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Abstract

It is a fashion to use the manycore accelerators to promote the computing power in a computing plat-
form. Especially GPU is one of the main series of the high performance computing, which is also employed
by top supercomputers in the world. Programming methods on such accelerators includes development of
control programs which accelerators executes to schedule the invocation of the accelerator’s kernel program.
The kernel program needs to be written based on the stream computing paradigm. Connecting I/Os of the
kernel programs, we can develop a large application. When we consider the processing flow as a directed
graph, we can implement a GUI-based programming tool for the accelerators. It visualizes a pipeline-based
processing flow. However, it is very hard to find a starting point of a complex processing flow. Moreover,
although the processing pipeline include the potential parallelism, it is hard for the programmer to exploit
it intuitively. This paper proposes an algorithm applying the spanning tree that mechanically exploits the
parallelism and determines an execution order. To verify the algorithm, this paper performs evaluation with
realistic applications. The algorithm exploits effectively the parallelism and construct the optimal pipeline
processing flow.

Keywords: High Performance Computing, Stream Computing, GPUs, Caravela, Spanning Tree Algorithm

1 Introduction
Corresponding to a multicore/manycore approach, the supercomputing technologies are going to a new era
that computer scientists focus on exploiting the thread level parallelism from applications [12]. Especially
the manycore technology currently relying on the drastic growth of the graphics processing unit (GPU) such
as the NVIDIA K20 integrates about 2500 processing units into an LSI, and also achieves Tera-flops class
performance. Therefore, as we can see such accelerators in fastest supercomputers in the world, it is a
mandatory choice of such accelerators for the computing node to achieve high performance [17].

Many runtime environments for the accelerators are proposed such as CUDA [28] and OpenCL [25].
These programming interfaces provide a programming language of the accelerator’s kernel program, and
runtime functions for controlling the execution of the kernel programs and the I/O data input/output by the
program. While CUDA is dedicated for the NVIDIA GPUs, OpenCL provides a common interface to hetero-
geneous accelerators such as multicore GPUs, CPUs [14] and FPGA [1]. A programmer must select one of
the runtime environments to develop an application. We have pointed out inconveniences of the code migra-
tion among different types of accelerators, and thus have proposed a unified interface called Caravela platform
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that executes flow-model. It packs the kernel program and the I/O information into a flow-model [39]. A pro-
grammer on Caravela platform is able to develop a kernel program without any care for the lower runtimes of
the accelerator, and just focuses on developing the flow-model by packing the kernel program, and specifying
the I/O relations of the arguments of the kernel program and the target runtime type. Following the process-
ing steps and using the Caravela library functions on the host CPU side, Caravela automatically chooses the
available lower runtime in the system and invokes the kernel program embedded in a flow-model.

Although Caravela provides a unified interface for any accelerator, it still has the difficulty for a program-
mer who unavoidably needs the double programming on CPU and the accelerator. To eliminate the difficulty,
we have proposed a commandline-based programming tool for the accelerator applying the Caravela frame-
work called CarSh [41]. CarSh provides a conventional shell-like interface that accepts an executable XML
file. The file includes an execution model of a flow-model and also accepts a batch XML file with the multiple
executables described in the order of the target application. It is organized with buffer creation commands
and the repeat execution command, etc. Programmers is finally released from the double programming situa-
tion and just becomes possible to focus on developing the flow-models and the executables or the batches of
CarSh.

Using the CarSh framework, we have implemented a GUI as an Eclipse plugin to develop applications
targeted to accelerators. The GUI provides the interface for defining flow-models and the connections via
the I/O data, and then implements a processing pipeline. From the pipeline flow definition with multiple
flow-models and the I/O connections, the CarSh executable can be mechanically generated. However we
have found that it is not easy to generate the CarSh batch file automatically when it includes an execution
order that is not deterministic. For example it includes feedback I/Os. If the flow is simple, a programmer
can imagine some execution order and the concurrency among flow-models immediately. However, when the
processing flow becomes large or complex, it is hard to determine the best order to execute the processing
flow in a pipeline manner. Therefore it is indispensable to invent an algorithm to decide the processing orders
and to find the parallelism mechanically from the processing pipeline.

This paper proposes a novel algorithm named Parallelization Extraction Algorithm with Spanning Tree
(PEA-ST) to exploit the processing order and the parallelism systematically from a static execution flow
organized by multiple flow-models. We will show the theory of the PEA-ST that generates the CarSh batch.

This paper begin to describe the detailed backgrounds and the definitions in the next section. Section 3
describe design and implementation of PEA-ST. Section 4 shows the performance evaluation applying the
PEA-ST to a realistic application. Section 5 will show the related works and compares ours work with the
advanced research results. Finally section 6 concludes the paper and will show the future work.

2 Research Backgrounds

2.1 Stream computing on manycore architecture

Multicore/manycore architectures are promoted because of the saturation of the Moore’s law related to the
growth of transistor count per silicon platform. The manycore architecture has the origin from the graphics
processing demands that needs a fast computation to achieve a high frequency framing on a dynamic graphics
especially in entertainment market [26]. It requires the concurrent processing for multiple pixels computed
by the hundreds of processing units. It also exploits the fine-grained parallelism from application program po-
tentially [30]. Thus, GPU has become one of indispensable tools to implement a high performance computing
platform.

In the manycore architecture, each processing unit identifies its target computing element regarding a
processor index. For example, assuming a vector summation is rc = ra+rb, a programmer needs to consider
that the calculation is separated into each element of vectors like rc[id] = ra[id] + rb[id], where the id is the
index of the vector element. Each calculation for rc[id] is assigned to a computing unit, then the summations
of elements in the vector are performed in parallel. Optimistically, the vector summation needs only the
processing time to calculate the ”+” operation when the number of computing units is larger than the length
of rc. Thus, a programmer needs certainly needs to consider the indexing of computing elements and also
independent computation for each computing element assigned to a unit. Because of the processing style
based on the indexed processors, it is called stream computing.
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(b) Caravela library funcions (a) fow-model 

CARAVELA_CreateMachine(...) : 

creates a machine structure.

CARAVELA_QueryShader(...) : 

queries a shader on a machine.

CARAVELA_CreateFlowModelFromFile(...) : 

    creates a flow-model structure from XML file.

CARAVELA_GetInputData(...) : 

gets a buffer of an input data stream.

CARAVELA_GetOutputData(...) : 

gets a buffer of an output data stream.

CARAVELA_MapFlowModelIntoShader(...) : 

maps a flow-model to a shader.

CARAVELA_FireFlowModel(...) : 

executes a flow-model mapped to a shader.

CARAVELA_CreateSwapIoPair(...) : 

creates a pair of swap buffers.

CARAVELA_SwapFlowmodelIO(...) : 

swaps buffers related to a swap pair.

Figure 1: Caravela platform (a) flow-model that is executed on an accelerator using (b) Caravela library from
the host CPU.

An accelerator in the manycore architecture works as a co-processor of a host CPU connected via the
peripheral bus. Therefore, for programming on the accelerator, the host CPU is indispensable and controls
the configuration and the behavior of the accelerator. Thus, the programmer must write both computing
programs on the accelerator side and the controlling program on the host CPU side unavoidably. To reduce
the difficulty of the double programming situation, there exist programming languages and the runtimes. For
example, the recent standard ones are NVIDIA’s CUDA [28] and OpenCL [25].

2.2 Caravela Platform

To standardize the programming interfaces of the stream computing, Caravela platform has been proposed
and developed by the author of this paper [39]. It works like a wrapper interface of the stream computing
runtimes. Currently, Caravela supports both CUDA and OpenCL for the lower level runtime.

The Caravela platform uses a concept of flow-model for programming a given task. Applications are writ-
ten on this platform by using the Caravela library, which maps flow-models into the available accelerators.
As shown in Figure 2(a), the flow-model is composed of 1-dimensional input/output data streams, constant
input parameters and a program which processes the input data streams and generates the output data streams.
The methods to execute a given task in a flow-model can be encapsulated into an XML file listed in Figure 1.
Properties of the I/O data streams and the kernel program can be specified by tags in an XML file because
those are stored in a text format. Actually the kernel function is written in the language specified by a runtime
type tag in the XML,and is executed by the accelerator via the specified lower level runtime.

The Caravela library has the resource hierarchy definition stratified by Machine that is a host machine of
a peripheral bus adapter, the Adapter is a peripheral bus adapter that includes one or multiple accelerators
and finally the Shader is an accelerator. Figure 1(b) shows the basic Caravela functions for executing a given
flow-model. Using those functions, a programmer can easily implement an application using the flow-model
framework, just by mapping flow-models into shaders.

Figure 2 shows an example of flow-model that invokes vector summation over OpenCL runtime with
1024 compute units. Although a programming language used in writing a kernel program is different from
the lower level runtime such as CUDA, the execution style in the accelerator is standardized by the flow-
model execution framework unified by the Caravela library.

Although Caravela absorbs difference of the lower runtimes depending on the target accelerator, a pro-
grammer who develops an application using an accelerator unavoidably needs the double programming on
the host CPU side and the accelerator side. Moreover the programming styles on both sides are different
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<?xml version="1.0" encoding="ASCII"?>

<FlowModel>

  <Input>

    <Name>a</Name>

    <DataType>INT</DataType>

    <Length>1024</Length>

    <Index>0</Index>

  </Input>

  <Input>

    <Name>b</Name>

    <DataType>INT</DataType>

    <Length>1024</Length>

    <Index>1</Index>

  </Input>

Input data stream 

definition for a and b

 <Output>

    <Name>c</Name>

    <DataType>INT</DataType>

    <Length>1024</Length>

    <Index>0</Index>

  </Output>

Output data stream 

definition for c

  <Kernel>

    __kernel void test(__global int *a, 

__global int *b, __global int *c) {

       int id = get_global_id(0);

       c[id] = a[id] + b[id];

    }

  </Kernel>

  <KernelName>test</KernelName>

  <LangType>

    SHADERLANG_OPENCL1.0

  </LangType>

  <RuntimeType>

    RUNTIME_OPENCLGPU

  </RuntimeType>

  <TotalNumThreads>

    1024

  </TotalNumThreads>

  <TotalNumBlocks>

   128

  </TotalNumBlocks>

</FlowModel>

Kernel function “test”

written in OpenCL C.

Specifying the target function 

name “test”

Specifying the runtime time 

of the lower layer. Here 

specifies OpenCL on a GPU.

Specifying the number of thread blocks and the 

one of threads.

Here specifies 1024 total number of threads in 

128 blocks.  Each block includes 8 threads.

Figure 2: A flow-model example that defines a vector summation targeted to OpenCL on GPU.

flow-model

I/O definitions
kernel

CarSh

GPUs CPUs FPGAs

OpenCL

Caravela runtime

Drivers for accelerator

CUDA ...

Output 
Data fileInput

 Data file CarSh:$ ./carsh flow-model

CarSh:$ flow-model
(1) Shell like execution:

(2) Command like execution:

(3) Batch execution:

(a) System overview (b) Execution style

CarSh:$ ./carsh batchfile

flow-model1
flow-model2 &
flow-model3 &

...

Batchfile content

Figure 3: (a) CarSh system overview and (b) the commandline interface for (1) shell-like, (2) command-like
and (3) batch executions.

although the programmer wants to write programs executed on the accelerator side only. We need to address
this difficulty by an innovative programming interface for the manycore accelerators.

2.3 Commandline-based Stream Computing
We have developed a tool for commandline-based stream computing called CarSh [41]. It overcomes the dou-
ble programming difficulty of the conventional runtimes for accelerators. When a programmer uses CarSh,
one never needs to make a control program on the host CPU side. CarSh receives an executable file. CarSh
reads/writes the input/output data from/to the CSV files according to the I/O data assignments in the exe-
cutable. The executable file packs the flow-model of the Caravela framework and the I/O definitions. The
definition links the arguments in the kernel program into the I/Os. The linked I/O information is defined in the
executable as illustrated in Figure 3(a). The CarSh extracts the flow-model and the I/O linking information
from the executable file. CarSh passes those to the Caravela runtime library to execute the flow-model. The
Caravela library executes the flow-model by selecting the best fit runtime of the target accelerator. To accept
the executable file, CarSh provides a shell-like interface as illustrated in Figure 3(b). It accepts an executable
files and an batch file. The batch file includes a scenario with the executables and commands regarding I/O
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<?xml version="1.0" encoding ="ASCII"?>
<CarshBat>

virtbuf create int 1024 buf_a

virtbuf create int 1024 buf_b

virtbuf fill sample 1_a.csv buf_a

virtbuf fill sample 1_b.csv buf_b

virtbuf create int 1024 buf_c

sample_virt &

sync

repeat 10 sample_virt.xml

sync

virtbuf dump c_tmp.csv buf_c

virtbuf swap buf_a buf_c

virtbuf delete buf _a

virtbuf delete buf _b

virtbuf delete buf _c

exit
</CarshBat>

(a) CarSh executable format in XML (b) CarSh batch format in XML

<?xml version="1.0" encoding="ASCII"?>

<CarshEx>

<ModelFile>Flow-model XML file name</ModelFile>

<Input>

<Name>Input valuable name in kernel function</Name>

<DataFile>CSV file name</DataFile>

</Input>

<Input>

....

</Input>

<Output>

<Name>Output valuable name in kernel function</Name>

<DataFile>CSV file name</DataFile>

</Output>

<SwapPair>

<Input>Input valuable name in kernel function</Input>

<Output>Output valuable name in kernel function</Output>

<NumSwap>Number of swaps</NumSwap>

</SwapPair>

</CarshEx>

Figure 4: The XML definitions of (a) CarSh executable and (b) batch files.

buffers. Here CarSh supports the background execution of the executable file (i.e. the background execution
of a flow-model) or the batch file by appending ”&” in the last of the commandline of CarSh.

The XML description of the executable is listed in Figure 4(a). The I/O data is mapped by the CSV
file. Moreover, the virtual buffers can be assigned to the definition. The virtual buffers are allocated by the
commands in the batch. The virtual buffer saves the intermediate output data and can pass the buffer name to
the next executable. We can write the batch file as depicted in Figure 4(b).

CarSh provides the control commands for flow-model execution. CarSh supports ps and kill commands
for process management. The virtubuf command supports the virtual buffer management interface. The com-
mand sync synchronizes all executables or batches invoked before the command. repeat command repeats an
executable or a batch for specified number of times. Using these commands in an executable or a batch file,
a programmer focuses on only making a processing order of a pipelined processing flow.

2.4 GUI-based stream-based computing

We have developed a GUI of Caravela platform as shown in Figure 5. The programmer just defines the flow-
models and connection among those flow-models graphically. It generates executables and batches needed
for CarSh. The GUI is very helpful for automatic programming for accelerators. However, it is very hard
to generate an execution scenario for the processing pipeline. For example, given a processing pipeline as
depicted in Figure 6 (a), it is easy for us to identify the execution order. While the input data for flowmodel1
is given successively, the overall calculation is invoked in the order from flowmodel1 to flowmodel4.

When we consider the concurrency of the execution of multiple flow-models, it is also conceivable for us
by writing the execution order with the considerations: 1) The flowmodel1 and flowmodel2 are not executable
in parallel because the connected I/O are interfered with each other because it is assigned to the same physical
buffer. 2) The flowmodel2 must be executed after the flowmodel1 because the input data must be prepared
(we call this initialized) before the flow-model execution. Such as the right side of Figure 6 (a), after the
executions of flowmodel1 and flowmodel2, we can think intuitively that the combinations of flowmodel2 & 4
and flowmodel1 & 3 are executed concurrently.

However, given the processing flow of Figure 6 (b), how do you specify which is the flow-model initially
executed when the first input data is given to flowmodel1? How is the parallelism if multiple flow-models
could be invoked concurrently? It is impossible to implement the perfect GUI-based programming method
before solving these problems. As an objective of this paper, we propose an algorithm that mechanically
exploits the deterministic execution order and the parallelism from any kind of pipeline execution flow.
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Figure 5: The Caravela GUI implemented as an Eclipse plugin that generates XML files of the flow-model,
CarSh executables and batches.
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Figure 6: Pipeline flow examples of a) straight forward algorithm and b) algorithm with feedbacks.
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Algorithm 1 Depth-first spanning tree (DFST) algorithm.

void DFST(int x){

  pre_num ++;

  NPre[x] = pre_num;

  for(int y=0; y<N; y++){

    if(edges[x][y].connect){

      if(NPre[y] == 0){ 

        //x      y is a tree edge

        DFST(y);

      }

      else if(Npre[x] < Npre[y]) { // x     y is an advancing edge }

      else if(NRPost[x] == 0){  //x      y is an retreating edge }

      else { // x       y is an cross edge }

    }

  }

  NRPost[x] = rpost_num;

  rpost_num --;

}

2.5 Spanning Tree

Challenges for execution ordering and exploiting parallelism from a program are studied in the decades by
researchers of compilers. The High Performance Fortran (HPF) is a well-known solution to exploit poten-
tial parallelism from a numerical program description. Spanning Tree introduced in [38] is a technique to
determine the control flow of a program description.

Given a directed graph G(V,E), where V is a set of vertices (nodes) of G, and E is the set of edges of
G, S(V, T ) is called the G(V,E)’s spanning tree, when a subset of edges T satisfies T ⊆ E and the graph
S(V, T ) forms a tree. Here, S(V, T ) does not include loops. When spanning tree is defined, the edges in G
is categorized into four types: 1) Tree edges form the spanning tree. 2) Advancing edges are a set of edges of
X → Y that are not the tree edges. Y is a descendant of X . The edges jump to vertices in the lower structure
of the tree. 3) Retreating edges are also a set of edges of X → Y that are not the tree edges. Y is an ancestor
of X . That is, the edges jump to vertices in the upper structure of the tree. Finally, 4) Cross edges are the rest
of the edges which are not belong to 1) - 3). Those are a set of edges of X → Y , where Y is neither ancestor
nor a descendant of X . Here, there exists a condition regarding the root vertex of the spanning tree. From a
root vertex, the graph must have a reachable path to all other vertices. If the path does not include all vertices
of G, it does not have a spanning tree. However, note that a spanning tree generated from a node is uniquely
found in G. Therefore, a different root constructs a different spanning tree from the same graph.

Algorithm 1 lists the steps to categorize the edges of a directed graph into four categories above, when
a root vertex is given to the DFST function. This algorithm is developed based on the Tarjan’s depth-first
search algorithm [36]. In this meaning, we call it Depth-First Spanning Tree (DFST) algorithm. Regarding
the tree edges generated by the algorithm, we can find the spanning tree.

The algorithm is a combination of the preorder numbering NPre() and the reverse post numbering
NRPost(). In the former numbering, if NPre(X) < NPre(Y ), X is either a preorder ancestor of Y
in the tree, or the left of Y . In the latter numbering, if NRPost(X) < NRPost(Y ), X is either a preorder
ancestor of Y in the tree, or the right of Y . First, in the step performing the preorder numbering , the DFST
is checking the preorder number of the next connected node after the current node. If it is zero, it is detected
as a tree edge. When the search reaches a leaf of the tree, it performs the reverse post numbering, returning
to the tree edges. In the backward searching, it marks one of retreating, advancing and cross edges.
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Figure 7: Spanning tree examples.

Figure 7 shows an example of a spanning tree generated by the DFST. The pairs of numbers in the figure
are (NPre,NRPost). We select A as the root vertex. First the preorder numbering is performed in the
order of A → B → C → I → J → D → E → G → H → F . During the numbering of the backward
searching, the reverse post numbering is performed in the order of J → I → H → G → E → F → D →
C → B → A. In the former step, the tree edges are found like the path marked with the thick arrows. The
retreating edges and the crossing edges are also found during the backward search.

2.6 Discussion

Spanning tree method is also applied in the communication network field. The Spanning Tree Protocol (STP)
is a network protocol that ensures a loop-free topology for any bridged Ethernet-based local area network.
The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. The
spanning tree also allows a network design to include spare (redundant) links to provide automatic backup
paths if an active link fails, without the danger of bridge loops, or the need for manual enabling/disabling of
these backup links. Spanning Tree Protocol (STP) is standardized as IEEE 802.1D. As the name suggests,
it creates a spanning tree within a network of connected layer-2 bridges (typically Ethernet switches) and
disables those links that are not part of the spanning tree, leaving a single active path between any two
network nodes [31]. Perlman applied STP to a routing algorithm in a communication path, considering the
network connections among switches and communication nodes as edges and nodes of a directed graph [32].
The algorithm finds the shortest network path with the smallest number of links that eliminates loops.

To break loops in the LAN while maintaining access to all LAN segments, the program in each bridge
that allows it to determine how to use the protocol is known as the spanning tree algorithm. The algorithm
is specifically constructed to avoid bridge loops (multiple paths linking one segment to another, resulting in
an infinite loop situation). The algorithm is responsible for a bridge using only the most efficient path when
faced with multiple paths. If the best path fails, the algorithm recalculates the network and finds the next best
route.
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The Dijkstra’s algorithm [7] is also another well-known graph search algorithm that solves the single-
source shortest path problem for a graph with non-negative edge path costs, producing a shortest path
tree [23]. For a given source node in the graph, the algorithm finds the shortest path and the reaching cost
between a vertex and another vertex. For example, if the vertices of the graph represent cities and edge path
costs represent driving distances between pairs of cities connected by a direct road, the Dijkstra’s algorithm
can be used to find the shortest route between one city and all other cities. As a result, the shortest path first is
widely used in network routing protocols, most notably IS-IS [13] and OSPF (Open Shortest Path First) [24].

In the Dijkstra’s algorithm, the node at which it starts is called the initial node, and the distance of node
Y is the one from the initial node to the node Y. The algorithm will assign some initial distance values and
will try to improve them step by step. The steps of the algorithm are summarized below; 1) assigning every
node a temporary distance value, 2) marking all nodes unvisited, for the current node, 3) considering all of
its unvisited neighbors and calculating their temporary distances, 4) marking the current node as visited and
removing it from the unvisited set, and 5) finishing the algorithm if the destination node has been marked as
visited or if the smallest temporary distance among the nodes in the unvisited set is infinity, 6) selecting the
unvisited node that is marked with the smallest temporary distance, and setting it as the new current node
then go back to step 3).

The Dijkstra’s algorithm is usually the working principle behind link-state routing protocols, OSPF and
IS-IS being the most common ones. The process that underlies the Dijkstra’s algorithm is similar to the
greedy process used in Prim’s algorithm [33]. Prim’s purpose is to find a minimum spanning tree [11] that
connects all nodes in the graph. Meanwhile, the Dijkstra’s is concerned only between two nodes. The Prim’s
does not evaluate the total weight of the path from the starting node, only the individual path.

The spanning tree algorithm is to discover a loop-free subset of the topology dynamically. For example,
if a network topology does not change, the network is not partitioned temporarily while nodes switch over
to other routes. If the backup root is very near the old root, the topology will not change significantly even
when the old root dies. On the other hand, in the case of the Dijkstra’s algorithm, when any cost is changed,
it inevitably needs to recalculate it. Therefore, the search result of Dijkstra’s algorithm is not adaptive to the
dynamic route path.

According to the discussion above, the spanning tree algorithm is powerful for finding a route path be-
tween the nodes in a tree. When we consider a pipeline with processing tasks (i.e. flow-models) connected
by the I/O data streams, it can be treated as a tree. Therefore, the spanning tree algorithm can be applied
to define a unique processing order. Additionally it also finds the feedback I/Os. In the spanning tree, the
nodes with the same depth from the root node do not have edges among them. This means that those nodes
(flow-models) can be independently executed. The groups of the nodes induce a definition of stages in the
processing pipeline because we can define an execution order of the groups. Thus, the spanning tree algo-
rithm can define an effective pipeline order with all tasks included in the processing flow. This paper will
focus on the characteristics of the pipeline flow exploited by the spanning tree algorithm and proposes a novel
algorithm using the spanning tree that extracts the best parallelism.

3 Parallelism extraction algorithm with spanning tree
In order to address the execution order and finds the concurrency, we need to develop an algorithm for
1) finding a flow-model executed first, 2) finding a deterministic execution order without I/O buffer collisions
and 3) exploiting an available concurrency from the processing flow. We also define the CarSh batch scenario
from the algorithm. Let us map the processing flow to a directed graph. The flow-models correspond to the
nodes. The I/O data streams correspond to the edges.

3.1 Finding the first execution flow-model

First, we define an executable node and a root node. When all edges point to a node that is given, we call
the node executable. The edges that come out from the node are initialized after the execution of the node.
Here, the initialization means that all of the input data streams entering into the node are ready. The root
node is defined as an executable node that all input edges into it are initialized before execution of any node
in a graph (i.e. at the initial status).
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Figure 8: An example of finding a set of cyclic paths and the edges that needs initialization to avoid deadlock
applying the algorithm from [40] to the graph of Figure 6(b).

When a graph includes any retreated edge such as the one from flowmodel4 to flowmodel1 as depicted
in Figure 6(b), the pipeline execution of the graph absolutely deadlocks. In this case one of the edges in the
cyclic path that is flowmodel1→flowmodel2→flowmodel4→flowmodel1 must be initialized. The algorithm
to find the minimal set of the cyclic paths in a directed graph has been defined already in the reference [40]
by the author of this paper. The steps to make a set of the minimum cyclic paths are summarized below:

1. Enumerating all cyclic paths from all nodes
For example, in Figure 6(b), all cyclic paths from all nodes are enumerated (Figure 8[Step 1]).

2. Sorting the cyclic paths by the number of nodes included in a path
Comparing the number of nodes included in each cyclic path, it sorts the set of all paths (Figure 8[Step 2]).

3. Reducing the cyclic paths to the minimum set
During comparisons of the paths from the one with the smallest number of nodes to the one with largest
number of nodes, if the path compared is the same as the current one, the former is removed. Then the
remaining set of paths is the minimum cyclic path. Regarding all paths in the set, one of the edges of
each path must be initialized to avoid deadlock of execution (Figure 8[Results]).

After all cyclic paths are found and any edge of any cyclic path is initialized, one or more root nodes exist
in the directed graph. The graph with any root node is called an executable directed graph.

An executable directed graph must have executable node(s). Those nodes correspond to root nodes of the
graph. Now let us to explain the processing pipeline with flow-models. The root node(s) is equivalent to the
flow-models executed at the beginning of the pipeline execution. According to this initialization strategy, we
can find the first executable flow-model in the processing pipeline.

Now we can define the root node in a directed graph using the algorithm explained above. Selecting one
of the nodes in the minimum cyclic paths as the root node, we can find a spanning tree. It includes a unique
path of the tree when the execution steps follow the tree edges from the root node to downward. This path
becomes the execution flow of the directed graph of the flow-models.

3.2 Extracting parallelism and determining execution order
The number of nodes in a cyclic path is not only one in general. Any node in a minimum cyclic path can be
the root node of the spanning tree. Therefore, it is available for all nodes to be selected as the root node in
the spanning tree. Here, we assume that the processing flow builds a strongly connected directed graph.
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Figure 9: Processing steps of the PEA-ST.

The goal of this paper is to exploit parallelism of the processing flow. With the parallelism, we perform
a processing order of concurrent execution of multiple flow-models in a pipeline manner by using the par-
allelism extraction algorithm with spanning tree (PEA-ST). Here, let us consider the case of Figure 9. We
assume that the edges D → A and C → A are initialized. Then we select A as the root node. The spanning
tree of the graph becomes like Figure 9(1). The initialized edges are categorized as the retreating edges.
Others are the tree edges.

To exploit the parallelism from the spanning tree, we define depth and stage of a processing pipeline. The
depth of a node is defined as the number of tree edges from the node to the root node.The stage is defined as
a set of nodes (kernel programs of flow-models) which can be invoked concurrently without the I/O buffer
conflicts. Let us generate the depths and stages of the spanning tree in Figure 9. Here, we define that a tree
edge has a single depth of the pipeline. For instance, the depth of E is 2 because there are two tree edges in
the path of A → B → E. As another example, the depth of F is 3 because there are three tree edges in the
path of A→ B → D → F . Thus, the total depth of the example graph becomes four.

According to the definitions of the stage and the depth, it is obviously to find that the nodes with the
same depth can be added to the same stage. For example, the nodes B and C or the ones D and E can be
invoked concurrently because there is no I/O conflict among those nodes in the same stage. Therefore, we
can build the pipeline as A → (B,C) → (D,E) → F . Shifting a stage, we can organize a pipeline like
A→ (B,C,A)→ (D,E,B,C)→ (F,D,E)→ (A,F )→ (B,C,A)...

In the explanation above, we ignore the retreating edges. Here, we consider the effect of the retreating
edges (i.e. loops) in the graph. If we completely ignore a retreating edge, the pipeline works incorrectly
due to I/O conflicts caused by the loops. For example, the stage (B,C,A) can not be executed correctly
because A must be invoked after C. Moreover, A must be invoked after D in the next execution. To resolve
the problems we define consistency shift. First we find a retreating edge. In the loop where the two nodes
connected by that retreating edge, we calculate the number of nodes connected by tree edges. In the example
case, the edge D → A includes three nodes (i.e. A, B and D). The edge C → A includes two nodes (i.e.
A and C). The consistency shift is that number we just calculated. For example, if the consistency shift is
two, the pipeline becomes A → (B,C) → (D,E,A) → (F,B,C) → (A,D,E)... by shifting two stages.
However A be invoked before D which causes I/O conflict. Therefore, it must be maximized. Taking the
largest number of consistency shift among all retreating edges. Thus, if the stages are shifted by the max
consistency shift, all nodes related to retreating edges are invoked correctly. The correct pipeline should
become A→ (B,C)→ (D,E)→ (F,A)→ (B,C)→ (D,E)→ (F,A)...

Although the condition that a graph has no retreating edge, we need to consider the consistency shift.
For example, we consider a straightforward processing flow A → B → C. The pipeline would become
A→ (B,A)→ (C,B)→ (A,B)... However, this is wrong because may occur I/O conflict. To resolve this
case, we assume that nodes connected by an edge also have a retreating edge. Therefore, the default number
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Algorithm 2 Parallelism extraction algorithm applying spanning tree (PEA-ST).

void DFST_Modified(int x){

  pre_num ++;

  NPre[x] = pre_num;

  for(int y=0; y<N; y++){

    if(edges[x][y].connect){

      if(NPre[y] == 0){

        nodes[y].depth=nodes[x].depth+1;

        DFST_Modified(y);

      }

      else if(NPre[x] < NPre[y])

        edges[x][y].connect = false;

      else if(NRPost[x] == 0){

        If(max_retreat_offset<nodes[x].depth -  nodes[y].depth)
          max_retreat_offset=nodes[x].depth - nodes[y].depth +1;

        edges[x][y].connect = false;

      }

      else  Edges[x][y].connect = false;

    }

  }

  NRPost[x] = rpost_num;

  rpost_num --;

}

struct node {

  char name;

  int depth;

  bool update;
} nodes[N];

void main(){

  for(int result=0; result<N; result++){

    node_init();

    edge_init();

    root_test(result);

    if(node can reach all other nodes){

      node[result].depth=0;

       DFST_Modified(result);
    }

    else  continue;

    if(there is no retreating edges)

      consistency_shift=2;

    else

      consistency_shift = max_retreat_offset;

    for(i=0;i*move<max_stage;i++){

      for(int j=0; j<N; j++){

        stage= nodes[j].depth+i*move;

        if(stage < max_stage){

          excute[stage][count[stage]] = nodes[j].name;

          count[stage]++;

        }
      }

    }

    if(Parallelism is better than the previous one)

      update(startup and batch);

    else continue;

  }

}

Tree edge

Retreating edge

Advancing edge

struct edge {     

    bool connect;  

} edges[N][N];  

Cross edge

of the consistency shift must be two.
In the correct pipeline, we can find two parts. One is the initial stage(s) executed once called startup. The

other is the contiguous repeating stage(s) called repeat batch. In the example case, the stage of (A) is the
former. In the case of Figure 9, a set of stages of (B,C)→ (D,E)→ (F,A) is the latter. The startup stages
include the beginning ones of the pipeline after the consistency shift is performed. Therefore, the number of
stages of the startup is calculated by depth−max consistency shift. In the example case, it is 4− 3 = 1.
Therefore the first stage with A is included in the startup. Other three stages organize the repeat batch. Thus,
while the correct pipeline is configured, the startup is invoked once. Then the repeat batch is repeated.

Regarding the cross edges, PEA-ST ignores them because the edge can be treated as tree edge. Cross
edge has two or more ancestors. An edge from one of the ancestors should become tree edge.

Let us summarize the processing steps of the PEA-ST explained above. First, one of the root nodes is
selected. This makes a graph executable. Second, a spanning tree is created from the root node. Only a tree
is generated. Third, the consistency shift is calculated from the retreating edges. Finally, the startup and the
repeat batch are generated.

3.3 Implementation
Algorithm 2 shows the PEA-ST written by a C-like code. The main function processes 1) spanning tree
creation, 2) consistency shift calculation, 3) startup and batch creation and finally 4) updating the startup and
the repeat batch according to the user-defined requirements. The function checks all available spanning trees
by selecting available root nodes. The process 4) will break the loop of selecting the root nodes and return
the best startup and repeat batch.

The spanning tree creation is performed by DFST Modified function. In the function all edges are cate-
gorized to the ones defined by the spanning tree. When an edge is categorized, it updates the edges matrix
that obtains the tree edge. If an edge is categorized as a retreating edge, it updates the max retreat offset that
obtains the largest offset of stages in the retreating edge (i.e. consistency shift).
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Figure 10: Examples of batch generation using the PEA-ST. A straight forward pattern (a) and the pattern
with feedforward edges of Figure 9 when C is selected to the root vertex(b).

After the spanning tree creation, the main function calculates the consistency shift. If any consistency
shift exists, the max retreat offset is used. If not, it is two because of the case of straightforward processing
flow. Then finally the execute matrix is created. It obtains the stages and the node combinations at each stage.
Using the example of Figure 9, let us explain how to calculate the startup and the repeat batch. At the first
iteration of execute matrix creation, it fills each stage with the nodes of the same depth illustrated by entry0
in the figure. In the second iteration, it shifts the column index by the consistency shift and fills the nodes of
stages again like entry1. If the shifted index is larger than the depth of the graph, the iteration ends. The final
execute matrix is the startup and the repeat batch. The repeat batch is the last n rows of the matrix where n is
the consistency shift. The remaining row(s) are the startup.

Finally, user-defined conditions are checked. The conditions depend on the maximum/minimum paral-
lelism, the average parallelism, the number of stages and the smallest consistency shift, etc. In our implemen-
tation, we apply the condition to find the largest parallelism of MIN AV R < parallelism < MAX AV R
and parallelism < MAX , where MIN AV R and MAX AV R are the minimum and maximum paral-
lelisms respectively, and where the MAX is the maximum parallelism. MAX is given by the programmer
because of the limitation of the resources (the number of accelerators).
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Figure 11: k-means example applying PEA-ST.

Regarding the complexity of the PEA-ST, it is similar to the spanning tree algorithm. The preorder and
the reverse post order numberings takes O(NE) time respectively, where N is the number of nodes and E is
the number of edges in the graph. However, the PEA-ST needs to try all available spanning tree creations of
the root nodes. Therefore, it becomes O(NEM) where M is the number of available root nodes.

3.4 Examples
Here, let us introduce two additional examples as depicted in Figure 10. The straightforward pattern shown in
Figure 10(a) needs three iterations to generate an execute matrix. The maximum parallelism becomes three.
Figure 10(b) shows another example of the same processing flow as Figure 9. But the root node is C. This
case shows that the maximum parallelism becomes three. It is two when we selected A as the root node.
Thus, PEA-ST is very flexible to select an ideal parallelism defined by a programmer according to the limited
number of accelerator resources.

4 Performance evaluation
To validate the PEA-ST, we have made two applications related to image processing. The first one shows the
validity of the PEA-ST. The second one shows the impact on the performance aspect. Both applications have
the potential ability of achieving small latency to output the final results when the PEA-ST is applied and the
processing flows are modified to pipeline flows with parallel executions of multiple tasks (flow-models).

4.1 Color image quantization
The first example is a color image quantization. We will show an realistic example when the PEA-ST is
applied to a processing flow graph. Color quantization is a task of reducing the color palette of an im-
age to a fixed number of colors k. The k-means algorithm can easily be used for this task and produces
competitive results. Figure 11 shows the processing flow. It consists of four kinds of flow-models. The
InitCenterCluster performs the initialization of the clusters’ centers which are randomly selected.
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(d) Startup and batch matrix
for color image quantization

Figure 12: The startup and the repeat batch of the color image quantization application.

The SetGroup divides all pixels into k clusters. It calculates the distances from the pixels (RGB) to each
center and assigns each pixel to the nearest cluster. The SetNewCenter calculates the new centers. Then
it compares the old and the new center. If they are different, it continues iterating the loop of the processing
steps with the SetGroup and the SetNewCenter flow-models. Contrarily, if they are the same, it stops
the loop and executes the subsequent flow-models. The ChangeColor performs a transformation of the
color (RGB) of the original image.

Figure 12 shows the pipelined processing flow generated by PEA-ST. Using the figure, let us explain the
steps of how to generate pipelined processing flow of k-means example by PEA-ST in detail. Here, we can
simplify the structure of the four kinds of flow-models in Figure 11 into the graph of Figure 12(a). Because
only the node A can become the root node, only one spanning tree is derived. In other words, the k-means
example has just one result of pipeline processing flow according to the PEA-ST. First, the spanning tree
generated by the DFST Modified function is shown in Algorithm 2. In the resulting spanning tree, there
exists a retreating edge C → B.Also, we can see that the max retreat offset of this retreating edge is
2. The main function calculates the consistency shift, which is equal to the max retreat offset. Then
the PEA-ST algorithm generates the execute matrix with consistency shift. There are four stages and two
entries in the execute matrix in Figure 12(b). And at the first iteration of the creation process for the execute
matrix, the algorithm assigns the corresponding offset incremented from 0 for the depth to each stage of the
nodes from A to D illustrated by entry0. In the second iteration, it shifts the depth by the consistency shift
of 2, and assigns the nodes of stages again from the shifted depth number as shown in entry1. Because the
maximum depth is 3 (the original depth of the spanning tree is 3), the nodes is placed in the depth which is
larger than the maximum depth. Therefore, the nodes C and D in the entry1 is canceled. Finally, the startup
and the repeat batch are generated from the execute matrix. As shown in Figure 12(c), the repeat batch is
the last 2 rows of the matrix because of the consistency shift and it contains all the flow-models of k-means
example. And the remaining first two rows are regarded as the startup. The final pipelined result of k-means
example is shown in the Figure 12(d). The startup that contains the SetGroup and the SetNewCenter
flow-models is executed once at first. Then the repeat batch is repeated.

In this example, the ChangeColor outputs the result regarding a single input image. Therefore, if the
flow is executed in serial, each flow-model is executed by blocking after the execution because of the I/O
data dependencies. Therefore, the total execution time takes the elapsed time of all four flow-models in the
execution flow. However, after it is pipelined, the processing flow has been parallelized with two flow-models
in a stage. If multiple accelerators are available, the execution time will be improved at most to the one of
a single flow-model (ChangeColor). Therefore, the PEA-ST approach is effective modification of the
processing flow achieving the consistency of the I/O data dependency. Let us see the performance impact on
the optimization by the PEA-ST algorithm in the next example.
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Figure 13: FFT example using PEA-ST.

4.2 2D FFT

To evaluate the performance of the PEA-ST, we compare between the serialized and the pipelined processing
flows of a common image filtering. Figure 13 shows the processing flow. It consists of four kinds of flow-
models. The reorder performs butterfly operation, the FFT and IFFT calculate 1-dimentional FFT and IFFT
respectively. The transpose performs a transpose of the 2-dimentional matrix data. The filter is a high-pass
or low-pass filter. A CarSh executable of the flow-model is downloaded to accelerator via Caravela runtime.
And finally, it is executed by the OpenCL runtime. Figure 14 shows the pipelined processing flow generated
by PEA-ST which is packed in two CarSh batches; one is the startup and another is the repeat batch. Totally
13 flow-models are executed in a pipeline manner. The maximum parallelism of the processing flow exploited
by the PEA-ST becomes seven as shown in Figure 14.

This application also includes the potential performance improvement function after applying PEA-ST
algorithm to the original flow with 13 flow-models. The final IFFT2 output the result of the input single
image. Therefore, the original flow graph shows 13 steps to execute all flow-models and it need the latency
to execute all the flow-models to calculate a single result. However, after pipelining, the latency to calculate
the result from IFFT2 becomes small because IFFT2 is executed at every execution of a stage.

The execution time until the final IFFT is measured with/without parallelization. In the case of the seri-
alized version, the 13 flow-models are executed in serial. On the other hand, the pipelined version generates
the final image output after the execution of the stage with IFFT2. Therefore, the actual execution time per
final result equals to the elapsed time of the repeat batch. The experimental platform is a PC with a Core i7
2.8GHz with 12 GByte DDR2 memory in which a Tesla C2050 is connected via PCI Express bus. Varying
the input image size from 1282 to 10242 using OpenCL runtimes on GPU and CPU. We apply the width
of input image to the number of the threads at each kernel program. The execution times until the IFFT2
generates the final image are shown in Table 1. Due to the OpenCL runtime overhead, the speedup (se-
rialized/parallelized) of the GPU case is about 25%. The execution time of each kernel program is small.
Therefore, the parallelized version promotes the intensive utilization of GPU resource. On the other hand,
in the case of CPU, the parallelized version achieves about 4 times higher performance because the parallel
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Figure 14: The startup and the repeat batch of the image filtering application resolved by the PEA-ST in the
case when the maximum parallelism is seven.

Table 1: Execution times by resulting IFFT comparison among the serialized and the pipelined versions
invoked on CPU and GPU. The startup time shows the elapsed times of the startup part of the batch. The
repeat time shows the ones of the repeat batch.

Serialized 1282 2562 5122 10242

GPU 1.64 sec 1.67 sec 1.77 sec 2.11 sec
CPU 4.19 sec 4.25 sec 4.38 sec 4.77 sec
Pipelined (startup) 1282 2562 5122 10242

GPU 1.79 sec 2.18 sec 2.15 sec 1.85 sec
CPU 2.38 sec 2.40 sec 2.46 sec 2.46 sec
Pipelined (repeat) 1282 2562 5122 10242

GPU 1.39 sec 1.40 sec 1.41 sec 1.41 sec
CPU 1.12 sec 1.12 sec 1.13 sec 1.14 sec
Speedup 1282 2562 5122 10242

GPU 1.18 1.19 1.26 1.50
CPU 3.74 3.79 3.87 4.18

threads for different kernels are working concurrently. Therefore, in any accelerator we have confirmed that
the parallelized version generated by PEA-ST achieves better performance than the serialized version.

5 Related work
Data parallelism is a kind of parallelism method of computing across multiple processors in parallel com-
puting environments. It focuses on distributing data to different parallel computing nodes. It is a contrast to
task parallelism as another form of parallelism.

The history of data-parallel processors began with the efforts to implement vector machines. Much of
the early work on both hardware and data-parallel algorithms was pioneered at companies such as MasPar,
Tera, and Cray. Now a variety of fine-grained or data-parallel programming environments are available.
Many of these have achieved the recent visibility by supporting GPUs. They can be categorized as older
languages(MPL [10], Co-Array Fortran [27], Cilk [4], etc.), newer languages(XMT-C [37], CUDA, CAL [8],
etc.), array-based languages(RapidMind [6], Microsoft Accelerator [35], etc.) and graphics APIs(OpenGL,
Direct3D). [5]

Programming languages have been designed for fine-grained parallel programming and vector processing.
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OpenCL supports data parallelism and task parallelism, but does not support the pipeline parallelism for large
amounts of data oriented in the case of multiple execution of the program. Also, these APIs do not fully
actualize the automatic parallelization. Programmers need to write how to schedule the parallel processing
and also data distribution in multiple processors.

On the other hand, the task parallelism (also known as function parallelism and control parallelism) is a
form of parallelism method of computer code across multiple processors in parallel computing environments.
The task parallelism focuses on allocating execution processes (threads) across different parallel computing
nodes.

Examples of (fine-grained) task-parallel languages can be found in the Hardware Description Languages
like Verilog and VHDL, which can also be considered as a ”code static” software paradigm where the program
has a static structure and the data is changing - as against a ”data static” model where the data is not changing
(or changing slowly) and the processing (applied methods) change (e.g. database search).

In our research, a flow-model is regarded as a task. These tasks (i.e. flow-models) will be parallelized in
the manner of the PEA-ST. The PEA-ST algorithm is designed for the ”code static” applications. In a paral-
lel programming language, it is necessary for programmers to note exactly which part is to be parallelized.
Therefore, most automatic parallelization mechanisms perform incompletely parallelization. Although there
is few programing language that does not need to specify the detailed parallelization, such as SISAL [22],
Parallel Haskell [16], Mitrion-C [18]. Due to the inherent difficulties in fully automatic parallelization, sev-
eral easier approaches exist to get a parallel program in higher performance. One is allowing programmers
to add ”hints” to their programs to guide compiler parallelization, such as HPF for distributed memory sys-
tems and OpenMP or OpenHMPP [2] for shared memory systems. Another one is building an interactive
system between programmers and parallelizing tools/compilers such as Vector Fabrics’ Pareon [9], SUIF Ex-
plorer [21], the Polaris compiler [3], and ParaWise [15]. Hardware-supported speculative multithreading is
also an easier approach for automatic parallelization.

On the other hand the software pipelining is another technique that reforms the loop so that a faster exe-
cution rate is realized. Currently most effective known compiler technique for generating software pipelined
loops is modulo scheduling. The objective of modulo scheduling is to repeat the intervals that have no intra-
or inter-iteration dependence and also that no resource usage conflict arises between operations of either the
same or distinct iterations. Rau and Glaeser developed the first compiler with software pipelining for the
polycyclic architecture [34] that had a novel crossbar whose cross-points provided a programmable form
of delay to support software pipelining. Moreover, Lam’s technique, the modulo renaming is widely used
in practice. This method is mainly as this. First, instead of relying on specialized hardware support like a
polycyclic interconnect, this method shows that the same effect can be achieved by using modulo variable
expansion and unrolling the generated code a small number of times. Second, unlike hardware pipelining,
dependences may cross iteration boundaries in a loop, thus creating cycles in the dependence graph. This
method shows how scheduling one instruction in a strongly connected component can severely constrain
the schedule of all other instructions in the same component. A heuristic technique must take this fact into
consideration to be efficient. Third, this method handles conditional statements in a loop using hierarchical
scheduling [20]. A related recent study is about an automatic approach to thread extraction, called Decoupled
Software Pipelining (DSWP). DSWP exploits the fine-grained pipeline parallelism lurking in most applica-
tions to extract long-running, concurrently executing threads. Use of the non-speculative and truly decoupled
threads produced by DSWP can increase execution efficiency and provide significant latency tolerance, mit-
igating design complexity by reducing inter-core communication and per-core resource requirements [29].
However, instead of the instruction level, the PEA-ST algorithm is like a task-level software pipeline method.
The automatic scheduling is also the goal of our research.

Moreover, many problems can be expressed as a set of tasks where the number of tasks is input-dependent.
Tasks denote an independent unit of work that can be executed in parallel with other tasks. A flow-model can
be treated as a task. Therefore, finding the order of flow-models and task scheduling are somewhat similar,
if ignoring the data dependency between them. Many applications have large amounts of tasks and large
compute demands that we need to exploit for efficient parallel execution. In such applications, the number
of tasks and sometimes the length of each task can vary dynamically. In order to effectively parallelize such
applications and exploit concurrency, we must take care of issues that influence scalability. Good parallel
scaling requires load balancing among the participating processors. Task queue is a well-known mechanism
that is primarily designed to address the load imbalance problem [19]. The Task Queue is defined as a
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mechanism to synchronously distribute a sequence of tasks among parallel threads of execution. The main
problem is broken down into tasks and the tasks are enqueued into the queue. Parallel threads of execution
pull tasks from the queue and perform computations on the tasks. The runtime system is responsible for
managing thread accesses to the tasks in the queue as well as ensuring proper queue usage. Tasks come
from using loop-level parallelism model where a set of iterations of the loop can represent a task, or using the
task-parallelism model to represent parallel entities of execution, also using the memory-parallelism model to
share system resources effectively for increasing data locality and performance of the application. However,
compared to these task queue based scheduling algorithms, PEA-ST determines the order of flow-models (i.e.
task) statically. In the PEA-ST, before running multiple tasks, it discovers potential parallelism between all
tasks, and determines the execution order of all tasks. Finally, these flow-models (i.e. task) will be run by in
that order.

Comparing the PEA-ST with these approaches, programmers can design processing flows without con-
sidering its parallelism of the connected flow-models. The final goal of our study is the fully automatic
parallelization. The PEA-ST also takes advantage of data parallelism and it extracts the task parallelism
among flow-models in a processing flow.

6 Conclusion
To address the difficulty to find a deterministic execution order of a pipeline execution flow with multiple
stream-based kernel programs, we have proposed a novel algorithm called PEA-ST with the spanning tree.
It determines the processing order in a pipeline manner, and also exploits the flexible parallelism from any
processing flow. According to the performance evaluation, we have confirmed that the utilization ratio in a
stage of pipeline becomes high. Also, the overall performance to get the result in a pipeline manner becomes
higher than the serialized execution of the flow.

For the future plans, we are considering to devise a mechanism to find the best combination of the ini-
tialized edges for the data streams in flow-models. It is an indispensable guide for programmers to extract
the best performance from the target accelerator. Additionally, we plan to improve the parallelism applying
PEA-ST recursively to the spanning sub-tree of the nodes included in the retreating edge.
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