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Abstract

We study the scheduling of computational workflows on compute resources that experience
exponentially distributed failures. When a failure occurs, rollback and recovery is used to
resume the execution from the last checkpointed state. The scheduling problem is to minimize
the expected execution time by deciding in which order to execute the tasks in the workflow and
deciding for each task whether to checkpoint it or not after it completes. We give a polynomial-
time optimal algorithm for fork DAGs (Directed Acyclic Graphs) and show that the problem is
NP-complete with join DAGs. We also investigate the complexity of the simple case in which no
task is checkpointed. Our main result is a polynomial-time algorithm to compute the expected
execution time of a workflow, with a given task execution order and specified to-be-checkpointed
tasks. Using this algorithm as a basis, we propose several heuristics for solving the scheduling
problem. We evaluate these heuristics for representative workflow configurations.
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1 Introduction

Resilience has become a key concern when computing at large scales because enrolling more pro-
cessors in an application execution leads to more frequent application failures [1]. (In this work we
use the term “processor” in a broad sense to mean a processing elements of the platform on which
one can run a portion of a parallel application, e.g., a multi-socket multi-core blade server.) Making
each individual processor reliable, for instance via redundant hardware components, is costly. Since
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costs are highly constrained when designing a parallel platform, one must typically use commercial-
of-the-shelf (COTS) processors, the reliability of which is driven by the market. Consequently, each
processor has a Mean Time Between Failure (MTBF), say µ, that varies from a few years to a
century. When enrolling p processors to execute a tightly-coupled parallel application, a failure on
any of the processors will cause an application failure. The overall MTBF of this set of processors
is µ/p, which can be low (a few hours or less) when p is large. As a result, no matter how reliable
the individual processors, there is a value of p above which failures become common rather than
exceptional events.

The above considerations have prompted decades of research in the area of fault-tolerant com-
puting. The most well-known approach is checkpoint-rollback-recovery, by which application state
is saved to persistent storage at different points, e.g., periodically throughout execution [2, 3]. When
a failure occurs, the application execution can be resumed from the most recently saved such state,
or checkpoint. A well-studied question is that of the optimal checkpointing strategy [2, 3, 4]. Too
infrequent checkpoints lead to wasteful re-computation when a failure occurs, but too frequent
checkpoints lead to overhead during failure-free periods of the application execution. Checkpointing
can happen in a coordinated or uncoordinated manner, and the advantages and drawbacks of both
approaches are well-documented [5]. Checkpointing can be agnostic to the application, in which
case full address space images are saved as checkpoints [6, 7]. Alternately, checkpointing can be
application-aware so that only the application data truly needed to resume execution is saved. This
latter approach is more efficient because less data needs to be saved, but requires modifying the
implementation of the application [8].

In this work, we study the execution of workflow applications on platforms subject to processor
failures. An application is structured as a Directed Acyclic Graph (DAG) in which each vertex
represents a tightly-coupled parallel task and each edge represents a data dependency between tasks.
This general model is relevant for many scientific workflows [9]. The difficulty of scheduling DAGs
of parallel tasks, or applications with “mixed parallelism,” without considering processor failures,
has long been recognized [10]. It comes from the need to not only decide on a traversal of the
task graph, as in classical scheduling problems, but also to decide how many processors should be
assigned to each task. In addition, complex data redistributions must take place so that output
data from one task can serve as input data to another task when the two tasks do not use the
same number of processors. It is not clear how to model redistribution costs in practice and thus
how to make judicious scheduling and processor allocation decisions [11, 12]. Because we consider
processor failures, which makes the scheduling problem even more difficult, in this work we opt for a
simplified scenario in which each task uses all the available processors. In other words, the workflow
DAG is linearized and the tasks execute in sequence, using the whole fraction of the platform that
is dedicated to the application. This scenario is representative of a large class of compute-intensive
scientific applications whose workflow is partitioned into (typically large) tightly-coupled parallel
computational kernels. Each parallel task is executed across all available processors, and produces
output data that is kept in memory while executing its immediate successors in the DAG. Executing
each task on all processors makes it possible to avoid complex data redistributions among tasks that
use different numbers of processors [12]. While it would be possible to used checkpoint-roll-back
recovery within each task, it would require either saving large checkpoints (application-agnostic) or
modifying the implementation of the task (application-aware). Given that both approaches have
drawbacks, we assume non-modified, and thus non-fault-tolerant, implementations for the tasks.
Fault-tolerance must then be achieved by checkpointing the output data generated by each task
once it completes. If there is a failure during a task execution, one must recover from the most
recently saved checkpoints on all paths from the failed task upward to an entry task of the DAG,
re-execute non-checkpointed predecessors of the task if necessary, and then re-execute the task itself.
This is repeated until the task is successfully executed and its output possibly checkpointed.

We study the following problem. We are given a DAG of tasks and for each task we know how
long it takes to compute its output, how long it takes to checkpoint its output, and how long it takes
to recover its checkpointed output. We are given a platform with a known failure rate on which
we want to execute the application. In which order should the tasks be executed and which tasks
should be checkpointed? We call an answer to this twofold question a schedule. The objective is to
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find a schedule that minimizes expected application execution time, or expected makespan. We call
this problem DAG-ChkptSched.

To the best of our knowledge, DAG-ChkptSched has only been answered for the very specific
case in which the DAG is a linear chain [13]. For general DAGs, the problem is more difficult.
In fact, even computing the expected makespan of a given schedule is difficult. This is surprising,
because the ordering of the tasks is given by the schedule as well as the location of all checkpoints.
But when computing the expected execution time of a task, one has to account for the state of all
its predecessors, which depends upon when the last failure has occurred. In this context, we make
the following contributions:

• We show that although DAG-ChkptSched can be solved in polynomial time for fork DAGs1,
its associated decision problem is NP-complete for join DAGs2. This result shows the intrinsic
complexity of DAG-ChkptSched, but is largely expected as both the linearization of the
DAG and the location of the checkpoints must be determined.

• We study the simple instance of the problem where no task is checkpointed. We show that
optimal schedules for tree-shaped DAGs3 are depth-first schedules, but the complexity for
general DAGs remains open.

• We provide a polynomial-time algorithm for computing the expected makespan of a schedule.
This algorithm gives a fundamental basis for designing and comparing scheduling heuristics
for arbitrary DAGs.

• We propose a set of heuristics for solving DAG-ChkptSched for general DAGs and evaluate
these heuristics quantitatively. To the best of our knowledge, these heuristics are unique in
the literature since previous work lacked an algorithm to estimate the makespan of a schedule
(except when the DAG is a linear chain [13]).

The rest of this paper is organized as follows. Section 2 provides an overview of related work.
Section 3 is devoted to formally defining the problem and all model parameters. Section 4 discusses
the complexity of several instances of DAG-ChkptSched: fork DAGs (polynomial), join DAGs
(NP-hard) and no-checkpoint (open, but polynomial for tree-shaped DAGs). Section 5 provides
our key result that DAG-ChkptSched for general DAGs belongs in NP: we give a polynomial-
time algorithm to compute the expected makespan of a given schedule. Section 6 presents a set of
heuristics for solving the problem with general DAGs. These heuristics are evaluated experimentally
in Section 7. Finally, Section 8 summarizes our main findings and discusses directions for future
work.

2 Related work

Resilience to faults is one of the major issues for current and upcoming large-scale parallel platforms.
The most common fault-tolerance technique used in high performance computing is checkpoint-
rollback-recovery [6, 7, 5, 2]. A large body of work has studied periodic coordinated checkpointing
for a single divisible application. Given the simplicity of the divisible model, a wide range of results
are available including first order formulas for the checkpointing period that minimizes execution
time [2, 3] or more accurate formulas for Weibull failure distributions [14, 15, 16]. The optimal
checkpointing period is known only for exponential failure distributions [17]. Dynamic programming
heuristics for arbitrary distributions have been proposed [13, 17]. Gelenbe and Derochette [4] give a
first-order approximation of the optimal period to minimize average response time. They compare
it to the period obtained by Young [2] in a model where they do not consider one single long
application and a fully-loaded system, but instead multiple small independent applications that

1A fork DAG with n+ 1 tasks has an entry task Tentry, n exit tasks T1, . . . , Tn, and n edges from Tentry to each
Ti.

2A join DAG with n+ 1 tasks has n entry tasks T1, . . . , Tn, an exit task Texit, and n edges from each Ti to Texit.
3A tree-shaped DAG has an entry task (the root), and all other tasks have in-degree 1 (single parent).
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arrive in the system following a Poisson process. Finally, Gelenbe and Hernández [18] compute
the optimal checkpointing period that minimizes computational waste in the case of age-dependent
failures: they assume that the failure rate follows a Weibull distribution and that each checkpoint
is a renewal point.

Few authors have studied the resilience problem with workflows when checkpointing can only
take place at the end of each task. Bouguerra et al. [19] have studied a restricted version of DAG-
ChkptSched when the workflow is a linear chain (with a single processor). They propose a greedy
heuristic to minimize the total execution time in case of arbitrary failures. As already mentioned,
Toueg and Babaoglu [13] have computed the optimal execution time for a linear chain of tasks using
a dynamic programming algorithm to decide which tasks to checkpoint.

Our work is not restricted to linear chains and, as seen in upcoming sections, removing this
restriction makes the problem fundamentally more difficult. In fact, even when a schedule is given
(hence both a linearization of the DAG and a list of tasks to checkpoint), it is difficult to determine
which tasks to re-execute and from which tasks to recover after one or more failures have occurred
during application execution.

3 Framework

We consider a (subset of a) parallel platform with p processors, where each processor is a processing
element that is subject to its own individual failures. When a failure occurs a processor experiences
a downtime before it can be used again. In a production system, this downtime corresponds to
replacing the processor by a logical spare. Like most works in the literature, we simply assume that
a downtime lasts D seconds, where D is a constant. We assume that failures are i.i.d. (independent
and identically distributed) across the processors and that the failure inter-arrival time at each
processor is exponentially distributed with Mean Time Between Failures (MTBF) µproc = 1/λproc.

On the set of processors we want to execute a task-parallel application that is structured as
a DAG G = (V,E), where V is a set of vertices and E a set of edges. Each vertex is a tightly
coupled data-parallel task that is executed on all p available processors. Consequently, in all that
follows, we can view the set of processors as a single macro-processor that experiences exponentially
distributed failures with parameter λ = pλproc, i.e., with MTBF µ = µproc/p. Each edge corresponds
to a data dependencies between two tasks. Since no two tasks run simultaneously, the sequence of
executed tasks corresponds to one of the (many) linearizations of the DAG, i.e., task sequences that
respect data dependencies. The DAG has n vertices, and the task corresponding to the i-th vertex
is denoted by Ti. A failure-free execution of task Ti on the p processors takes wi seconds (the task’s
computational weight). This execution produces an output that can be checkpointed in ci seconds,
and can be recovered from a checkpoint in ri seconds. If task Ti executes successfully, then its
successor tasks in the DAG can begin execution immediately since Ti’s output data is available in
memory (distributed over the p processors). If the output of a task is saved to a checkpoint, we say
that the task is checkpointed.

T0

T1 T2

T3

T4

T5

T6

T7

Figure 1: Example DAG. Tasks whose output is checkpointed (T3 and T4) are shadowed.

Informally, when a failure strikes during the execution of a task, all data that is stored in the
processor memories is lost. Thus the output data of all tasks that have not been checkpointed are
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lost. Of course to recompute the failed task, we only need to recompute those of its ancestors that
have not been checkpointed. But we will also need to recompute all non-checkpointed tasks so as
to proceed with the execution of their successors. It is thus necessary to remember when the last
failure occured, explaining why the algorithm in Section 5, which computes the expected makespan,
is so intricate.

More precisely, if a failure strikes during the execution of Ti, then Ti must be re-executed. This
re-execution requires that the input data to Ti be available in memory. For each reverse path in the
DAG from Ti back to an entry task, one must find the most recently executed checkpointed task.
One must then recover from that checkpoint, and re-execute all the tasks that were executed after
that checkpointed task, i.e., all tasks whose output was lost and that are ancestors of Ti along the
reverse path. It may be that on such a path from Ti to an entry task no checkpointed task is found,
in which case one must begin by re-executing the entry task. An example DAG is shown in Figure 1,
for which tasks whose output is checkpointed are shadowed (T3 and T4). Consider the following
linearization of the DAG: T0T3T1T2T4T5T6T7. Let us assume that the first and only failure occurs
during the execution of T5. To re-execute T5, one needs to recover the checkpointed output of T3. To
execute T6, one then needs to recover the checkpointed output of T4 and use the output of T5 that
is now available in memory. This sequence of recoveries and re-executions must be re-attempted
until T6 executes successfully. Finally, the output of T2 was lost due to the failure, and no task is
checkpointed on the reverse path from T7 to T1. One must therefore re-execute T1, T2, and then
finally T7. This example is for a single failure occurrence and yet is not straightforward, hinting at
the complexity of the problem in the general case.

As seen in the example, the DAG can have multiple entry tasks. The entry tasks (sometimes
also referred to as sources), when restarted, do not have to recover any output from predecessors. In
practice, each entry task would read the application’s input data from disk, the overhead of which is
included in the task’s weight. The DAG can also have multiple exit tasks (sometimes also referred
to as sinks). As soon as an exit task completes, it is removed from the DAG as well as any of its
ancestors that have no remaining exit tasks as descendants. In practice, each exit task would write
the application’s output data to disk, and here again this overhead is included in the exit task’s
weight.

Executing the DAG in a fault-tolerant manner boils down to re-executing all the work that has
been lost due to a failure, restarting from the most recent checkpoints if found and re-executing
entry tasks otherwise. We enforce that the most recent checkpoint be used when recovering from a
failure. It would be conceivable to ignore the checkpoints and, for instance, always re-execute the
path completely from each entry task. This is only useful when the wi values are small and the ri
values are large. Such situations are of dubious practical interest. It makes little sense to checkpoint
a task if the time to recover the checkpoint is known to be longer than the time to re-execute that
task. If this were the case, then the task could be fused with some of its predecessors for instance.
So, in this work, when recovering from a failure, we enforce the use of the most recent checkpoints
whenever possible.

Formally, let E[t(w; c; r)] denote the expected time to execute a task that would take w seconds
in a fault-free execution and c seconds to checkpoint the output of this computation, with a recovery
time of r seconds if a failure occurs during computation or checkpointing. If failures are exponentially
distributed with mean 1/λ, and the processor downtime is D, it is shown in [17, 20] that:

E[t(w; c; r)] = eλr
(

1

λ
+D

)(
eλ(w+c) − 1

)
. (1)

We make extensive use of this notation and this result in this work. It is crucial to note that the
above formula is valid even if failures occur during checkpointing or recovery. Many works in the
literature assume that checkpointing and recovery are failure-free, an assumption that is not realistic
for large numbers of processors.

We define a schedule as a linearization of the DAG in which, for each task, it is specified whether
the task’s output should be checkpointed. The objective is to find the schedule that has the min-
imum expected makespan. Note that if λ = 0, i.e., if there are no failures, then one should do no
checkpointing and all the linearizations of the DAG are equivalent. However, in the presence of
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failures, there is the usual trade-off between spending too much time checkpointing or spending too
much time recovering and re-executing.

4 Complexity

In this section, we present several theoretical results to assess the complexity of DAG-ChkptSched.
First, in Section 4.1, we introduce a polynomial-time algorithm for fork DAGs. Then we establish
the NP-completeness of the decision problem associated to DAG-ChkptSched for join DAGs in
Section 4.2 and we exhibit particular cases that can be solved in polynomial time. We conclude this
section by discussing the problem instance where no task is checkpointed. While the complexity
of this (apparently simple) instance remains open for general DAGs, we show that for tree-shaped
DAGs any depth-first schedule is optimal (Section 4.3).

4.1 Fork DAGs

Theorem 1. DAG-ChkptSched can be solved in linear time for a fork DAG.

Proof. We consider a fork DAG with an entry task Tentry and n exit tasks T1, . . . , Tn. If Tentry is
checkpointed, then when Ti fails we recover the checkpoint and try again. If Tentry is not check-
pointed, then we re-execute Tentry but without re-executing the Ti tasks that have already completed.
The question is to decide whether or not Tentry should be checkpointed, and to decide for the ordering
of the n exit tasks.

We renumber the tasks so that task Ti is the ith task executed in the linearization. Let Xi be
the random variable that corresponds to the execution time between the end of the first successful
execution of task Ti−1 and the end of the first successful execution of task Ti. Let X0 be the random
variable that corresponds to the execution time of Tentry followed by a checkpoint. Note that the
case where Tentry is not checkpointed is equivalent to considering centry = 0, rentry = wentry. The
expected execution time of the DAG is E[

∑n
i=0Xi].

By definition, E[X0] = E[t (wentry; centry; 0)]. Furthermore, it is straightforward to see that at
the beginning of interval Xi, the output of Tentry is still available in memory (meaning that there
has been no fault between the end of the last recovery –or execution– of Tentry and the beginning of
Ti). As a result E[Xi] = E[t (wi; 0; rentry)].

The execution time of the schedule does not depend on the linearization of the tasks. This is
because, with the assumption that failures are exponentially distributed, the set of tasks that follow
the checkpoint can be executed in any order.

In conclusion, if E[t (wentry; 0; 0)]+
∑n
i=1 E[t (wi; 0;wentry)] > E[t (wentry; centry; 0)]+

∑n
i=1 E[t (wi; 0; rentry)]

then Tentry should be checkpointed, otherwise it should not.

4.2 Join DAGs

Consider a join DAG with a single exit task Texit and n entry tasks T1, . . . , Tn. We denote by ICkpt,
resp. INCkpt, the subset of {T1, . . . , Tn} composed of the tasks that are checkpointed, resp. not
checkpointed.

We first introduce Lemmas 1 and 2 which help characterize the structure of the optimal solution:

Lemma 1. In an optimal schedule, the tasks in ICkpt are executed before the tasks in INCkpt. When
a failure occurs, the recoveries from the previously executed tasks in ICkpt are executed after the last
task from ICkpt.

Lemma 2. Given the two sets ICkpt and INCkpt, we can compute the optimal expected makespan,
which is achieved by scheduling the tasks in ICkpt in non-increasing values of g(i), where

g(i) = e−λ(wi+ci+ri) + e−λri − e−λ(wi+ci).
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Proof. The order in which the tasks from INCkpt and recoveries are executed does not matter. This is
because all these must be executed consecutively without failures, followed by Texit. The probability
of a correct execution simply depends on the sum of the corresponding wi and ci, not their order.

Let us now consider the expected execution time for a given schedule order σ of the tasks
from ICkpt (meaning that in the schedule, Tσ(1) is scheduled before Tσ(2), . . . , scheduled before
Tσ(|ICkpt|)).

The time to execute a task Ti ∈ ICkpt and its checkpoint is independent of the rest of the
computation and is equal to

E[t(wi, 0; ci)] =

(
1

λ
+D

)(
eλ(wi+ci) − 1

)
.

The expected time to execute the NCkpt tasks, the recoveries, and Texit depends on when the last
failure occurred. This is because the number of recoveries to perform will differ depending on when
that failure occurred. Let us call WNCkpt =

∑
i∈INCkpt

wi + wexit; this is a constant amount of work
that needs to be done regardless of when the last fault occurred:

• If the last fault occurred during the computation of the NCkpt tasks, recoveries or exit task,
then all recoveries should be done and the expected time to execute the NCkpt tasks, the
recoveries, and Texit is:

t0 =

(
1

λ
+D

)(
e
λ
(
WNCkpt+

∑
i∈ICkpt

ri
)
− 1

)
.

• If the last fault occurred during the computation of the kth checkpointed task (event Ek), then

we first execute only the k − 1 first recoveries. With probability p
(σ)
k = e−λ(WNCkpt+

∑k−1
i=1 rσ(i))

there is no subsequent failure, otherwise there is a failure and all recoveries should be re-
executed. The expected time is thus:

t
(σ)
k = p

(σ)
k

(
WNCkpt +

k−1∑
i=1

rσ(i)

)
+
(

1− p(σ)k

)
×(

E[tlost(WNCkpt +

k−1∑
i=1

rσ(i))] +D + t0

)

=
(

1− p(σ)k

)( 1

λ
+D + t0

)
,

because E[tlost(w)] = 1/λ− w/(eλw − 1).
Finally, we have seen in Lemma 1 that a schedule proceeds in two distinct phases: first we execute

the tasks in ICkpt (with known execution time), then we execute the tasks in INCkpt, necessary
recoveries and exit task. At the end of the first phase depending on when the last fault occurred, we

are in either one of the events E1, . . . , E|ICkpt|. Precisely, with probability q
(σ)
i we are in the event

Ei, where {
q
(σ)
1 = e−λ

∑|ICkpt|
j=2 (wσ(j)+cσ(j)) ,

q
(σ)
i6=1 =

(
1− e−λ(wσ(i)+cσ(i))

)
e−λ

∑|ICkpt|
j=i+1 (wσ(j)+cσ(j)) .

Finally, the expected execution of the second phase is
∑|ICkpt|
i=1 q

(σ)
i t

(σ)
i , and the total expected exe-

cution time is:

tσ =
∑

i∈ICkpt

(
1

λ
+D

)(
eλ(wi+ci)

)
+

|ICkpt|∑
i=1

q
(σ)
i

(
1− p(σ)i

)( 1

λ
+D + t0

)

tσ =

(
1

λ
+D

) ∑
i∈ICkpt

(
eλ(wi+ci)

)
+ e

λ
(
WNCkpt+

∑
i∈ICkpt

ri
) |ICkpt|∑

i=1

q
(σ)
i

(
1− p(σ)i

) . (2)
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Now that we have computed the expected execution time for a given order, let us focus on
finding the optimal order: for a given schedule σ of the tasks in ICkpt, let us compare its
execution time to the same schedule where Tσ(i) and Tσ(i+1) are permuted (φ such that φ(i) = σ(i+1),

φ(i+ 1) = σ(i) and φ(j) = σ(j) for all other j). One can notice that for j 6= i, i+ 1, then q
(σ)
j = q

(φ)
j

and t
(σ)
j = t

(φ)
j . Therefore:

tσ − tφ
1
λ +D + t0

= q
(σ)
i

(
1− p(σ)i

)
− q(φ)i

(
1− p(φ)i

)
+ q

(σ)
i+1

(
1− p(σ)i+1

)
− q(φ)i+1

(
1− p(φ)i+1

)
.

Let us first consider the case where i 6= 1. For convenience we define R =
∑i−1
j=1 rσ(j) and W =∑|ICkpt|

j=i+2(wσ(j) + cσ(j)) (W = 0 when i+ 1 = |ICkpt|). Then:

tσ − tφ
1
λ +D + t0

=
(

1− e−λ(wσ(i)+cσ(i))
)
e−λ(W+wσ(i+1)+cσ(i+1))

(
1− e−λ(WNCkpt+R)

)
−
(

1− e−λ(wσ(i+1)+cσ(i+1))
)
e−λ(W+wσ(i)+cσ(i))

(
1− e−λ(WNCkpt+R)

)
+
(

1− e−λ(wσ(i+1)+cσ(i+1))
)
e−λW

(
1− e−λ(WNCkpt+R+rσ(i))

)
−
(

1− e−λ(wσ(i)+cσ(i))
)
e−λW

(
1− e−λ(WNCkpt+R+rσ(i+1))

)
,

eλW (tσ − tφ)
1
λ +D + t0

=
(
e−λ(wσ(i+1)+cσ(i+1)) − e−λ(wσ(i)+cσ(i))

)(
1− e−λ(WNCkpt+R)

)
+
(
e−λrσ(i+1) − e−λrσ(i)

)
e−λ(WNCkpt+R)

−
(
e−λ(wσ(i+1)+cσ(i+1)) − e−λ(wσ(i)+cσ(i))

)
+
(
e−λ(rσ(i+1)+wσ(i+1)+cσ(i+1)) − e−λ(rσ(i)+wσ(i)+cσ(i))

)
e−λ(WNCkpt+R)

= e−λ(WNCkpt+R) (g(σ(i+ 1))− g(σ(i))) ,

where g : i 7→ e−λ(wi+ci+ri) + e−λri − e−λ(wi+ci). In the case when i = 1, similarly we obtain:

tσ − tφ
1
λ +D + t0

= e−λ(W+wσ(i+1)+cσ(i+1))
(

1− e−λ(WNCkpt+R)
)

− e−λ(W+wσ(i)+cσ(i))
(

1− e−λ(WNCkpt+R)
)

+
(

1− e−λ(wσ(i+1)+cσ(i+1))
)
e−λW

(
1− e−λ(WNCkpt+R+rσ(i))

)
−
(

1− e−λ(wσ(i)+cσ(i))
)
e−λW

(
1− e−λ(WNCkpt+R+rσ(i+1))

)
,

eλW (tσ − tφ)
1
λ +D + t0

= e−λ(WNCkpt+R) (g(σ(i+ 1))− g(σ(i))) .

We conclude that in the optimal schedule, the set of tasks in ICkpt should be sorted by non-increasing
g values.

The first consequence of Lemmas 1 and 2 is that given the two sets ICkpt and INCkpt, we can
construct the optimal solution in polynomial time. Furthermore, from Lemma 2 and Equation (2)
we have:

Corollary 1. When ri = 0 for all i, task ordering does not matter. The optimal expected execution
time is then: (

1

λ
+D

) ∑
i∈ICkpt

(
eλ(wi+ci)−1

)
+
(
e
λ(
∑
i∈INCkpt

wi+wexit)−1
) . (3)

9
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Theorem 2. DAG-ChkptSched for join DAGs is NP-complete.

Proof. Consider the associated decision problem: given a join DAG, λ, and a bound on the expected
execution time, can we find the sets ICkpt and INCkpt, and the order in which the tasks are executed
such that the bound on the expected execution time is respected? The problem is clearly in NP: we
have shown in Lemma 2 that given the sets ICkpt and INCkpt we can compute the expected execution
time in polynomial time (via an analytical formula).

To establish the NP-completeness, we use a reduction from SUBSET-SUM [21]. Let I1 be an
instance of SUBSET-SUM: given n strictly positive integers w1, . . . , wn, and a positive integer X,
does there exist a subset I of {1, . . . , n} such that

∑
i∈I wi = X? Let S =

∑n
i=1 wi.

We build the following instance I2 of our problem. We have a join DAG with n entry tasks
T1, . . . , Tn and an exit task Texit with wexit = 0 and, for all tasks Ti, i = 1..n,

wi = wi ,

ci = (X − wi) + 1
λ log

(
λwi + e−λX

)
,

ri = 0 .

We assume that λ ≥ 1
mini wi

, so that for all i, ci > 0. Finally, we assume that the bound on the

expected execution time is: tmin = λeλX (S −X) + eλX − 1.
Let us show that I2 has a solution (ICkpt, INCkpt) if and only if we can find a set of tasks INCkpt

such that
∑
i∈INCkpt

wi = X. We will thus have shown that I2 has a solution if and only if I1 has
one, the set INCkpt from I2 being the set I from I1 if such a set exists.

Let us call W =
∑
i∈INCkpt

wi. We have seen in Equation (3) that the expected execution time is:

E[T ]=
∑

i∈ICkpt

(
eλ(wi+ci) − 1

)
+
(
e
λ(
∑
i∈INCkpt

wi+wexit)−1
)

=
∑

i∈ICkpt

λeλXwi +
(
eλW − 1

)
= λeλX (S −W ) + eλW − 1 .

We can differentiate E[T ] with respect to W : E[t(W )]′ = −λeλX+λeλW . This function is increasing,
and equal to 0 when W = X. Therefore E[T ] is minimum when W = X, and its value is exactly
tmin. We conclude that (ICkpt, INCkpt) is a solution to I2 if and only if

∑
i∈INCkpt

wi = X, which
concludes the proof.

4.3 Without checkpoints

In this section, we investigate the simple instance of the problem where no task is checkpointed.
Given a DAG, the problem then reduces to finding the optimal linearization. We start with a few
examples to show that this problem is not as simple as it appears at first sight.

Consider the trivial DAG in Figure 2. There are three tasks T1, T2, T3 and a unique dependency
edge from T1 to T3. Once T3 has been successfully completed, we can remove tasks T1 and T3
from the DAG, hence the linearization (T1, T3, T2) is optimal while (T1, T2, T3) is not. Of course the
linearization (T2, T1, T3) is optimal too. This small example gives us some intuition to the design of
efficient schedules:

1. Choose an output task T (a task without any successor in the DAG), execute all predecessors
of T in sequence, and then T itself.

2. Repeat the above step until T is successfully completed.
3. Prune the DAG by removing T , and possibly other tasks that have become output tasks.
4. Repeat.
Consider now the bipartite DAG in Figure 3. There are 3 input tasks, and 3 output tasks. It is

not clear which output task to select and execute first, because each output task has a predecessor
set (of size two) which is intersecting that of another output task. The problem of finding the best

10
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T1

T2

T3

Figure 2: First example with a single dependency edge.

T1

T2

T3

T4

T5

T6

Figure 3: Second example with a bipartite DAG.

linearization seems of a combinatorial nature. We have not been able to determine its complexity
but we conjecture that this problem is NP-complete, even for bipartite DAGs.

Although the complexity of the problem remains open, we expect depth-first linearizations to
be more efficient than other traversals such as breadth-first ones. To further support this intuitive
claim, we show that for tree-shaped DAGs4 any depth-first traversal of the DAG leads to an optimal
linearization. Note that we assess the efficiency of depth-first traversals for general DAGs empirically
in Section 7.

Theorem 3. When no task is checkpointed, a linearization for DAG-ChkptSched on a tree-shaped
DAG is optimal if and only if it is a depth-first traversal.

Algorithm 1 Depth-First Traversal on a tree

1: procedure Pre-order(T )
2: Execute the root element (or current element)
3: for x child of T do
4: Let Tree(x) be the subtree of T rooted in x
5: Traverse Tree(x) by recursively calling Pre-order.
6: end for
7: end procedure

Proof. We begin by giving a characterization of a depth-first traversal (DFT) on a tree. The lin-
earization of a tree by a schedule σ is a DFT if any subtree that started being executed is finished
before the algorithm starts the execution of a node not contained in this subtree. Obviously, because
of data dependencies, any DFT is a pre-order traversal.

Let G = (V,E) be a tree of n tasks, rooted in T1, and let σ be a traversal of G (without any
checkpoint). Let Eσ be the expected execution time of the traversal σ. If Ti is executed in the
j = σ−1(i)th position, then we define Xi as the random variable that corresponds to the execution
time between the end of the first successful execution of task Tσ(j−1) (the predecessor of Ti in the
schedule σ) and the end of the first successful execution of Ti. Intuitively, Xi is the time necessary
to execute Ti in the schedule.

We have Eσ = E[
∑n
i=1Xσ(i)]. Indeed, the time elapsed between the beginning of the execution

and the end of the first execution of the first task is Xσ(1), then the time elapsed between the end

4We deal with out-trees here. For in-trees, the problem is trivial since all linearizations are optimal: either all
tasks (including the root task) are successfully executed, or the schedule must restart from scratch.

11
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of the first execution of the (i− 1)th task and the time between the end of the first execution of the
ith task is Xσ(i). Overall the Xσ(i)s do not overlap and cover the whole execution. Hence we have:
Eσ = E[

∑n
i=1Xi] =

∑n
i=1 E[Xi] by linearity of the expectation.

For any task Ti, we give a lower bound to E[Xi]: it is minimized when all necessary data is
stored in memory, and when the amount of work to execute is only wi if there are no failure, and∑
j∈ancestors(i) wj if a failure occurred. Hence,

E[Xi] ≥ E[t

wi; 0;
∑

j∈ancestors(i)

wj

] .

Finally, because we are considering an execution without any checkpoint, then at the end of a
successful execution of a given task Ti, necessarily all its ancestors are alive (with output stored in
memory) and do not have to be recomputed were we execute one of their successors. Let us now
prove the result.

Assume the linearization strategy σ is a DFT. In this case, we show that for all i

E[Xi] = E[t

wi; 0;
∑

j∈ancestors(i)

wj

].

Note first that in any linearization strategy, σ(1) = 1: the root of the tree is executed first
because of precedence constraints, and E[X1] = E[t (w1; 0; 0)]. Consider Ti0 a task with i0 6= 1. Let
j0 be its rank in the execution: σ(j0) = i0. Then consider i1, the direct predecessor of i0 in the tree
DAG, and let j1 be its rank in the execution: σ(j1) = i1. By definition of the precedence graph,
necessarily, j1 < j0: the first execution of Ti1 is necessarily anterior to the first execution of Ti0 .

By definition of a DFT, any task executed between j1 and j0 belongs to the subtree rooted in
Ti1 , Tree(Ti1). Then in particular, Tσ(i0−1) is a successor of Ti1 , and at the end of its execution,
all the tasks on the path from T1 to Ti1 are alive (with output stored in memory). Then, E[Xi0 ] =

E[t
(
wi0 ; 0;

∑
j∈ancestors(i0) wj

)
].

As a result, the execution time of the schedule is:

Eσ =

n∑
i=1

E[t

wi; 0;
∑

j∈ancestors(i)

wj

] ,

which matches the lower bound for each task, hence showing the optimality of the schedule.

Assume the linearization strategy is not a DFT. In this case, according to the characteri-
zation of a DFT, there exists a subtree Tree(Ti0), not reduced to a single node Ti0 , such that:

• the root of the subtree was executed at position j0 = σ−1(i0),
• there exist jout < jin such that Tσ(jout) /∈ Tree(Ti0) and Tσ(jin) ∈ Tree(Ti0).

Intuitively, the task Tσ(jout) is executed in the middle of the tree rooted in Ti0 . Let Ti1 the first
successor of Ti0 executed in the schedule after Tσ(jout), and let j1 = σ−1(i1). Clearly, jout < j1 ≤ jin
and Tσ(j1−1) /∈ Tree(i0).

Hence with probability at least p1 = 1−e−λwσ(j1−1) , there is a failure during Xσ(j1−1) (the amount
of work to do during Xσ(j1−1) is at least wσ(j1−1)), in which case at the beginning of Xi1 , there is
at least wi0 +wi1 units of work to do (Ti0 would not have been recomputed during Xσ(j1−1)). Note
that this is independent of anything that happened in the past and only depends on the schedule,
potentially p1 is greater than this value, and the amount of work that needs to be recomputed is

12
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also greater than this value. This shows that

E[Xi1 ] ≥ (1− p1)E[t

wi1 ; 0;
∑

j∈ancestors(i1)

wj

] + p1E[t

wi0 + wi1 ; 0;
∑

j∈ancestors(i1)

wj

]

> E[t

wi1 ; 0;
∑

j∈ancestors(i1)

wj

] .

Finally, we obtain that:

Eσ >

n∑
i=1

E[t

wi; 0;
∑

j∈ancestors(i)

wj

] ,

and the schedule is not optimal (any DFT schedule has a lower expected execution time).

5 Evaluating a schedule for a general DAG

In this section, we consider a general DAG and a given schedule that specifies both a linearization of
the DAG and which tasks are checkpointed. Our main contribution is to provide a polynomial-time
algorithm to compute the expected execution time of the DAG with this schedule. For simplicity,
we renumber the tasks so that task Ti is the ith task executed in the linearization of the DAG.

Theorem 4. Given a DAG, and a schedule for this DAG, it is possible to compute the expected
execution time in polynomial time.

Proof. Let Xi be the random variable that corresponds to the execution time between the end of
the first successful execution of task Ti−1 and the end of the first successful execution of task Ti.
The expected execution time of the DAG is E[

∑n
i=1Xi]. Let F (Xi) be the event “There was a fault

during Xi.” Let Zik be the event “There was a fault during Xk and no fault during Xk+1 to Xi−1,
given that Ti−1 was successfully executed.” We have:

Zik =

i−1⋂
j=k+1

F (Xj)
⋂
F (Xk) (4)

(for the limit cases, Zii−1 = F (Xi−1) and Zi0 =
⋂i−1
j=1 F (Xj)). The set of events Zik for 0 ≤ k ≤ i− 1

partitions the set of possibilities for Xi. Hence we can write

E[Xi] =

i−1∑
k=0

P(Zik)E[Xi|Zik]. (5)

We now need to show how to compute the P(Zik) and E[Xi|Zik].

Definition 1 (T ↓ki ). Given a schedule, let j < k ≤ i, then we say that Tj ∈ T ↓ki , if for all k ≤ l < i,

Tj /∈ T ↓kl , and

(i) either Tj is a direct predecessor of Ti,

(ii) or there exists Tl ∈ T ↓ki such that Tl not checkpointed and Tj is a direct predecessor of Tl.

Less formally, the set T ↓ki corresponds to all the predecessors of Ti (in the DAG), whose output
is lost if the event Zik occurs and needed for the computation of Ti. For instance, it is not lost
if it has been recomputed for another task executed after the last fault (that occurred during the
computation of Tk) but still before Ti. Furthermore, it is not needed if for all paths between Tj

13
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T0

T2 T3

T4

T6

T7

T1

T5

T4 ∈ T↓56 R6
5 = r4

T1, T5, T2, T3 /∈ T↓56

T2, T3 ∈ T↓57 W 7
5 = w2 + w3

Time

w0 w1 c1 w2 w3 w4 c4 r1 w5

Figure 4: Consider the DAG in Figure 1. For clarity tasks are renumbered according to their
execution order in a given linearization for the DAG. The output of T1 and T4 are checkpointed.
Assume that a single fault occurs, and that it occurs during the execution of T5. Then when the
execution of T6 begins, the output of T1 and T5 are already in memory, due to the re-execution of
T5, and do not need to be recomputed. However the output of T4 needs to be recovered. Hence
T4 ∈ T ↓56 . However, because it was checkpointed, we do not need to recover T2 and T3. Then, when

computing T7, the output of T3 is needed, hence T3 ∈ T ↓57 . To compute T3, we further need T2.

Hence T2 ∈ T ↓57 .

and Ti, there is a task whose output is not lost. If Tj ∈ T ↓ki was not checkpointed, then we need
to execute its work wj again, otherwise we need to execute the recovery rj . We give an illustrative
example in Figure 4

Computing all sets T ↓ki is the key to evaluating the schedule makespan.

Let W i
k be the sum of the wj such that (i) Tj is a non-checkpointed task and (ii) Tj ∈ T ↓ki .

Similarly, let Rik be the sum of the rj such that (i) Tj is a checkpointed task and (ii) Tj ∈ T ↓ki . We
now show the following three properties:

A. ∀k, 0 ≤ k < i− 1,

P(Zik) = e−λ
∑i−1
j=k+1(W

j
k+R

j
k+wj+δjcj) · P(Zk+1

k ),

where δj is 0 if Tj is not checkpointed, 1 otherwise.

B. ∀i ≥ 1,P(Zii−1) = 1−
∑i−2
k=0 P(Zik).

C. ∀k, 0 ≤ k < i,
E[Xi|Zik]=E[t

(
W i
k+Rik+wi; δici;W

i
i +Rii−

(
W i
k+Rik

))
],

where δi is 0 if Ti is not checkpointed, 1 otherwise.

Computing P(Zik) for 0 ≤ k < i− 1. Let Y ik be the event “There is no fault during Xk+1 to Xi−1
given that there was a fault during Xk.” We have:

Y ik = {
i−1⋂

j=k+1

F (Xj)|F (Xk)}.

Then by definition, P(Zik) = P(Y ik )·P(F (Xk)|Ti−1 is successfully executed). Then we derive P(Y ik ) =

e−λ
∑i−1
j=k+1(W

j
k+R

j
k+wj+δjcj). This is because we need to execute

∑i−1
j=k+1

(
W j
k +Rjk + wj + δjcj

)
consecutive units of work without fault by definition of the W i

k and Rik. Also, P(F (Xk)|Ti−1
is successfully executed) = P(F (Xk)), as the probability of a fault during Xk is independent of
the execution of Ti−1 since i − 1 > k. Finally, one can see that P(F (Xk)) = P(Zk+1

k ) by definition

of Zk+1
k .

Computing P(Zii−1) for i ≥ 1. We have seen that the Zik for 0 ≤ k ≤ i − 1 partition the set of

possibilities. Hence, by definition,
∑i−1
k=0 P(Zik) = 1. We derive the value of P(Zii−1) from the i− 2

other values.

14
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Computing E[Xi|Zik] for 0 ≤ k < i. To compute E[Xi|Zik], it suffices to see that we need to
execute a work of W i

k + Rik + wi with a checkpoint δici. Then, if there is a fault, the recovery cost
is W i

i + Rii for a work of wi, which is identical to having a recovery cost of W i
i + Rii −

(
W i
k +Rik

)
for a work of W i

k +Rik + wi. Hence, using the notation of Equation (1), we obtain that:

E[Xi|Zik] = E[t
(
W i
k +Rik + wi; δici;W

i
i +Rii −

(
W i
k +Rik

))
]

To conclude the proof, we need to show that we can compute the W i
k and Rik values.

Lemma 3. FindWikRik (Algorithm 2) computes W i
k and Rik in polynomial time for all i ≥ k.

Proof. We consider the following invariant Hi
k for FindWikRik:

(Hi
k): At the end of the iteration i of the “for” loop (line 4), for all (j, i′) such that j < k ≤ i′ <

i+ 1, then
• if Tj ∈ T ↓ki′ , then

– tabk.(i
′).(j) ∈ {1, 2} (1 if Tj is not checkpointed, 2 otherwise),

– for i′′ > i′, tabk.(i
′′).(j) = 0 (0 means Tj /∈ T ↓ki′′ because Tj ∈ T ↓ki′ ),

• else,
– if there exists l < i′, and Tj ∈ T ↓kl , then tabk.(i

′).(j) = 0,
– else tabk.(i

′).(j) = −1.

For all (j, l) such that l > i > j, and Tj ∈ T ↓kl , then tabk.(l).(j) = −1.
To establish the invariant, we first introduce the following definition:

Definition 2 (path of Tj in T ↓ki ). Let Tj ∈ T ↓ki , then Tj = Tp0 , Tp1 , . . . , Tpl = Ti is a path of Tj in

T ↓ki of length l, if

(i) l = 1, or

(ii) Tp1 ∈ T
↓k
i , Tp1 is not checkpointed and Tp1 , . . . , Tpl = Ti is a path of Tp1 in T ↓ki of length l−1.

We define the distance l
(i,k)
j of Tj in T ↓ki as the minimal length of a path of Tj in T ↓ki .

Here are some preliminary remarks before starting the proof:

• Once a value of tabk is set, it is never modified by Traverse (the switch on line 19).

• If tabk.(i
′).(j) ∈ {1, 2}, then for all i′′ > i′, tabk.(i

′′).(j) = 0. Indeed, tabk.(i
′).(j) is only set

to 1 or 2 in the switch line 19, and when it is the first step of this switch (line 25) is to set
tabk.(i

′′).(j) to 0 for all i′′ > i′.

• The only calls Traverse (j, i, k, tabk) are for j = i or Tj ∈ T ↓ki and Tj not checkpointed.

Hence for Tj′ ∈Pred(Tj), either Tj′ ∈ T ↓ki or ∃l < i, Tj′ ∈ T ↓kl . This shows that for all (j, l)

such that l > i > j, and Tj ∈ T ↓kl , then tabk.(l).(j) = −1 since we will never visit such a node
during iteration i of the “for” loop.

We are now ready to prove the invariant by induction. Let us show that Hi
k holds for i ≥ k.

Let us show Hk
k . At the beginning of the “for” iteration (line 4), for i = k, tabk.(k).(j) = −1.

We show that Hk
k holds for all tasks in T ↓kk (the case for tasks not in T ↓kk is trivial), and do this by

induction on their distance (as defined in Definition 2) in T ↓kk .

First, we verify that for all predecessors Tj of Tk whose distance is 1 in T ↓kk , the call Traverse

(k, k, k, tabk) checks whether Tj ∈ T ↓kk (answer, yes) and has not been studied (the switch on line 19).
If it is the case, then it assigns 1 or 2 to tabk.(k).(j), and then calls Traverse (j, k, k, tabk) if and
only if Tj is not checkpointed. Then there is a call Traverse (j, k, k, tabk) for all not-checkpointed

elements of T ↓kk whose distance is 1 in T ↓kk .

Let us now assume Hk
k holds for all Tj ∈ T ↓kk such that l

(i,k)
j = l. Let us show the result for all

Tj′ ∈ T ↓kk such that l
(i,k)
j′ = l+ 1. Let Tj′ , Tp1 , . . . , Tpl = Tk path of Tj′ in T ↓kk of length l+ 1. Then

when Tp1 was studied, by hypothesis because it is not checkpointed, there was a call Traverse
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(p1, k, k, tabk). Because Tj′ is a direct predecessor of Tp1 , then either its value in tabk was already
set to 1 or 2 through another path or it was set to −1 and this call has set it up to 1 or 2. By
induction we obtain Hk

k .

Assuming ∀k ≤ i′ < i,Hi′

k , let us show Hi
k. First note that Hi−1

k gives us (i) if there exists l < i′,

and Tj ∈ T ↓kl , then tabk.(i
′).(j) = 0, and (ii) ∀j, Tj ∈ T ↓ki , then at the beginning of iteration i,

tabk.(i).(j) = −1. Furthermore, with the preliminary remark, to show Hi
k, we simply need to show

that for all j < k,

• if Tj ∈ T ↓ki , then tabk.(i).(j) ∈ {1, 2} (1 if Tj is not checkpointed, 2 otherwise),

• else, if for all l < i, Tj /∈ T ↓kl , then tabk.(i).(j) = −1.

The proof can be done by induction and is similar to Hk
k . The first call Traverse (i, i, k, tabk)

makes sure that this is true for all predecessors Tj of Ti whose distance is 1 in T ↓ki (the only reason

why a predecessor Tj of Ti would not be in T ↓ki is if ∃l < i, Tj ∈ T ↓kl , and in that case by induction
hypothesis, tabk.(i).(j) = 0). Then there is a call to Traverse only for the predecessor tasks

Tj ∈ T ↓ki that are not checkpointed.
Finally, Hn

k gives the correctness of Algorithm 2, whose complexity is O(n3).

Altogether, Algorithm 2 is invoked for each task, and the complexity of the whole evaluation
method is O(n4).

Because we can compute the expected makespan of a schedule, a schedule of a DAG is a sufficient
certificate to verify whether the expected makespan is below a certain threshold. Hence we have
derived the following result:

Corollary 2. The decision problem associated to DAG-ChkptSched is in NP for general DAGs
(and is NP-complete by Theorem 2).

6 Heuristics for general DAGs

In this section, we develop polynomial-time heuristics in the case of general DAGs. A heuristic that
computes a schedule for a given instance of DAG-ChkptSched must answer two questions: (i) how
should the DAG be linearized? and (ii) which tasks should be checkpointed? To answer the first
question, we consider three possible linearization strategies: Depth First (DF), Breadth First (BF),
and Random First (RF). For DF and BF, we prioritize the tasks by decreasing outweight (i.e., the
sum of the weights of the task’s successors). The rationale is that tasks that have “heavy” subtrees
should be executed first.

To answer the second question, we propose four checkpointing strategies. The first and second
strategies are baseline comparators, and correspond to either never checkpointing (CkptNvr) or
always checkpointing (CkptAlws). For both these strategies, we only consider the DF linearization.
A DF linearization makes sense when no checkpoints are taken because one should make progress
toward exit tasks aggressively rather than pursuing multiple exit tasks simultaneously (which is risky
in the presence of failures). The choice of the DAG linearization is inconsequential when all tasks
are checkpointed.

The third and fourth strategies fix the total number of checkpoints taken throughout application
execution, say N , and checkpoint N tasks based on some criteria. Then they do an exhaustive
search for the N value, N = 1, . . . , n − 1 (recall that n is the number of tasks), that achieves the
lowest expected makespan, which is computed in polynomial time as explained in Section 5.

In the third strategy, tasks are sorted by decreasing wi (checkpoint first the tasks whose computa-
tions are the longest), by increasing ci (checkpoint first the tasks whose checkpointing overheads are
the shortest), or by decreasing di, the sum of the weights of the successors (checkpoint first the tasks
whose successors are more likely to fail). The top N tasks taken in these orders are checkpointed.
We name the three versions of this strategy CkptW, CkptC, CkptD.
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Algorithm 2 FindWikRik

1: procedure FindWikRik(k)
2: tabk: n× n array initialized with -1
3: Wk, Rk: n arrays initialized with 0
4: for i = k . . . n do
5: tabk =Traverse (i, i, k, tabk)
6: for j = 1 . . . k − 1 do
7: switch tabk.(i).(j) do
8: case 1
9: Wk.(i)←Wk.(i) + wj

10: case 2
11: Rk.(i)← Rk.(i) + rj

12: end for
13: end for
14: Return Wk,Rk
15: end procedure
16:

17: procedure Traverse(l, i, k, tabk)
18: for Tj ∈ Pred(Tl) do
19: switch tabk.(i).(j) do
20: case 0 . ∃i′ < i, Tj ∈ T ↓k

i′

21: Do nothing

22: case 1,2 . Tj ∈ T ↓k
i , already studied

23: Do nothing

24: case -1 . Tj ∈ T ↓k
i , not yet studied

25: for r = i+ 1 . . . n do
26: tabk.(r).(j)←0 . Tj ∈T ↓k

i =⇒Tj /∈T ↓k
r

27: end for
28: if j < k then
29: if Tj is checkpointed then
30: tabk.(i).(j)← 2
31: else
32: tabk.(i).(j)← 1
33: tabk =Traverse (j, i, k, tabk)
34: end if
35: else
36: tabk.(i).(j)← 0
37: end if
38: end for
39: Return tabk
40: end procedure
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The fourth strategy, CkptPer, relies on the idea of periodic checkpointing [2, 3]. Given a
linearization of the DAG, consider a failure-free execution. If W is the sum of the wi values over
all tasks, CkptPer checkpoints the task that completes the earliest after time x ×W/N for x =
1, . . . , N − 1. While periodic checkpointing is a typical approach for data-parallel computation, it
does not account for the structure of the DAG.

Heuristic names are concatenations of the name of the linearization strategy and of the check-
pointing strategy (e.g., RF-CkptC). Combining the three linearization strategies (DF, BF, RF)
and the checkpointing strategies, we have a total of 14 heuristics.

Unfortunately, there are no heuristics in the literature to which we can compare the above
heuristics. This is because no method to evaluate the expected makespan of a schedule was available
before this work, thus precluding the design (and the straightforward evaluation) of reasonable
heuristics.

7 Experimental evaluation

In this section, we present experimental results that quantify the performance of the heuristics in
Section 6. The source-code (implemented in OCaml) and all input and output data are publicly
available at [22].

7.1 Experimental methodology

To evaluate the heuristics with representative DAGs, we use the Pegasus Workflow Generator
(PWG) [9, 23]. PWG uses the information gathered from actual executions of scientific workflows
as well as domain-specific knowledge of these workflows to generate representative and realistic
synthetic workflows. We consider four different workflows generated by PWG (information on the
corresponding scientific applications is available in [23, 24]):
• Montage: The NASA/IPAC Montage application stitches together multiple input images to

create custom mosaics of the sky. The average weight of a Montage task is 10s.
Structurally, Montage is a three-level graph [25]. The first level (reprojection of input im-
age) consists of a bipartite directed graph. The second level (background rectification) is a
bottleneck that consists in a join followed by a fork. Then the third level (co addition to form
the final mosaic) is simply a join.

• Ligo: LIGO’s Inspiral Analysis workflow is used to generate and analyze gravitational wave-
forms from data collected during the coalescing of compact binary systems. The average weight
of a Ligo task is 220s.
Structurally, Ligo can be seen as a succession of Fork-Joins super tasks, that contain them-
selves either fork-join graphs or bipartite graphs (see the LIGO IHOPE workflow on [23]).

• CyberShake: The CyberShake workflow is used by the Southern California Earthquake
Center to characterize regional earthquake hazards. The average weight of a CyberShake
task is 25s.
Structurally, CyberShake is harder to categorize than the other graphs. It’s first part is less
structured, but end with many parellel linear chains (see the CyberShake workflow on [23]).

• Genome: The epigenomics workflow created by the USC Epigenome Center and the Pegasus
team automates various operations in genome sequence processing. The average weight of a
Genome task depends on the number of tasks and is greater than 1000s.
Structurally, Genome starts with many parallel fork-join graphs, whose exit tasks are then
both joined into an new exit task and generate new fork graphs (see the Epigenomics workflow
on [23]).

In all experiments, ci = ri (checkpoint and recovery costs are identical for a task) and D = 0
(downtime is zero seconds). We focus mainly on the particular case where ci = 0.1wi, and for a
MTBF of 103s (except for Genome where the average weight of each task is significantly longer
than for other DAGs, in which case we consider a MTBF of 104s). We vary the number of tasks
in each workflow from 50 to 700. Unless stated otherwise, the figures show the number of tasks
on the horizontal axis and the ratio of the expected execution time (T ) over the execution time of

18



International Journal of Networking and Computing

a failure-free, checkpoint-free execution (Tinf) on the vertical axis (lower values are better). The
expected execution time T is computed using the method described in Section 5.

7.2 Results

We find that our results strongly depend on the structure of the DAG, meaning that the relative
performance of the heuristics vary between each workflow type. Consequently, we do not show
results aggregated over all workflows. The goal of our experiments is to determine for each workflow
(i) which DAG linearization strategy is best, and (ii) which checkpointing strategy is best, hoping
to identify strategies that work well across different workflows.

BF DF RF
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(a) CyberShake: λ = 0.001, ci = 0.1wi.
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(b) Ligo: λ = 0.001, ci = 0.1wi.
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(c) Genome: λ = 0.0001, ci = 0.1wi.

Figure 5: Impact of the linearization strategy.

Linearization strategies – Figure 5 shows results for the CyberShake, Ligo, and Genome work-
flows for two checkpointing strategies, CkptW and CkptC, and for all three linearization strategies.
CkptW and CkptC are the best checkpointing strategies in our results (see the discussion of the
results in Figure 6 hereafter). Figure 5 does not show results for the Montage workflow. For this
workload, the choice of the linearization strategy has almost no impact on the results (at most a 1%
relative difference). Overall, the DF linearization is almost always the best. This makes sense as
this strategy stipulates that if some work that depends on the most recently completed work can be
done, then it should be done. Otherwise, by following a different branch of the workflow, one risks
losing that recent work and having to do it again (or recover it). The only case where DF is not the
best linearization approach is for the Montage DAG and the CkptPer heuristic (see Figure 6a).
We have no explanation but since CkptPer is the worst checkpointing strategy for that workflow,
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this result is not particularly relevant. Finally, it is interesting to see in Figure 5b that, for the
Ligo workflow, RF performs better than BF. This is because RF sometimes can be close to a DF
strategy.
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(a) Montage: λ = 0.001, ci = 0.1wi.
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(b) Ligo: λ = 0.001, ci = 0.1wi.
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(c) CyberShake: λ = 0.001, ci = 0.1wi.
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(d) Genome: λ = 0.0001, ci = 0.1wi.

Figure 6: Impact of the checkpointing strategy. For each checkpointing strategy, we plot the best
linearization strategy.

Checkpointing strategies – Figure 6 shows results for all four workflows. For each checkpointing
strategy, we only show results for the linearization strategy that leads to the best results (the
line symbols indicate which linearization strategy is used). First, we note that our checkpointing
heuristics always perform better than the two baseline comparators, CkptNvr and CkptAlws.
Second, an interesting (but expected) result is that CkptPer does not behave well, and sometimes
even worse than CkptNvr or CkptAlws. The CkptPer approach was specifically designed in
the literature for divisible applications. As such, it does not account for the structure of the DAG.
This causes it to make poor checkpointing choices. For instance, consider the example workload in
Figure 1 with the linearization T0, T3, T1, T2, etc. It makes sense to checkpoint T3 before executing
T1, which is an entry task. But CkptPer may checkpoint T1 instead because w0 + w3 + w1

happens to correspond to the chosen checkpointing period. The main result from Figure 6 is that
two checkpointing strategies outperform the other strategies: CkptW (for Montage, Ligo and
Genome) and CkptC (for CyberShake). These two heuristics behave very differently because
we have ci = 0.1wi. CkptW checkpoints the tasks by decreasing weight (hence by decreasing
checkpointing time since it is proportional to the weight of the tasks), while CkptC checkpoints the
tasks by increasing checkpointing time (hence increasing weight). The good performance of both
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heuristics in different scenarios can be explained intuitively. After finishing a long/large task, it is
useful to checkpoint it as quickly as possible in case a failure occurs soon (which is what CkptW
does). Conversely, checkpointing a short/small task (which may be the successor of a long task) is
also useful because its checkpointing time is low (which is what CkptC does).

Examining the structure of the DAGs helps understanding the results. Indeed, Montage, Ligo
and Genome are all very parallel task graphs composed of successive fork and joins. Intuitively,
while this is not necessarily the optimal strategy, it makes sense to checkpoint the large tasks first
when considering a join: indeed, when executed, the entry tasks of a join are put on hold while the
remaining are executed, which may increase the likeliness that a failure occurs. Hence checkpointing
the large tasks first may be a good strategy. On the contrary, Montage is the only DAG that does
not consist in successive fork-joins, but instead comprises linear chains. When executing a linear
chain, it can make sense to save only the smallest output data. In particular, when the checkpointing
time depends on the size of the task, if a big task is followed by a smaller task, then it might be
cheaper to execute and checkpoint the smallest task than to checkpoint the bigger task. This could
explain the fact that CkptC performs well for Montage. In summary, a good strategy should
be workflow-dependent and take into account the structural shape of the DAG (fork joins, linear
chains).

To verify the impact of the checkpointing overhead model on the above results, Figure 7 presents
similar results but with a lower ci = 0.01wi. A noticeable and expected effect of the lowered
checkpointing costs is that CkptAlws performs slightly better. Otherwise, these results confirm
the same trends and conclusions as that with the results shown in Figure 6.

Constant checkpoint overhead – To better assess the impact of checkpointing costs, we discuss results
with a constant checkpoint cost, i.e., checkpointing costs that are independent of task weights.
Expectedly, when CkptW performs better with proportional checkpoint costs it also perform better
with constant checkpoint costs. This is because the ratio of the amount of computation that risks
being lost over the checkpointing time will be even more beneficial to large tasks. However, for
workflows where CkptC performs better, the question of the impact of constant checkpointing
costs is interesting. Figure 8 shows results for CyberShake that allow a comparison of CkptW
and CkptC when the checkpointing cost is constant (for ci = 10s and ci = 5s ). This plot can be
compared to Figure 5a where the checkpoint is proportional to the computation. We can see that
when the checkpointing cost is constant, CkptW tends to behave as well as CkptC on CyberShake
workflows.

We also evaluate the impact of the checkpointing strategy with a constant checkpointing cost
(ci = 5s) in Figure 9 for all four workflow types. Again, the same conclusions hold as observed pre-
viously, although CkptAlws becomes more costly for the Montage and CyberShake workflows.

Impact of λ – Finally, we wish to assess the impact of the MTBF on our conclusions. Figure 10
shows results for n = 200 nodes vs. λ. We observe the same general trends as reported above, i.e.,
DF-CkptW is the winning strategy in most cases regardless of the value of λ.

Summary – We have compared our heuristics over a range of experimental scenarios. In general,
DF-CkptW leads to the best results, which in practice would translate to shorter makespans. DF-
CkptC performs well in some cases. These performance differences depend on the structure of
the DAG (CkptW performs better for fork-joins while CkptC performs better for linear chains).
These differences can be discovered empirically, as done in this section, or perhaps by analyzing the
underlying shape of the DAG.

Overall, the heuristics that rely on the computation of the expected makespan given in Section 5
lead to significantly better results than the baseline CkptAlws and CkptNvr approaches. A
significant, if expected finding, is that taking into account the structure of the DAG is important,
as highlighted by the poor results of the CkptPer heuristic.
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(a) Montage: λ = 0.001, ci = 0.01wi.
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Figure 7: Impact of the checkpointing strategy when ci = 0.01wi. For each checkpointing strategy,
we plot the best linearization strategy.

8 Conclusion

In this work, we have studied the problem of scheduling computational workflows on a failure-prone
platform. We have used a framework where applications are scheduled on the full platform where
processors are subject to i.i.d. exponentially distributed failures. Checkpoint-rollback-recovery is
used to tolerate failures. Our main contribution over previous work [13, 19] is that we consider general
Directed Acyclic Graphs instead of linear chains. Our theoretical results include polynomial-time
algorithms for fork DAGs and for some join DAGs (when the checkpoint and recovery costs are
constant) and the intractability of the problem for join DAGs in general. We have also discussed
the complexity of the simple problem instance where no task is checkpointed.

Our main theoretical result is a polynomial-time algorithm to evaluate the expected makespan
of a schedule for general DAGs. This is a key result as it makes it possible to design heuristics
for general DAGs, i.e., heuristics that can construct a schedule with a known objective. Without
this result, the only way to attempt to find a good schedule would be to run numerous and likely
prohibitively time-consuming Monte-Carlo experiments with a fault generator (either in simulation
or on a real platform).

We have proposed several heuristics and have evaluated them for four representative scientific
workflow configurations. Overall, we find that DAGs should be traversed depth-first (DF) and
that checkpointing should be done by prioritizing tasks based on weight (CkptW) or checkpointing
cost (CkptC). The two resulting heuristics, DF-CkptW and DF-CkptC perform differently on
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(b) CyberShake: λ = 0.001, ∀i, ci = 5s.

Figure 8: Impact of the linearization strategy for a constant checkpoint.
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(a) Montage: λ = 0.001, ci = 5s.
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(b) Ligo: λ = 0.001, ci = 5s.
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(d) Genome: λ = 0.0001, ci = 5s.

Figure 9: Impact of the checkpointing strategy when ci = 5s. For each checkpointing strategy, we
plot the best linearization strategy.
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Figure 10: Impact of the checkpointing strategy with different values of λ. For each checkpointing
strategy, we plot the best linearization strategy.
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different workflows depending on the DAG structure. We found that a periodic checkpointing
approach, although widely used for divisible applications, is not effective, precisely because it does
not account for the structure of the DAG.

A future direction for this work is to consider non-blocking checkpointing operations, i.e., a
processor can compute a task, perhaps at a reduced speed, while checkpointing a previously executed
task. Overlapping of computation and checkpointing can improve performance, but changes the
problem. In particular, it would be interesting to see how our theoretical results are impacted
when considering non-blocking checkpointing. A broader future direction would be to remove the
assumption that the DAG is linearized, i.e., that each task executes on the entire platform. The
scheduling problem then becomes much more complex since one must decide how many processors
are allocated to each task, and possibly account for data redistribution costs.
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