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Abstract

The hierarchical dual-net (HDN) is an interconnection network for building ultra-scale paral-
lel systems. The HDN is constructed based on a symmetric product graph (called base network),
such as three-dimensional torus and n-dimensional hypercubes. A k-level hierarchical dual-net,
HDN(B,k, S), is obtained by applying k-time dual constructions on the base network B. S de-
fines a super-node set that adjusts the scale of the system. The node degree of an HDN(B,k, S)
is d0 + k where d0 is the node degree of B. The HDN is node and edge symmetric and can
contain huge number of nodes with small node degree and short diameter. In this paper, we
propose two efficient algorithms for finding a fault-free path on HDN. The first algorithm can
always find a fault-free path in O(2kF (B)) time if the number of faulty nodes on HDN is less
than d0 + k, where F (B) is the time complexity of fault-tolerant routing in the base network.
The second algorithm, more practical one, can find a fault-free path on HDN with arbitrary
number of faulty nodes. The simulation results show that the second algorithm can find a
fault-free path at high probability.

Keywords: Interconnection network, fault-tolerant routing

1 Introduction

Because of the advances in computer and networking technologies, the recent high-performance
supercomputers containing hundreds of thousands of processors (not cores) have been built [12].
It was predicted that top supercomputers of the next decade will contain 10 to 100 millions of
processors, or billions of cores. The interconnection network plays an important role for achieving
high-performance in such ultra-scale parallel systems. The system performance depends largely
on the time complexities of communication schemes, and in turn depends on the diameter of the
network.
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An interconnection network consists of switches with multiple communication ports and cables
connecting ports by following certain topology. For an ultra-scale parallel computer, the traditional
interconnection networks may no longer satisfy the requirements for the high-performance com-
putations or efficient communications because they have a large node degree or a long diameter.
The node degree and diameter are the critical measures for the efficiency of the interconnection
networks. The node degree is limited by the hardware technologies and the diameter affects all
kinds of communication schemes directly. The number of communication ports (node degree) in
the network-on-chip (NoC) is typically 4 to 8 in current implementations. The off-chip interconnect
switches can have tens of ports, but the cost becomes expensive as the number of ports increases.
Other important measures for the efficiency of the interconnection networks include symmetricity,
scalability, and efficient routing algorithms.

The following two categories of interconnection networks have attracted a great research attention
and been used in many supercomputers’ implementations. One is the hypercube-like family that
has the advantage of short diameters for high-performance computing and efficient communications.
The other is the 2D/3D mesh or torus family that has the advantage of small and fixed node degrees
and easy implementations [1]. Traditionally, most supercomputers including those built by CRAY,
IBM, SGI, Intel, and Fujitsu use 3D torus or hypercubes.

However, the node degree of the hypercube increases logarithmically as the number of nodes
in the systems increases; the diameter of the 2D/3D torus becomes large in ultra-scale parallel
systems. To solve these problems, the hierarchical (cluster-based) architectures are proposed in
literature [4, 7, 11]. The Roadrunner supercomputer built by IBM adopts a new approach for the
interconnection network [6]. It is a cluster-based architecture: the connection among clusters is fully
connected, and the fat-tree is used for the connection inside a cluster.

A switch in the higher-level of the Roadrunner does not connect the compute nodes; it connects
the switches of the lower-level. This as well as the fat-tree makes the system asymmetric. In this
paper, we first introduce a flexible interconnection network, called Hierarchical Dual-Net (HDN) [10].
A k-level hierarchical dual-net, HDN(B, k, S), is obtained by applying k-time dual constructions on
a base network B. S defines a super-node set that adjusts the scale of the system. A small scale
hypercube or torus can be used as the base network. As the level k increases, the number of nodes
in the system increases super-exponentially and the number of links increases linearly. In a real
parallel system design, k = 1, 2, or 3 is enough. The HDN is symmetric and can connect a large
number of nodes with a small node degree, meanwhile keeping the diameter short. The HDN also
adapts the cluster-based architecture. Compared to the Roadrunner, the HDN is symmetric, uses
small number of links and keeps the diameter short.

Fault-tolerant routing is the ability for nodes to communicate each other in a system in which
some nodes and/or links are faulty. As the number of nodes in supercomputers grows so does the
probability for failure, the fault-tolerant routing becomes a more important issue in the parallel
systems that require the high-reliability. Gu and Peng proposed an optimal fault-tolerant routing
algorithm for hypercube [5]. Li et al. proposed fault-tolerant routing algorithms for RDN [8].
Ebrahimi et al. proposed a fault-tolerant routing approach for 3D meshes [3]. Arai and Li proposed
a disjoint path routing algorithm for HDN [2].

The main contribution of this paper is to propose fault-tolerant routing algorithms for hierarchical
dual-net. Let d0 be the node degree of the symmetric base network B. For any two nodes and up
to d0 − 1 faulty nodes in B, a fault-free path can be found in O(F (B)) time. Given two nodes
u and v and up to d0 + k − 1 faulty nodes in a hierarchical dual-net HDN(B, k, S), we propose
an O(2kF (B)) time algorithm for finding a fault-free path connecting u and v. We also propose a
heuristic fault-tolerant routing algorithm for an HDN(B, k, S) with arbitrary number of faulty nodes.
The simulation results show that this algorithm can find a fault-free path between two non-faulty
nodes with high probability.

The rest of the paper is organized as follows. Section 2 introduces the hierarchical dual-net.
Section 3 describes a fault-tolerant routing algorithm for a hierarchical dual-net with limited faulty
nodes. Section 4 proposes an efficient and practical fault-tolerant algorithm that can finds a fault-
free path on a hierarchical dual-net with arbitrary number of faulty nodes, and gives the performance
evaluation result. Section 5 concludes the paper.
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2 The Hierarchical Dual-Net

The HDN was motivated by recursive dual-net (RDN) [9]. The RDN can be viewed as a special case
of HDN. We begin with a brief introduction to the RDN. An RDN is constructed recursively by a
dual-construction. The dual-construction is a way to expand a given symmetric graph G of size n to
a new symmetric graph G∗ of size 2n2. It generates 2n copies of G as subgraphs (denoted as clusters)
of G∗. Half of them, n clusters, are of class 0 and the others are of class 1. Each cluster contains n
nodes. If G is symmetric then the expanded graph G∗ is unique and symmetric. Therefore, the dual-
construction can be applied recursively from a symmetric network (the base network). RDN(m, k)
denotes an RDN generated from a base network of size m by applying dual-construction k times.

The number of nodes in an RDN(m, k) is (2m)2
k

/2 and the node degree is d0 + k where d0 is the
node degree of the base network.

The problem about an RDN is that its growth rate is super-exponential. There is very little
space for selection of the size of an RDN. For example, let the base network be a 3-cube, then the
sizes of RDN(8, k) will be 27, 215, and 231 for k = 1, 2, and 3, respectively. In HDN, we provide
a mechanism (super-node) to control the growth rate through its expansion from a base network.
This new interconnection network has a very flexible way for adjusting its size.

The hierarchical dual-net [10], HDN(B, k, S), contains three sets of parameters: B is a symmetric
product graph, we call it base network; k is an integer that indicates the level of the HDN (the number
of dual-constructions applied); and S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k −
1, S) and si = |G′

i| is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. If si = 1 for
1 ≤ i ≤ k, the HDN becomes an RDN.

Given r graphs Gi = (Vi, Ei), 1 ≤ i ≤ r, their product graph G = G1 × G2 × . . . × Gr is
defined as the graph G = (V,E), where V = {(vj1, . . . , vji, . . . , vjr)|vji ∈ Vi, 1 ≤ i ≤ r} and
E = {[(vj1, . . . , vji, . . . , vjr), (vk1, . . . , vki, . . . , vkr)]|vji 6= vki, (vji, vki) ∈ Ei, and vjl = vkl for l 6=
i, 1 ≤ i ≤ r}. In other words, the nodes of the product graph G are labeled with r-tuples, where the
ith element of the r-tuples is chosen from the node set of the ith component graph. The edges of
the product graph connect pairs of nodes whose labels are identical in all but the jth element, and
the two nodes corresponding to the jth elements in the jth component graph are connected by an
edge. Meshes/tori or hypercubes are typical examples of product graphs.

Given a product graph G = G1 × G2 × . . . × Gr , we define a quotient graph Q as Q = G/G′

where G′ is a sub-product graph of G such that G = G′ × Q. A node in a product graph G =
G1 × . . . × Gi × . . . × Gr can be represented by (a1, . . . , ai, . . . , ar) with 0 ≤ ai ≤ |Gi| − 1. We
define a sub-graph G′ as G′ = G

′′

1 × . . . × G
′′

j × . . . × G
′′

q with G
′′

j = Gi for 1 ≤ j ≤ q ≤ r and

1 ≤ i ≤ r, G
′′

j 6= G
′′

k if j 6= k for 1 ≤ j, k ≤ q. Then a node in the sub-graph G′ can be represented

by (b1, . . . , bi, . . . , bq) with 0 ≤ bi ≤ |G
′′

i | − 1. We can consider a quotient graph Q as a reduced
graph of G with G′ being mapped into a single node (a super-node).

A graph G is symmetric (node-symmetric) if all its nodes looks alike. A product graph is
symmetric if all its component graphs are symmetric. We use the symmetric product graph as the
base network for generating a hierarchical dual-net through dual-constructions. We denote the base
network as B = B1 × B2 × . . . × Br where all the Bi, 1 ≤ i ≤ r, are symmetric. We define a
super-node of B, denoted as SN as a sub-product graph of B. That is, SN = Bi1 ×Bi2 × . . .×Biq ,
where ij , 1 ≤ j ≤ q, are distinct and q ≤ r.

Let |Bi| = bi be the number of nodes in Bi for 1 ≤ i ≤ r. The HDN(B, 0, S) = B is the base
network. For i > 0, the HDN(B, i, S) is generated from HDN(B, i − 1, S) by a construction to be
explained below. Note that S = {G′

1, G
′

2, . . . , G
′

k}, where G
′

i is a sub-graph of HDN(B, k− 1, S) and
si = |G′

i| is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. First, we define a
super-node of level i, denoted as SN i, to be a sub-product graph G′

i of size si in B. Then, we define
graph Qi as the quotient graph HDN(B, i − 1, S)/SN i. Suppose that there are Ni−1 nodes in the
HDN(B, i−1, S), then the number of nodes ni in Qi is Ni−1/si. The si can be 1 or

∏q

j=1 |Bij |, where
1 ≤ ij ≤ r and q ≤ r. That is, si can be a product of any number of integers in {b1, b2. . . . , br}. For
example, if r = 3, b1 = 2, b2 = 3, and b3 = 5, the possible si can be 1, 2, 3, 5, 2× 3, 2× 5, 3× 5, or
2× 3× 5.

The construction of HDN(B, i, S), 1 ≤ i ≤ k, can be defined by a two-step process: First, we
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perform a dual-construction on the quotient graph Qi−1 = HDN(B, i−1, S)/SN i with HDN(B, 0, S)
= B. Let the graph generated by the dual-construction be Qi, and the subgraph of two nodes that
is connected by a cross-edge of level i be K2. Second, to get the HDN(B, i, S), we replace every K2

in Qi by a product graph K2 × SN . We call HDN(B, i − 1, S) cluster of HDN(B, i, S).
An HDN(B, i, S) consists of 2ni clusters which are divided into two classes: class 0 and class 1

with each class containing ni clusters. That is, the number of clusters in each class is equal to the
number of super-nodes in a cluster. At level i, each super-node in a cluster has si new links to a
super-node in a distinct cluster of the other class. Because there are si nodes in a super-node, one
node contributes a new link. The dual-construction of an RDN is a special case of the construction
of an HDN with si = 1 for 1 ≤ i ≤ k.

The indexes of the nodes in HDN(B, k, S) can be defined as follows. Let SNk be a super-node id
in a cluster of HDN(B, k, S) and Nk be a node id in a super-node, then a node in the HDN(B, k, S)
can be represented by (Ck, Uk, SNk, Nk) where Ck is the class id (0 or 1) and Uk is the cluster id.

A cross-edge at level k connects node (Ck, Uk, SNk, Nk) and node (Ck, SNk, Uk, Nk).
Suppose that the node degree of the base network B is d0, the node degree of the HDN(B, k, S)

is d0+k. Let Ni−1 be the number of nodes in the HDN(B, i−1, S). There are Ni = 2× (Ni−1/si)×
Ni−1 = 2N2

i−1/si nodes in the HDN(B, i, S) for 1 ≤ i ≤ k, where Ni−1/si is the number of clusters

in each class. That is, the number of nodes in the HDN(B, k, S) is (2N0)
2k/(2×

∏k

i=1 si), where N0

is the number of nodes in the base network.
Let the diameter of the HDN(B, i − 1, S) be Di−1 and the diameter of the super-node (SN) be

D(SNi). Then, if we map a super-node into a single node, the diameter of the quotient graph Qi−1

is D(Qi−1) = Di−1 −D(SN i).
To route a node u in a cluster of class 0 (or 1) to a node v in a different cluster of the same class,

we can route u along with a direct link of level i to a node u′ in a cluster of class 1 (or 0). This
takes one step. Then, we route u′ inside the cluster to a node w′ that can reach a node w in the
same cluster of node v along with direct link of level i. The longest distance between nodes u′ and
w′ is D(Qi−1).

Similarly, we can route node w′ to a node w (by one step) and then to a node v′ which is in the
same super-node of v (by D(Qi−1) steps). Finally, we route v′ to node v, this takes D(SN i) steps.
Therefore, we have the following recurrence:

Di = 2(1 +D(Qi−1)) +D(SN i)
= 2(1 +Di−1 −D(SN i)) +D(SN i)
= 2Di−1 −D(SN i) + 2

Solving the above recurrence, we get the diameter Dk of HDN(B, k, S) as below:

Dk = 2kD(B)−

k−1∑

j=0

2jD(SNk−j) + 2k+1 − 2

where D(B) and D(SN i), 1 ≤ i ≤ k, are the diameters of the base network and the super-nodes,
respectively. The results of the analysis in this section are summarized in the following theorem.

Theorem 1 Assume that the base network B is a symmetric, product graph and SN i, 1 ≤ i ≤ k,
are sub-product graphs of B with |SN i| = si. Let the number of nodes, the node degree, and the
diameter of B be N0, d0, and D0, respectively. Let the diameters of SN i, 1 ≤ i ≤ k, be D(SN i).
Let S = {G′

1, G
′

2, . . . , G
′

k}, where G′

i is a sub-graph of HDN(B, k − 1, S) and si = |G′

i| is the
number of nodes in a super-node at the level i for 1 ≤ i ≤ k. Then, the number of nodes of

HDN(B, k, S) is (2N0)
2k/(2

∏k

i=1 si), the node degree is d0+k, and the diameter is Dk = 2kD(B)−∑k−1
j=0 2

jD(SNk−j) + 2k+1 − 2, where N is the number of nodes in HDN(B, k, S).

3 Fault-Tolerant Routing on HDN

The problem of finding a path from a source u to a destination v and forwarding a message along
the path is known as the routing problem. Finding a fault-free path from u to v on a network
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with a set of faulty nodes is called fault-tolerant routing. The solutions for these routing problems
are fundamental and critical for the performance of an interconnection network. In this section,
we introduce an efficient fault-tolerant routing algorithm that finds a fault-free path on hierarchical
dual-net with limited faulty nodes.

We use a model of the global failure information (off-line). That is, each non-faulty node in
the system knows all the IDs of the faulty nodes. In contrast, there is a model of the local failure
information (in-line) in which each node knows the failure information of its neighbors or a limited
number of the intermediate hops. Also, there are two types of the component failures: node failure
and link failure. Node failure means that the faulty node (processor and switch) and the links
connected to it can not work anymore; while the link failure means that only the links (usually some
ports of the switch) can not be used - the processor and switch (the other ports of the switch) is
still alive. In this paper, we only investigate the fault-tolerant routing on node failure.

The proposed algorithm can always find a fault-free path if the number of faulty node is less
than the node degree of the hierarchical dual-net. We introduce some notations that will be used
later. Let SN(HDN(B, k, S), n0, n1, n2) be a super-node of level k where n0, n1, and n2 are class-id,
cluster-id, and supernode-id, respectively. In an HDN(B, k, S), there are sk nodes in every super-
node of level k, and the node-id is 0, 1, . . ., or sk − 1 inside the super-node. All the nodes having a
same node-id form an RDN, and there are sk RDNs. Let RDN(HDN(B, k, S), n) be an RDN that
consists of the nodes whose node-id is n. Thus, an HDN can be considered as a product graph of
RDN and Sk. Suppose that a fault-tolerant routing algorithm exists for the base network B and we
name it Supernode FaultTolerantRouting(u, v).

Figure 1 shows the super-nodes in an HDN(B, k, S) with k = 1 and s1 = 4. The base network is
a 3-cube (8 nodes). Both the number of clusters of each class and the number of super-nodes in each
cluster are 8/4 = 2. There are 8 super-nodes and each of them is identified with supernode(class-
id,cluster-id,supernode-id).

Class 0

Class 1

Cluster 0

Cluster 0

Cluster 1

Cluster 1

SN0 SN0

SN1SN0 SN1SN0

SN1 SN1

supernode(0,0,0) supernode(0,0,1) supernode(0,1,0) supernode(0,1,1)

supernode(1,0,1)supernode(1,0,0) supernode(1,1,1)supernode(1,1,0)

Figure 1: SN(HDN(B, k, S), n0, n1, n2) in an HDN(B, k, S)

Figure 2 shows the RDNs of the HDN of Figure 1. There are four RDNs (s1 = 4) which are
marked with different colors and line widths.

Figure 3 shows the super-nodes and Figure 4 shows the RDNs of the same HDN but at a different
view-point. From these two figures, we can understand easily that an HDN is a product graph of
the RDN and S1 (a 2-cube in this example).

Consider an HDN(B, k, S) with at most d0 + k − 1 faulty nodes. A node will not be isolated
because the node degree of the HDN(B, k, S) is d0 + k. To find a fault-free path between node u
and node v on HDN, our basic idea is to find two paths from u and v, respectively, terminating
at a same super-node, and then to connect the two paths inside the super-node. The algorithm is
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Figure 2: RDN(HDN(B, k, S), n) in an HDN(B, k, S)

Class 0

Class 1

Cluster 0

Cluster 1

SN0 supernode(0,0,0)

SN1 supernode(0,0,1)

SN0

SN1

supernode(0,1,0)
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SN1

SN0

SN1

supernode(1,0,0)

supernode(1,0,1)

supernode(1,1,0)

supernode(1,1,1)

Cluster 0

Cluster 1

Figure 3: SN(HDN(B, k, S), n0, n1, n2) in an HDN(B, k, S)

divided into three steps: Step-1 and Step-2 find two paths, and Step-3 connects them.

The algorithm is formally given in Algorithm 1. Step-1 finds two RDNs whose numbers of faulty
nodes are less than the node degree of RDN. The RDN FaultTolerantRouting algorithm requires
this constraint. The paths can be found inside the super-nodes of u and v. Then we get two paths
[u → us] and [v → vs]. Step-2 finds two paths starting from us and vs and ending at a same super-
node by using RDN FaultTolerantRouting algorithm. At this step, we must choose the super-node
whose number of faulty node is less than the node degree of the super-node. We get two paths
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Figure 4: RDN(HDN(B, k, S), n) in an HDN(B, k, S)

[us → ur] and [vs → vr]. In Step-3, a path [ur → vr] is built inside the super-node. Finally, by
connecting the five paths, a fault-free path [u → us → ur → vr → vs → v] can be found.

Figures 5 - 8 show a path example found by the algorithm. The base network is a 3-cube and
S1 is a 2-cube with k = 1. The node degree is 3 + 1 = 4. Figure 5 gives all the node ids in the
format of (class-id, cluster-id, supernode-id, node-id). Two nodes u(u0, u1, u2, u3) and v(v0, v1, v2, v3)
are (0, 0, 0, 0) (red circle) and (1, 1, 1, 3) (blue circle), respectively. Three faulty nodes, (0, 0, 0, 1),
(0, 1, 1, 3), and (1, 1, 0, 3), are marked with black solid circles.

First the algorithm finds two nodes us and vs inside the super-node of u and super-node of v,
respectively. There is no faulty node in RDN(HDN(B, k, S), 0), therefore us is same as u. On the
other hand, there are two faulty nodes in RDN(HDN(B, k, S), 3), nodes (0, 1, 1, 3) and (1, 1, 0, 3),
not less than the node degree of the RDN. Therefore, we must find a suitable adjacent nodes of v,
node (1, 1, 1, 1) for example. There is one faulty node in RDN(HDN(B, k, S), 1), less than the node
degree. Therefore, vs is (1, 1, 1, 1). Two paths [(0, 0, 0, 0)] and [(1, 1, 1, 3) → (1, 1, 1, 1)] are found in
Step-1, as shown in Figure 6.

Step-2 finds two nodes ur and vr in a same super-node and connects us and vs to ur and vr,
respectively. In this case, ur and us must not be the same node. If ur and us are the same
node, vr will be (0, 0, 0, 1) which is a faulty node. On the other hand, because there is no faulty
node in the super-node of vs, we select SN(HDN(B, k, S), 1, 1, 1) as the super-node in which the ur

and vr must be found. In the case, the vr will be the same as vs because the number of faulty
nodes in SN(HDN(B, k, S), 1, 1, 1) is less than the node degree of the super-node. Then the id
of ur is determined. That is, ur is (1, 1, 1, 0) and vr is (1, 1, 1, 1). Then we route us to ur in
RDN(HDN(B, k, S), 0). As the result of Step-2, two paths, [(0, 0, 0, 0) → (0, 0, 1, 0) → (1, 1, 0, 0) →
(1, 1, 1, 0)] and [(1, 1, 1, 1)] (vr = vs), are found, as shown in Figure 7.

Step-3 gets a path [(1, 1, 1, 0) → (1, 1, 1, 1)] by using Supernode FaultTolerantRouting(ur, vr) as
shown in Figure 8. Note that in this case, we can use routing algorithm instead of the fault-tolerant
routing algorithm, because there is no faulty node in the super-node (SN(HDN(B, k, S), 1, 1, 1)).
Finally, connecting the five paths, [u → us → ur → vr → vs → v], a fault-free path [(0, 0, 0, 0) →
(0, 0, 1, 0) → (1, 1, 0, 0) → (1, 1, 1, 0) → (1, 1, 1, 1) → (1, 1, 1, 3)] is found.

Theorem 2 For a given non-faulty node n(n0, n1, n2, n3) in HDN(B, k, S) with at most d0 + k − 1
faulty nodes, a non-faulty node ns(ns0 , ns1 , ns2 , ns3) satisfied the following conditions always exists.

1. ns is same as n or a neighbor of n.
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Algorithm 1: HDN FaultTolerantRouting(HDN(B, k, S), u, v, F )

input: HDN(B, k, S);
input: A non-faulty node u(u0, u1, u2, u3) (the node representation of level k);

input: A non-faulty node v(v0, v1, v2, v3) (the node representation of level k);

input: A set of faulty nodes F ;
output: A fault-free path u ⇒ v;

begin

/* Step-1 */

if |RDN(HDN(B, k, S), u3) ∩ F | < d0 + k − d(Sk) /* d(Sk) is degree of Sk */

us = u;
else

find a non-faulty node us = (u0, u1, u2, us3);
/* us is a neighbor of u and |RDN(HDN(B, k, S), us3 ) ∩ F | < d0 + k − d(Sk) */

endif

if |RDN(HDN(B, k, S), v3) ∩ F | < d0 + k − d(Sk) /* d(Sk) is degree of Sk */
vs = v;

else

find a non-faulty node vs = (v0, v1, v2, vs3);

/* vs is a neighbor of v and |RDN(HDN(B, k, S), vs3 ) ∩ F | < d0 + k − d(Sk) */

endif

/* Step-2 */

if |SN(HDN(B, k, S), u0, u1, u2) ∩ F | < d(Sk)

ur = us;
else

find a non-faulty node ur = (ur0 , ur1 , ur2, us3);
/* ur is a neighbor of us and |SN(HDN(B, k, S), ur0 , ur1 , ur2) ∩ F | < d(Sk) */

if ur does not exist

if |SN(HDN(B, k, S), v0, v1, v2) ∩ F | < d(Sk)
vr = vs;

else

find a non-faulty node vr = (vr0 , vr1 , vr2 , vs3);

/* vr is a neighbor of vs and |SN(HDN(B, k, S), vr0 , vr1 , vr2) ∩ F | < d(Sk) */

endif

RDN FaultTolerantRouting(RDN(HDN(B, k, S), us3 ),us,ur(vr0 , vr1 , vr2 , us3), F );

/* route node us to node ur */
else

RDN FaultTolerantRouting(RDN(HDN(B, k, S), vs3 ),vs,vr(ur0 , ur1 , ur2, vs3), F );

/* route node vs to node vr */
endif

endif

/* Step-3 */
Supernode FaultTolerantRouting(ur, vr); /* route node ur to node vr */

end

2. The number of faulty node in RDN(HDN(B, k, S), ns3) is less than d0+k−d(Sk) where d(Sk)
is the node degree of Sk.

Proof: Let r = d0 + k − d(Sk). We calculate how many faulty nodes will be needed if ns does not
exists. Because if the number of faulty nodes on RDN(HDN(B, k, S), n3) is less than r, ns is same
as n, the number of faulty nodes has to be at least r. There are r + d(Sk) nodes connecting to
node n. d(Sk) nodes out of those nodes have different node-ids from node n. Assume that there are
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Figure 5: An example of fault-tolerant routing on HDN(B, 1, S) with s1 = 4
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Figure 6: An example of fault-tolerant routing Step-1 on HDN(B, 1, S) with s1 = 4

x faulty nodes in those nodes, 0 ≤ x < d(Sk). Let N = {n1, n2, ..., nd(Sk)−x} be set of non-faulty
adjacent nodes of n whose node-ids are different from n3. Because if the number of faulty nodes on
RDN(HDN(B, k, S), ni3 ), for 1 ≤ i ≤ d(Sk)−x, is less than r, ns is ni, at least (d(Sk)−x)× r faulty
nodes are needed. From the above, at least r+x+(d(Sk)−x)× r nodes are faulty on HDN(B, k, S)
if ns does not exists.
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Figure 7: An example of fault-tolerant routing Step-2 on HDN(B, 1, S) with s1 = 4
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Figure 8: An example of fault-tolerant routing Step-3 on HDN(B, 1, S) with s1 = 4

This means that if the number of faulty nodes on HDN(B, k, S) is less than r+x+(d(Sk)−x)×r
then ns exists. We have (d0 + k − 1)− (r + x+ (d(Sk)− x)×r) = d(Sk)− 1− x− (d(Sk)− x)×r =
(d(Sk)− x)(1 − r) − 1 < 0. The expression shows that r + x+ (d(Sk)− x)×r is always larger than
d0 + k − 1. This is against the assumption of at most d0 + k − 1 faulty nodes, therefore, ns always
exists.
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Theorem 3 For two non-faulty nodes u(u0, u1, u2, u3) and v(v0, v1, v2, v3) in HDN(B, k, S) with at
most d0 + k − 1 faulty nodes, a non-faulty node n(n0, n1, n2, n3) satisfied the following conditions
always exists.

1. n is same as u or v, or n is a neighbor of u or v.

2. The number of faulty node in SN(HDN(B, k, S), n0, n1, n2) is less than d(Sk) where d(Sk) is
node degree of Sk.

Proof: n and u are same node if the number of faulty node in SN(HDN(B, k, S), u0, u1, u2) is less
than d(Sk) and node (n0, n1, n2, v3) is non-faulty node. Similarly, n and v are same node if the
number of faulty node in SN(HDN(B, k, S), v0, v1, v2) is less than d(Sk) and node (n0, n1, n2, u3) is
non-faulty node. We assume that n always exists if n is neither u nor v. Let r = d0 + k − d(Sk).
Similar to the proof of Theorem 2, we calculate how many faulty nodes are needed if n does not
exists. There are 2(r + d(Sk)) nodes connecting to node u or v. 2r nodes out of those nodes have
same node-ids as u or v. Assume that there are x faulty nodes in those nodes, 0 ≤ x < 2r. Let
{n1, n2, ..., n2r−x} be set of non-faulty adjacent nodes of u or v whose node-ids are same as u3 or
v3. If the number of faulty nodes on SN(HDN(B, k, S), ni0 , ni1 , ni2), for 1 ≤ i ≤ 2r− x, is less than
d(Sk) then n is ni. Therefore, at least (2r− x)× d(Sk) faulty nodes are needed. From the above, at
least x+ (2r− x)× d(Sk) nodes are faulty on HDN(B, k, S) if n does not exists. This means that if
the number of faulty nodes on HDN(B, k, S) is less than x+(2r−x)×d(Sk) then n exists. If x ≥ r,
(d0+k−1)−(x+(2r−x)d(Sk)) ≤ (d0+k−1)−(r+(2r−x)d(Sk)) = d(Sk)×(1−(2r−x))−1 < 0. If
x < r, (d0+k−1)−(x+(2r−x)d(Sk)) < (d0+k−1)−(x+r×d(Sk)) = (r+d(Sk)−r×d(Sk))−(x+1) ≤
0. This means that x+(2r−x)×d(Sk) is always larger than d0+k− 1. Therefore, node n exists.

Theorem 4 Assume that a fault-free path connecting two nodes in base network can be found in
O(F (B)) time. Then for any two non-faulty nodes in HDN(B, k, S) with at most d0 + k − 1 faulty
nodes for k > 0, a fault-free path connecting the two nodes can be found in O(2kF (B)) time. The

maximum length of the paths is at most D(f(Sk))+2(2k−1D(B)−
∑k−2

j=0 2
jD(SNk−1−j)−D(Sk))+

2k+1+3, where D(f(Sk)) is the maximum length of the path found by supernode fault tolerant routing
algorithm.

Proof: Let the time complexity for executing Step-1, Step-2, and Step-3 of our algorithm be T1, T2,
T3, respectively. Step-1 finds two nodes us and vs from adjacent nodes of u and v, thus T1 = O(2(d0+
k)). Step-2 searches all of adjacent nodes of us and vs and executes RDN FaultTolerantRouting.
Therefore, T2 = O(2(d0 + k)) + O(2kF (B)). Finally, connecting the two nodes ur and vr on
Sk in Step-3 requires T3 = O(F (Sk)). Therefore, the time complexity of finding fault-free path
connecting the two nodes is O(2kF (B)). According to Theorem 2, the length of the two paths,
[u → us] and [v → vs], are at most 1. According to Theorem 3, the length of either [us → ur]
or [vs → vr] is at most 1. The maximum length of another path is equal to the maximum length
of the path found by RDN FaultTolerantRouting algorithm. The maximum length of the path
connecting a node ur and vr is D(f(Sk)). Therefore, the maximum length of fault-free path on

HDN is 1 + 1 + 1 + (2(2k−1D(B) −
∑k−2

j=0 2
jD(SNk−1−j) + 2k − 2 − D(Sk)) + 7) + D(f(Sk)) =

D(f(Sk)) + 2(2k−1D(B)−
∑k−2

j=0 2
jD(SNk−1−j)−D(Sk)) + 2k+1 + 3.

4 Algorithm for Fault-Tolerant Routing on HDN with Arbi-

trary Number of Faulty Nodes and Experimental Results

In this section, we propose an efficient practical algorithm for fault-tolerant routing in HDN with
arbitrary number of faulty nodes by giving a set of faulty nodes F and two non-faulty nodes u and
v in HDN(B, k, S), k > 0.

This algorithm also finds four non-faulty nodes us, vs, ur, and vr. First, the algorithm finds
fault-free paths of length at most 1 from u and v to us and vs. Next, the algorithm finds a non-faulty
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node ur using RDN FaultTolerantRouting algorithm inside RDN(HDN(B, k, S), us3 ). If us3 6= vs3 ,
we use the RDN which contains information of faulty nodes of both the RDN(HDN(B, k, S), us3 )
and RDN(HDN(B, k, S), vs3 ). And then, the algorithm finds a super-node which contains nodes in
the given path and the number of faulty nodes is minimum. The node-id of the ending node is equal
to us3 in the super-node. Let ur be the ending node. vr is determined in the same way as ur. If
the algorithm succeeded to find two fault-free paths from us and vs to ur and vr then the algorithm
finds a path connecting ur and vr inside the super-node. If all steps succeed then five fault-free
paths are found. Connecting these paths, a fault-free path [u → us → ur → vr → vs → v] can be
found. If the algorithm fail to find fault-free path then the algorithm retry to find a fault-free path
to change the combination of us and vs. The algorithm is formally given in Algorithm 2.

Algorithm 2: HDN FaultTolerantRouting unlimited(HDN(B, k, S), u, v, F )

input: HDN(B, k, S);
input: A non-faulty node u(u0, u1, u2, u3) (the node representation of level k);

input: A non-faulty node v(v0, v1, v2, v3) (the node representation of level k);
input: A set of faulty nodes F ;

output: A fault-free path u ⇒ v;

begin

find fault-free paths Pp(u), 0 ≤ p ≤ d0 + k, P0(u) = u, or Pi(u) = u → u(i), 1 ≤ i ≤ d0 + k,

of length at most 1;

/* u(i) is ith adjacent node of u */
find fault-free paths Pp(v), 0 ≤ p ≤ d0 + k, P0(v) = v, or Pi(v) = v → v(i), 1 ≤ i ≤ d0 + k,

of length at most 1;
/* v(i) is ith adjacent node of v */

for iu = 1 to number of path in Pp(u)

us(us0 , us1 , us2 , us3) = the end node of Piu(u);
for iv = 1 to number of path in Pp(v)

vs(vs0 , vs1 , vs2 , vs3) = the end node of Piv (v);
r f = (RDN(HDN(B, k, S), us3 ) ∩ F ) ∪ (RDN(HDN(B, k, S), vs3 ) ∩ F );

/* r f is set of faulty nodes in both of RDN(HDN(B, k, S), us3 )

and RDN(HDN(B, k, S), vs3 ) */
P = RDN FaultTolerantRouting(RDN(HDN(B, k, S), us3 ), (us0 , us1 , us2), (vs0 , vs1 , vs2), r f);

min fn = ∞; /* min fn is the minimum number of faulty nodes on super-node */
for is = 1 to number of nodes of path P

n(n0, n1, n2, n3) = isth node of P ;

if min fn > |SN(HDN(B, k, S), n0, n1, n2) ∩ F |
min fn = |SN(HDN(B, k, S), n0, n1, n2) ∩ F |;

/* update the number of faulty nodes on super-node */

ur = (n0, n1, n2, us3);
vr = (n0, n1, n2, vs3);

endif

endfor

RDN FaultTolerantRouting(RDN(HDN(B, k, S), us3 ), us, ur, F );

/* find a fault-free path connecting us and ur */
RDN FaultTolerantRouting(RDN(HDN(B, k, S), vs3 ), vs, vr, F );

/* find a fault-free path connecting vs and vr */
Supernode FaultTolerantRouting(ur, vr);

/* find a fault-free path connecting ur and vr */

endfor

endfor

end
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Figure 9: An example of fault-tolerant routing on HDN(B, 1, S) with s1 = 4 by using Algorithm 2
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Figure 10: Finding fault-free paths of u → us and v → vs

Figures 9−12 show a path example on an HDN(B, k, S) found by Algorithm 2. The base network
B is a 3-cube with k = 1 and S = S1 is a 2-cube.

Referring to Figure 9, the two nodes u(u0, u1, u2, u3) and v(v0, v1, v2, v3) are (0,0,0,3) and (1,1,1,2),
respectively. There are seven faulty nodes, larger than the node degree of the HDN. The faulty nodes
((0,0,0,2), (0,0,1,3), (0,1,0,1), (0,1,1,0), (1,0,0,0), (1,0,0,3), (1,0,1,1), and (1,1,1,3)) are marked with
solid black circles. All the shortest paths between u and v contains faulty nodes (nodes (0,0,0,2),
(0,0,1,3), and (1,0,0,3) are faulty).

Referring to Figure 10, first, the algorithm finds fault-free paths of length at most 1 from u and
v to us and vs, in their super-nodes, respectively: us = (0, 0, 0, 1) and vs = (1, 1, 1, 0). We get two
paths: [(0,0,0,3) → (0,0,0,1)] and [(1,1,1,2) → (1,1,1,0)].

Referring to Figure 11, the algorithm then finds two nodes ur and vr by using the RDN fault-
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Figure 11: Finding fault-free paths of us → ur and vs → vr
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Figure 12: Finding a fault-free path of ur → vr

tolerant routing algorithm so that nodes ur and vr are located in a same super-node which contains
the smallest number of faulty nodes. We get ur = (1,1,0,1) and vr = (1,1,0,0).

Referring to Figure 12, the algorithm routes ur to vr in the super-node. The final path found by
Algorithm 2 is [(0,0,0,3) → (0,0,0,1) → (0,0,1,1) → (1,1,0,1) → (1,1,0,0) → (1,1,1,0) → (1,1,1,2)].

We have performed a simulation to evaluate the algorithm. Our simulation focuses on the
successful ratio of finding a fault-free path and the average path length of a fault-free path, for an
HDN with different node faulty probabilities. We use two hierarchical dual-net (HDN(B1, k1, S1)
and HDN(B2, k2, S2)). HDN(B1, k1, S1) uses a 3 × 2 × 5 torus as the base network and let k1 = 2
and S1 = {15, 5}. Therefore, the numbers of nodes in HDN(B1, 1, S1) and HDN(B1, 2, S1) are
(30/15) × (30/15) × 2 × 15 = 120 and (120/5) × (120/5) × 2 × 5 = 5760, receptively. The node
degree of HDN(B1, k1, S1) is 5 + 2 = 7. HDN(B2, k2, S2) uses a 3-cube as the base network and let
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k2 = 2 and S2 = {4, 2}. Therefore, the numbers of nodes in HDN(B2, 1, S2) and HDN(B2, 2, S2)
are (8/4)× (8/4)× 2× 4 = 32 and (32/2)× (32/2)× 2× 2 = 1024, receptively. The node degree of
HDN(B2, k2, S2) is 3 + 2 = 5. The simulation consists of the following four steps.

1. Mark fault nodes in HDN(B, 2, S) randomly at a specified percentage of the faulty nodes.

2. Select two non-faulty nodes, u and v, in HDN(B, 2, S) randomly.

3. Find fault-free path for the two nodes by using the HDN FaultTolerantRouting algorithm and
HDN FaultTolerantRouting unlimited algorithm.

4. Record whether the path is found successfully. If the path is found successfully, then record
the path length.

Figure 13 illustrates the successful ratio of finding a fault-free path on HDN(B1, 2, S1) with the
base network of a 3D Torus. The x-axis of the graph is the node faulty rate and the y-axis is the
successful ratio of finding a fault-free path. The upper line of the graph is the successful ratio of
finding a fault-free path using our proposed algorithm. The lower line of the graph is the successful
ratio of finding a fault-free path using HDN Routing algorithm [10] which does not consider the
fault tolerance. Therefore, the successful ratio rapidly decreases as the faulty rate increases. The
successful ratio is less than 50% if the faulty rate is 10% and is about 15% if the faulty rate is 25%.
On the other hand, the successful ratio of finding a fault-free path using our proposed algorithm
slowly decreases as the faulty rate increases. The ratio is always 100% if the number of faulty node
is less than the node degree. The ratio of successful routing is over 99.9% if the faulty rate is 20%
(1152 faulty nodes) and is over 98% even if the faulty rate is 25% (1440 faulty nodes).
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Figure 13: A successful ratio of finding a fault-free path with HDN(B1, 2, S1), B1 = 3× 2× 5 torus

Figure 14 illustrates the average path length of fault-free paths on HDN(B1, 2, S1). The x-axis of
the graph is the node faulty rate and the y-axis is the average path length. The path length found
by HDN Routing algorithm [10] become shorter as the faulty rate increases. This is because, as
the faulty rate increases, the successful ratio decreases, especially for those paths which have longer
lengths, and we just consider the paths which successfully connect the two nodes. On the other
hand, the path length found by our proposed algorithm becomes longer as the faulty rate increases.
This is because as the faulty rate increases, the number of roundabout routes also increases.
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Figure 14: Average path length of fault-free path with HDN(B1, 2, S1), B1 = 3× 2× 5 torus

Figure 15 shows the successful ratio of finding a fault-free path on HDN(B2, 2, S2) with the base
network of a 3-cube. Again, the successful ratio of finding a fault-free path using our proposed
algorithm slowly decreases as the faulty rate increases. The successful ratio of routing is over 96%
even if the faulty rate is 25% (256 faulty nodes).
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Figure 15: A successful ratio of finding a fault-free path with HDN(B2, 2, S2), B2 = 3-cube

Figure 16 shows the average path length of finding fault-free paths on HDN(B2, 2, S2) with the
base network of a 3-cube. Again, as the faulty rate increases, the path length found by HDN Routing
algorithm becomes shorter, and the path length found by our proposed algorithm becomes longer.
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Figure 16: Average path length of fault-free path with HDN(B2, 2, S2), B2 = 3-cube

5 Concluding Remarks

In this paper we proposed two fault-tolerant routing algorithms on hierarchical dual-net. The first
algorithm can always find a fault-free path on an HDN(B, k, S) in O(2kF (B)) time with at most
d0 + k − 1 faulty nodes. We also proposed an efficient algorithm for fault-tolerant routing on an
HDN with arbitrary number of faulty nodes, and performed a simulation. The successful ratio of
finding a fault-free path is much better than that of the traditional routing algorithm. The future
work may include the node-to-set or set-to-set disjoint-path routing.
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