and links do not crash; this assumption may be too strong for practical
wireless sensor networks as nodes are prone to battery depletion and availability of links vary. In
this section, we outline how to extend MOT for dynamic networks where nodes join and leave over
time. Joining and leaving of sensor nodes change the availability of links as well. We argue below
that MOT can be made adaptable to these network changes. The adaptability can be defined as the
number of nodes of HS that have to be updated when a node joins or leaves the sensor network.

We need to adjust the hierarchical structure HS and transfer the object states appropriately. If
the node that is leaving the system is a leader, the leadership information should be transferred to
some other node of that cluster by electing that node as a leader for that cluster. This new leader
information should be propagated to all the nodes in the cluster. For this to work, we have to
assume that the nodes announce their failures (or departures) before they actually fail. Otherwise,
the object and pointer information at that node will be lost. This assumption has widely been used
in the literature and we argue that it is not much of a restriction. Moreover, a sequence of nodes
joining the system may make the diameter of the cluster too big. Similarly, the leaving of a sequence
of nodes may make the cluster disjoint. These issues can be tackled by putting some threshold on
how much clusters can grow or become disjoint. After the threshold, the hierarchy can be rebuilt
from scratch.

The hierarchical structures HS built in Sections 2 and 6 respectively for constant-doubling and
general networks are adaptable to changes due to the leaving and joining of a few nodes without the
need of rebuilding of them from scratch up to some threshold. We assume that a de Bruijn graph
is already embedded in each cluster of the network as described in Section 5 for constant-doubling
networks and Theorem 6.5 for general networks.

We now provide some details on how to adapt to the changes when a node, say p, leaves the
network, and argue that for a sequence of node additions, the amortized adaptability of our technique
is O(1) within a cluster for both constructions. The description below is for one cluster X in which p
belongs; this can be extended to other clusters of HS where p belongs accordingly. Remember that
the adaptability discussion heavily depending on the de Bruijn graph embedding and we borrow the
techniques of [28] here. Let `(p) be the label of p in cluster X after embedding a de Bruijn graph. If
`(p) = |X|−1 and |X|−1 is not a power of 2, then we emulate the label `(p) by the node p′ ∈ X that
has a label `(p′) which is identical to p except the most significant bit. If p was the leader of X then
p′ now becomes the new leader and this information is propagated to the leaders at the parent and
child clusters of X, and also to the other nodes inside X. The neighboring nodes list that currently
holds by p′ in the embedded de Bruijn graph is updated to reflect also the list of neighbors of p;
the objects and bookkeeping information is also transferred to p′ from p and updated accordingly.
This implies that only O(1) nodes are updated in this process. If |X| − 1 is a power of 2, then from
the embedding we have that all the nodes in X except p has two labels. Therefore, we decrease the
dimension of the embedded de Bruijn graph by 1 such that each node in X now maintains exactly
one of its labels and merge the bookkeeping information associated with the two labels. This implies
that all |X| nodes are updated. We can choose any node in X to become a new leader and the
information about new leader is propagated to other nodes as described above. For the case where
`(p) is less than |X|− 1, we can set `(p) the label of the node with current label |X|− 1 and proceed
similarly as of the removal of the node with label |X| − 1. That node also works as the leader of X.
Therefore, arguing through amortization, we have that the amortized adaptability for a sequence of
node departures is O(1) with in a cluster.

We now provide some details on how to adapt to the change when a node, say p, joins the
network, and argue that the adaptability for a sequence of node arrivals is O(1) within a cluster as
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well for both constant-doubling and general network HS constructions. Note that leader election is
not required here and hence we omit the discussion related to it. The node p is assigned a new label
|X| as soon as it joins a cluster X. If |X| + 1 is not a power of 2 after the addition of p, the node
p′ that has label |X| (before the addition of p), and the nodes that have de Bruijn edges to p′ are
updated to reflect the changes. It is immediate that the number of nodes that are updated are O(1).
If |X|+ 1 is a power of 2, then previously all the nodes in |X| had only one label, but now they need
to emulate 2 labels which is done by increasing the dimension of the embedded de Bruijn graph by
1. Therefore, the number of nodes updated inside a cluster are |X| and the amortized adaptability
is again O(1) for a cluster, even for a sequence of node arrivals.

Therefore, the amortized adaptability within a cluster for a sequence that contains nodes both
joining and leaving the system is O(1) for both constant-doubling and general networks. As each
node belongs to O(logD) levels in constant-doubling networks (Section 2) and O(log n · logD)
levels in general networks (Section 6), we have the amortized adaptability of O(logD) for constant-
doubling networks and O(log n · logD) for general networks. Note that this amortized adaptability
works until some threshold since the arbitrary number of addition and deletion of nodes may either
make the diameter of a cluster too big or the cluster becomes disjoint, and rebuilding of the hier-
archy is preferred after some threshold. The appropriate threshold can be determined based on the
application requirement by maintaining some profiling parameter while the network is in operation.
The complete treatment of these issues is currently outside the scope of this paper and therefore we
leave them for future work.

8 Experiments

We have implemented our MOT algorithm and compared its performance with STUN algorithm due
to Kung and Vlah [18] and Z-DAT algorithm due to Lin et al. [21]. For Z-DAT, we consider two
variations of it: One is the original Z-DAT algorithm and the other is modified Z-DAT algorithm
enriched with shortcuts which we denote as Z-DAT + shortcuts in the figures; the details of Z-DAT
variations can be found in [21]. The difference among STUN, Z-DAT, and MOT is in the tracking
structure construction and the properties they hold. We note here that STUN and Z-DAT do not
necessarily minimize maintenance and/or query costs in some special networks, e.g. ring networks.
Moreover, they do not address the load balancing issue and also assume the availability of traffic
knowledge. We performed the experiments on grid networks of sizes ranging from 10 nodes to 1024
nodes with 100 and 1000 mobile objects. We used the static grid networks and leave the case of
dynamic networks for future work. The plots are the average of 5 experiments. All the algorithms
are implemented in Java and results are obtained from the simulation. We provide maintenance and
query cost ratio results as well as load results for all the algorithms considered in simulation in both
one by one and concurrent execution of the operations to cover wide range of practical applications.

We first provide experimental evaluation results obtained from one by one execution of operations.
Note that, in one by one executions, there is only one operation executing at any time for any
single object. We start with maintenance cost ratio results. Fig. 4 compares the cost ratio of the
algorithms in performing 1000 maintenance operations per object in random order for 100 mobile
objects. Similarly, Fig. 5 compares the maintenance cost ratios in the same setting of Fig. 4 for 1000
mobile objects. The cost ratio of MOT is significantly better compared to that of STUN for both 100
and 1000 objects. This is because of the fact that STUN relies on the spanning tree based tracking
structure which does not necessarily minimize the tracking cost even in the case where the traffic
knowledge is available. The cost ratio of MOT matches the performance of Z-DAT and Z-DAT with
shortcuts. Although MOT has a small overhead compared to Z-DAT variations, we will see later
that the load will be significantly reduced in network nodes while using MOT.

We now provide query cost ratio results. Fig. 6 shows the comparison of query cost ratios
of the algorithms in performing a query operation for 100 mobile objects and Fig. 7 shows this
comparison for 1000 mobile objects, in the networks of sizes ranging from 10 nodes to 1024 nodes.
The comparison results show that the performance of MOT is significantly better compared to
STUN. Moreover, MOT performs more or less in synch with Z-DAT and Z-DAT with shortcuts. On

148



International Journal of Networking and Computing

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0  200  400  600  800  1000

M
ai

n
te

n
an

ce
 c

o
st

 r
at

io

Network size

MOT
STUN
Z-DAT

Z-DAT + shortcuts

Figure 4: Comparison of maintenance cost ratio results in performing 1,000 operations per object
in the networks of size 10 to 1024 nodes with 100 objects in one by one execution scenario. Lower
is better.
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Figure 5: Comparison of maintenance cost ratio results in performing 1,000 operations per object
in the networks of size 10 to 1024 nodes with 1000 objects in one by one execution scenario. Lower
is better.
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Figure 6: Comparison of query cost ratio results in performing a query operation in the networks of
size 10 to 1024 nodes with 100 objects in one by one execution scenario. Lower is better.

closer observation, it is evident that MOT can only do as good as Z-DAT with shortcuts. This is
because the Z-DAT with shortcuts algorithm not only chooses the shortest paths at all times but
also saves the relevant details at parent nodes.

We now compare the load in the corresponding tracking data structures just after they are
initialized and after some maintenance operations are performed. Fig. 8 shows the load/node results
comparison of MOT and STUN in tracking 100 mobile objects in the network of 1024 nodes just after
their tracking data structures are initialized. As STUN does not address the load balancing issue,
it has uneven load among the nodes; some of the nodes have load proportional to the number of
objects (actually, the nodes at higher levels of the hierarchical structure used in STUN), which might
be a significant bottleneck in sensor networks as sensor nodes are generally memory-constrained.
MOT utilizes the available network nodes to distribute the load, avoiding possible bottlenecks due
to uneven utilization of the computing resources. Fig. 9 shows the load/node results comparison
of MOT and STUN in the same setting of Fig. 8 after 10 maintenance operations per object are
finished execution; the maintenance operations are performed in a random order, that is, subsequent
maintenance operations are not necessarily for the same object. Figs. 10 and 11 show the load/node
results comparison of MOT and Z-DAT in the same settings of Figs. 8 and 9, respectively. We omit
the load results of Z-DAT with shortcuts algorithm as the results are similar to Z-DAT algorithm.

It is evident from Figs. 8-11 that load is well balanced in MOT compared to other existing
algorithms. As the load balancing procedure of MOT kicks in when a maintenance operation floods
the detection list of an internal node of HS with more objects, the maintenance operation takes
more time to find the information that is distributed in the other nodes inside the cluster while it
is executing. Therefore, the maintenance cost ratio of MOT is slightly worse compared to that of
Z-DAT and Z-DAT with shortcuts, however, it in turn allows us to achieve load balancing.

We now provide experimental evaluation results obtained from concurrent execution of oper-
ations. For the concurrent execution of operations, we follow the same setting as of one by one
execution of operations except that there are more than one operation running for any single object
during execution. We fix the maximum number of concurrent operations for an object at any time
to 10. Note that in one by one execution of operations, there were at most one operation for any
object at any time. We again perform 1000 maintenance operations and a query operation per ob-
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Figure 7: Comparison of query cost ratio results in performing a query operation in the networks of
size 10 to 1024 nodes with 1000 objects in one by one execution scenario. Lower is better.
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Figure 8: Comparison of load/node results of MOT and STUN in tracking 100 mobile objects in the
network of 1024 nodes just after the initialization of the corresponding tracking structures in one by
one execution scenario. There are 5 nodes in STUN with load > 10 and no node in MOT with load
> 10. Lower is better.
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Figure 9: Comparison of load/node results of MOT and STUN in tracking 100 mobile objects in the
network of 1024 nodes after 10 maintenance operations per object are finished execution in one by
one execution scenario. There are 7 nodes in STUN with load > 10 and no node in MOT with load
> 10. Lower is better.
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Figure 10: Comparison of load/node results of MOT and Z-DAT in tracking 100 mobile objects in
the network of 1024 nodes just after the initialization of the corresponding tracking structures in
one by one execution scenario. There are 14 nodes in Z-DAT with load > 10 and no node in MOT
with load > 10. Lower is better.
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Figure 11: Comparison of load/node results of MOT and Z-DAT in tracking 100 mobile objects in
the network of 1024 nodes after 10 maintenance operations per object are finished execution in one
by one execution scenario. There are 11 nodes in Z-DAT with load > 10 and no node in MOT with
load > 10. Lower is better.
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Figure 12: Comparison of maintenance cost ratio results in performing 1,000 operations per object
in the networks of size 10 to 1024 nodes with 100 objects in concurrent execution scenario. Lower
is better.
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Figure 13: Comparison of maintenance cost ratio results in performing 1,000 operations per object
in the networks of size 10 to 1024 nodes with 1000 objects in concurrent execution scenario. Lower
is better.
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Figure 14: Comparison of query cost ratio results in performing a query operation in the networks
of size 10 to 1024 nodes with 100 objects in concurrent execution scenario. Lower is better.
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Figure 15: Comparison of query cost ratio results in performing a query operation in the networks
of size 10 to 1024 nodes with 1000 objects in concurrent execution scenario. Lower is better.

ject and they are executed concurrently as mentioned above. For simplicity, we start 10 concurrent
operations for some other object (chosen in random order) after 10 concurrent operations for one
object finished execution. As changes in HS due to operations for one object do not interfere with
the changes in HS due to operations for any other object, our setting for concurrent execution is
not much of a restriction. For the fair comparison of results, each node generates equal number of
operations for the same object as in the one by one execution.

Fig. 12 compares the cost ratio of the algorithms in performing 1000 maintenance operations per
object in random order for 100 mobile objects. Similarly, Fig. 13 compares the maintenance cost
ratios in the same setting of Fig. 12 for 1000 mobile objects. In comparison to maintenance cost ratio
results in one by one executions, we observed a very small factor increase in the maintenance cost
ratio results of all the algorithms. However, MOT still performs significantly better compared to that
of STUN for both 100 and 1000 objects. The gap on performance slightly increases between these
algorithms in concurrent situations compared to their performance gap in one by one executions.
The cost ratio of MOT matches again the performance of Z-DAT and Z-DAT with shortcuts similar
to one by one execution scenario. Fig. 14 shows the comparison of query cost ratios of the algorithms
in performing a query operation for 100 mobile objects and Fig. 15 shows this comparison for 1000
mobile objects, in the networks of sizes ranging from 10 nodes to 1024 nodes. The comparison results
again show that the performance of MOT is significantly better compared to STUN and it performs
similar to Z-DAT and Z-DAT with shortcuts. However, in comparison to the one by one execution
results, the query cost ratio of all the algorithms increases by a small factor in concurrent scenarios.
Besides maintenance and query cost performance, the load is well-balanced in MOT compared to
other algorithms even in concurrent executions. Actually, the load results in the concurrent scenario
are similar to the load results given in Figs. 8-11 for one by one executions and hence we omit them
here.

9 Conclusions

We presented a scalable distributed algorithm, MOT, for tracking mobile objects using a static
sensor network. It is traffic-oblivious and balances the object load among network nodes; previous
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approaches were traffic-conscious and were not load balanced. In constant-doubling networks, MOT
has low data structure maintenance costs and resolves object queries at any time with near optimal
cost. In more general topologies, it maintains the data structure and resolves queries with costs
that are polylogarithmic factors away from the best possible costs. MOT also balanced the load of
object information to be stored for tracking in the expense of a logarithmic factor increase in the
query and maintenance operation costs. The experimental evaluation showed that MOT performs
well in practical scenarios besides its near-optimal theoretical guarantees.
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