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Abstract

This paper studies the difference in computational power between the mesh-connected par-
allel computers equipped with dynamically reconfigurable bus systems and those with static
ones. The mesh with separable buses (MSB) is the mesh-connected computer with dynamically
reconfigurable row/column buses. The broadcasting buses of the MSB can be dynamically sec-
tioned into smaller bus segments by program control. We examine the impact of reconfigurable
capability on the computational power of the MSB model, and investigate how computing power
of the MSB decreases when we deprive the MSB of its reconfigurability. We show that any sin-
gle step of the MSB of size n × n can be simulated in O (log n) time by the MSB without its
reconfigurable function, which means that the MSB of size n × n can work with O (log n) step
slowdown even if its dynamic reconfigurable function is disabled.

Keywords: Dynamically reconfigurable bus, Statically partitioned bus, Processor array, Polylog-
arithmic time simulation

1 Introduction

The mesh-connected parallel computer is a processor array that consists of processors arranged
to a 2-dimensional grid. Each processor is connected via bi-directional unit-time communication
links to its adjacent processors. Its natural structure is suitable for VLSI implementation and
allows a high degree of integration. However, the mesh architecture has a crucial drawback that its
communication diameter is large due to lack of broadcasting mechanism. To overcome this problem,
many researchers have considered adding global buses (broadcasting buses) to the mesh. By using
global buses, data broadcasting can be carried out: a processor can send data to a global bus, and
those processors along the bus can receive it from the bus. Basically, the global buses are static,
i.e., their connection topologies are statically fixed and can not be dynamically changed during the
execution of programs.

Recently, the more powerful bus model called reconfigurable bus system have been intensively
studied due to their strong computational powers [7, 14, 17, 18, 20]. The dynamic bus system can
be used to dynamically obtain various interconnection patterns among the processors during the
execution of programs. One typical technique to implement such a reconfigurable function of the bus
system is to fuse/segment bus fragments dynamically [18]. The processors in the same interconnected
bus fragment can be seen as the ones which own a unit-time broadcasting bus over the processors.
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Figure 1: A separable bus along a row of the n × n MSB. Broadcasts are carried out in the following
way: 1) several processors section the global bus by locally-controlled sectioning switches, 2) several
processors send data to the bus through port L and/or R, and 3) several processors receive data
from the bus through port L and/or R.
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Figure 2: Partitioned buses along a row of the n × n MMPB. Here, L = 2, ℓ1 = n1/2, and ℓ2 = n.

Dynamic reconfigurable function enables the models to make efficient use of broadcast buses, and to
solve many important, fundamental problems (arithmetic, sorting, graph algorithms, etc.) efficiently,
mostly in a constant or polylogarithmic time [14, 18]. Such reconfigurability, however, makes the
bus systems complex and causes negative effects on the communication latency of global buses [5].
Hence, it is practically important to study the trade-off between such points quantitatively.

In this paper, we investigate the impact of reconfigurable capability on the computational power
of mesh-connected computers with global buses. Here, we deal with the meshes with separable buses
(MSB) [7, 17] and a variant of the meshes with partitioned buses called the meshes with multiple
partitioned buses (MMPB) [8]. The MSB and the MMPB are the mesh-connected computers enhanced
by the addition of broadcasting buses along every row and column. The broadcasting buses of the
MSB, called separable buses, can be dynamically sectioned into smaller bus segments by program
control, while those of the MMPB, called partitioned buses, are statically partitioned in advance and
cannot be dynamically reconfigurable. In the MSB model, each row/column has only one separable
bus, while in the MMPB model, each row/column has L partitioned buses (L ≥ 1). See Figure 1
and 2. By comparing the relative power between these models, we have studied the difference in
computational power between the parallel models equipped with reconfigurable bus systems and
those with static ones.

In this paper, we study how much slowdown is required when we deprive the MSB of its recon-
figurable function. Here, we show that the MSB of size n × n can work with O (log n) step slowdown
without its reconfigurable function. Since we have shown that the MSB of size n × n can simulate
the reconfigurable mesh [1, 14, 20] (or PARBS, the processor array with reconfigurable bus systems)
of size n × n in O

(
log2 n

)
steps [13], we can state that the reconfigurable mesh of size n × n can
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also work with O
(
log3 n

)
step slowdown even if its reconfigurable function is unused.

This paper is organized as follows. Section 2 explains computational models, problem definition,
and related works. Section 3 shows that the MSB of size n × n can work with O (log n) step slowdown
even if its dynamic reconfigurable function is disabled. And finally, Section 4 offers concluding
remarks.

2 Preliminaries

2.1 Models

A mesh-connected computer (mesh) is a parallel computational model in which n × n identical
processors (PEs) are arranged in a 2-dimensional grid with n rows and n columns [4, 19]. See
Figure 3. The PE located in row i and column j is denoted as PE[i, j] (1 ≤ i, j,≤ n). Each PE
is connected to its 4 adjacent PEs (if provided) via unit-time bi-directional communication links.
The mesh structure is very natural and is convenient to be implemented in 2-D layout. However,
the conventional mesh has a large communication diameter, and usually needs Ω(n) time for solving
problems (e.g., prefix-sum computations of n × n values distributed one data per PE) [4, 19].

The mesh with broadcasting buses (MB) is a mesh enhanced by the addition of broadcasting buses
along every row and column [16]. See Figure 4. Because of the broadcasting capability, the MB can
solve the prefix-sum problem more efficiently in O

(
n1/2

)
time steps [16]. The mesh with partitioned

buses (MPB) is a variant of the MB model, where each broadcasting bus is equally partitioned by a
fixed length ℓ [2, 6]. The MPB can solve the prefix-sum problem in O

(
n1/3

)
steps when ℓ = Θ(n2/3)

[6]. The mesh with multiple partitioned buses (MMPB⟨L⟩) is the mesh with multiple partitioned
buses, where each row/column has L partitioned buses (L ≥ 1) [11]. See Figure 2. It should
be noted that the MB and MPB models can be derived from the MMPB⟨L⟩ with L = 1. Those
L partitioned buses of the MMPB⟨L⟩ are indexed as level-1, level-2, . . ., level-L, respectively. We
assume that the partitioned buses of the MMPB⟨L⟩ are equally partitioned by the same length if
they belong to the same level. For each level-k, the value ℓk denotes the length of a bus segment of
the level-k buses. The MMPB⟨L⟩ can solve the prefix-sum problem in O

(
Ln1/(2L+1)

)
steps [11].

To obtain more powerful computational power, dynamically reconfigurable broadcasting buses
have been studied [18]. One such model is the mesh with separable buses (MSB)1, where each
row/column broadcasting buses can be dynamically sectioned into smaller bus segments by locally
controlled sectioning switches of PEs. Each PE has access to the global bus through local read/write
ports at the sides of sectioning switch. See Figure 1. In the row separable bus shown in Figure 1,
broadcasts are carried out in the following way: 1) several PEs section the global bus by locally-
controlled sectioning switches, 2) several PEs send data to the bus through port L and/or R, and 3)
several PEs receive data from the bus through port L and/or R. The MSB is such a powerful model
that solves many problems in polylogarithmic time (mostly in O (log n) time, e.g., O (log n) steps
for solving the prefix-sum problem) [7, 17, 18].

A single time step of the above-mentioned models is composed of the following three substeps:

1) Local communication substep:
Every PE communicates with its adjacent PEs via local links.

2) Broadcast substep:
Every PE changes its switch configurations by local decision (this operation is only for the
MSB). Then, along each broadcasting bus segment, several of the PEs connected to the bus
send data to the bus, and several of the PEs on the bus receive the data transmitted on the
bus.

3) Compute substep:
Every PE executes some local computation.

1The MSB is essentially the same model as the horizontal-vertical reconfigurable mesh (HV-RM) described in
[1, 18].
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Figure 3: A conventional mesh of size 4 × 4. Each processor can communicate with its adjacent
processors via bi-directional local communication links.
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Figure 4: A mesh with broadcasting of size 4×4. In addition to the local communications, broadcasts
along rows and columns can be executed by the broadcasting buses.

Here, we assume that a PE writes to only one bus at a time in the MMPB model. The bus accessing
capability is of Common-Collision model. If there is a write-conflict on a bus, the PEs on the bus
receive a special value ⊥ (i.e., PEs can detect whether there is a write-conflict on a bus or not). If
there is no data transmitted on a bus, the PEs on the bus receive a special value ϕ (i.e., PEs can
know whether there is data transmitted on a bus or not).

2.2 Simulation Problem

In this paper, we consider simulating any single step of the n × n MSB (M) by using the mesh with
statically partitioned buses (M′). Here, we assume that M’ is the same size as M. The processor
mapping is a natural one: each PE[i, j] of M’ simulates PE[i, j] of the M. Each PE of M’ is given
the behaviour of its corresponding PE of M. We assume that the computing power of PEs, the
bandwidth of local links, and that of broadcasting buses are equivalent in both M and M’.

Since the only difference between M and M’ is the broadcasting capability, both local communi-
cation and compute substeps are easily simulated in a constant number of steps (each PE[i, j] of M′

simply executes the same operations as PE[i, j] of M). The broadcast substep of the M is simulated
by solving connected-component labeling (CC-labeling) problem for a port-connectivity graph (pc-
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Figure 5: Broadcasts on a separable bus along a row of the n × n MSB are simulated by connected-
component labeling of the port-connectivity graph. Here, n = 16

graph). See Figure 5 for an example. Vertices of the pc-graph correspond to the read/write-ports of
PEs, and edges stand for the port-to-port connections. Each vertex is initially labeled by the value
which is sent through the corresponding port by the PE at the broadcast substep. If there is no
data sent through the port, the vertex is labeled by ϕ. The CC-labeling is done in such a way that
vertices in each component C is labeled by the smallest initial label of all the vertices in C, with re-
garding ϕ as the greatest value. These labels are called component labels. Obviously, the simulation
of the broadcast substep of M can be achieved in O (T ) steps on the M′ if the CC-labeling of the
corresponding port-connectivity graph can be executed in O (T ) steps by M′ .

2.3 Related Works

Dynamically reconfigurable capability is a very powerful function. For example, the most flexible
model called reconfigurable mesh (RM, see Figure 6) [1, 14, 20] can solve many problems in a constant
number of steps (e.g., sorting n elements in O (1) time using the RM of size n × n).

In this paper, we study how much slowdown is required when we deprive the MSB of its reconfig-
urable function. In [9, 11], we have shown that the MSB of size n × n can be simulated time-optimally
in O

(
n1/(2L+1)

)
steps using the MMPB of size n × n, where L is constant and the global buses are

of word-model, i.e., the bus-width is the same as the number of bits in one word. From this result,
it is natural to think that the slowdown may be at least of polynomial time. However, in [10],
we successfully showed that we can suppress the slowdown to O

(
log2 n

)
steps, by considering the

relation between the word-model bus and the bit-model bus. In [10], we utilized the fact that each
single word-model bus can be viewed as ⌈log n⌉ bit-model buses, where ⌈log n⌉ is the word-size of
processor. Since we assumed that we can separately section each wire of a word-model bus with
different lengths, the computational model in [10] is, strictly speaking, not the regular MMPB model.
Later in [12], without putting any special assumption that we can separately section each wire of
a word-model bus with different lengths, we showed that the MSB can work with O

(
log3 n

)
step

slowdown without its reconfigurability.
Here, we improve the result in [12], and show that the MSB of size n × n can work with O (log n)

step slowdown without its reconfigurable function. Since we have shown that the MSB of size n × n
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Figure 6: A 4 × 4 RM and a single processor. Each processor can dynamically change the local
connection pattern of its 4 ports (N, S, E, and W) during the execution of programs.

can simulate the RM of size n × n in O
(
log2 n

)
steps [13], we can state that the reconfigurable

mesh of size n × n can also work with O
(
log3 n

)
step slowdown even if its reconfigurable function

is unused.

3 Simulation of Dynamically Reconfigurable Buses by Stat-
ically Partitioned Buses

The difference between the MB, MPB, MMPB⟨L⟩, and MSB models is only their broadcasting capa-
bilities. As mentioned in Section 2.2, to simulate operations of the MSB by using other models, we
focus on how to mimic the broadcast substep of the MSB, because the local communication and the
compute substeps of the MSB can be easily simulated in a constant number of steps (each simulating
PE simply executes the same operations as the simulated PE). Also, in what follows, we explain how
to simulate the broadcasts along rows only, since those along columns can be simulated similarly.

To begin with, we introduce the following lemma:

Lemma 1 [10] Any step of the MSB of size n × n can be simulated in O
(
Ln1/(2L+1)

)
steps by the

MMPB⟨L⟩ of size n × n.

In the algorithm proving this lemma, we let each ℓj = Θ(nαj ) where αj = 2j/(2L + 1). If we let
L = log n, then O

(
Ln1/(2L+1)

)
becomes O (log n). Hence, we have the following corollary.

Corollary 1 Any step of the MSB of size n × n can be simulated in O (log n) steps by the MMPB⟨log n⟩

of size n × n.

Here, please note that ℓj+1/ℓj = n2/(2L+1) becomes a constant when L = log n. The broadcast along
each row (resp. column) of the MSB is simulated locally by the corresponding row (resp. column)
of the MMPB⟨log n⟩. We briefly explain the algorithm proving Corollary 1 as follows. In [10], the
algorithm is described as a recursive algorithm, but here we write it in non-recursive way. For
simplify the exposition, we assume that n mod log n = 0 and that log n is a positive integer. Also,
we let ℓj = 2j . In the algorithm proving Corollary 1, the broadcasts along each row (resp. column)
of the MSB is simulated locally by the corresponding row (resp. column) of the MMPB⟨log n⟩. The
algorithm first simulates broadcasts along rows, and then those along columns. Since the simulation
of the column broadcasts is essentially the same as that of the row broadcasting, we explain how to
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simulate a row of the MSB by using the corresponding row of the MMPB⟨log n⟩ only. Let G be the
pc-graph correspond to the broadcast operation taken along a row of the simulated MSB. Then,
the following algorithm solves the CC-labeling problem for G by using the corresponding row of the
simulating MMPB⟨log n⟩.

Algorithm Alg Cor1 on MMPB⟨log n⟩

Stage 1: { Label combination in Bottom-Up fashion }
for d = 1 to log n do

For each subgraph Gk of G, compute local component labels within Gk

for the leftmost and rightmost vertices of Gk, and check whether the two
vertices are connected to each other or not. (Here, we divide the pc-graph
G into n/ℓd disjoint subgraphs G1, G2, . . . , Gn/ℓd

of width ℓd.2)

Stage 2: { Label propagation in Top-Down fashion }
for d = log n downto 1 do

For each subgraph Gk of G, compute component labels within Gk for the
leftmost and rightmost vertices of Gk. (Here, Gk is defined in the same
fashion as in Stage 1.)

end of Alg Cor1 on MMPB⟨log n⟩

The algorithm adopts the same divide-and-conquer strategy used in the component labeling algo-
rithm for a binary image proposed by Maresca et al. in [3, 15]. In the for-loop body of Stage 1 and
Stage 2 of Alg Cor1 on MMPB⟨log n⟩, the simulating MMPB⟨log n⟩ uses only the level-d bus and
local links for data communication. The details are in [10].

Figure 7 illustrates the cost for simulating a row of the MSB by using the corresponding row of
the MMPB⟨log n⟩. The broadcasting buses of the simulating MMPB⟨log n⟩ are partitioned by length
2, 4, 8, . . . , n.

Next, we consider a variant of the MPB (MMPB⟨1⟩), called mesh with partitioned buses of different
lengths (hereafter MPBdif). In the original MPB model, row/column buses are partitioned equally
with the same length if they belong to the same level, while in the MPBdif model, each row/column
bus can be partitioned with different lengths. In the MPBdif model, each row/column has only one
statically partitioned bus. Please note that the MPBdif model can be viewed as the MSB without its
reconfigurable function. In the following, we show that the MPBdif can simulate the MSB efficiently
in O (log n) time.

By using L consecutive rows of the MPBdif , the L partitioned buses attached to a single row of the
MMPB⟨L⟩ can be simulated in O (L) time. The idea is as follows: Each one of the L partitioned buses
along a row of the MMPB⟨L⟩ is simulated by a distinct row of the simulating MPBdif . See Figure
8. The L partitioned buses attached to the row of the MMPB⟨L⟩ are simulated by row 1, 2, . . . , L of
the MPBdif . Each broadcasting bus along row i of the MPBdif is partitioned by length ℓi so that the
level-i bus of the MMPB⟨L⟩ can be simulated in a constant time by the row i of the MPBdif . Here,
the behavior of each PE in the simulated row of the MMPB⟨L⟩ is initially given to the corresponding
PE in the topmost row (row 1) of the L rows of the MPBdif . The simulation consists of two stages.
In Stage 1, data is moved downward, row by row, and the broadcasting on the level-i bus of the
MMPB⟨L⟩ is simulated when the data is at row i. In Stage 2, the data (simulation result) is moved
upward to the topmost row. See Figure 9. It is not difficult to confirm that this simulation requires
O (L) steps, which is mainly from the cost for the data-transfer vertically along each column of the
L rows over the MPBdif (here, the data-transfer uses only local links if it is vertical one). Formally,
we describe the algorithm as follows:

2We say that a subgraph of pc-graph is of width w if it contains 2w vertices corresponding to the read/write-ports
of w consecutive PEs.
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the 1×n MSB 

(the simulated model) 

the 1×n MMPBlog n 

(the simulating model) 

 log n  buses 
O(log n) step 

simulation 

Figure 7: A row of the MSB of size n × n is simulated by the corresponding row of MMPB⟨log n⟩.
Here, n = 16.

Algorithm Alg Lem2 on MPBdif

Stage 1: { Simulation and Vertical downward data shifting }
for d = 1 to L do

(1-1) The row d of the MPBdif simulates the broadcasts taken on level-d
bus of the MMPB⟨L⟩.

(1-2) Each PE in the row d of the MPBdif transfers the simulation results
obtained so far and the behavior information of the simulated row of
the MMPB⟨L⟩ to the PE below in the row (d+1) via vertical local link.
(d ̸= L)

Stage 2: { Vertical upward data shifting }
for d = L downto 1 do

(2-1) Each PE in the row d of the MPBdif transfers the complete simulation
results to the PE above in the row (d−1) via vertical local link. (d ̸= 1)

end of Alg Lem2 on MPBdif

Obviously, (1-2) and (2-1) of Alg Lem2 on MPBdif can be executed in O (1) steps. As for (1-1), it
takes only O (1) steps as well, since each partitioned bus along row d of the MPBdif is sectioned by
every ℓd.

Hence, we can prove the following lemma.

Lemma 2 Any step of a single row (resp. column) of the MMPB⟨L⟩ of size n × n can be simulated
in O (L) steps by the L consecutive rows (resp. columns) of the MPBdifof size n × n.

Figure 10 illustrates the cost for simulating a row of the MMPB⟨L⟩ by using consecutive L rows of
the MPBdif .

Next, we consider how to simulate L consecutive rows, not a single row, of the MMPB⟨L⟩ using
the L rows of the MPBdif . Here, we execute Alg Lem2 on MPBdif in a pipeline fashion on the
MPBdif . For example, consider the case where the L consecutive rows of the MMPB⟨L⟩ are simulated
by the corresponding L rows of the MPBdif . The simulation of row 1 of the MMPB⟨L⟩ can start
immediately as in Figure 9, while that of row i, i ̸= 1, can start only when the data-movement from
row i to the topmost row via local-links is completed. Formally, we can describe the algorithm as
follows:
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Figure 8: A row of the MMPB⟨L⟩ is simulated by the L consecutive rows of the MPBdif . Each
broadcasting bus along row i of the MPBdif is partitioned by length ℓi so that the level-i bus of the
MMPB⟨L⟩ can be simulated in a constant time by the row i of the MPBdif .

 (Stage 1) data transfer + broadcast simulation!

O(L) steps!

O(L) steps!

 (Stage 2) data transfer!

. . . . . . .!

. . . . . . .!

Figure 9: The active region is shifted, row by row, during the simulation of a row of the MMPB⟨L⟩

by the L consecutive rows of the MPBdif .

Algorithm Alg Lem3 on MPBdif

for e = 1 to 4L do

(1) { Transfer of initial data upward to the topmost row }
PE[i, j] of the MPBdif transfer the behavior information of PE[i + e− 1, j]
of the MMPB⟨L⟩ to PE[i − 1, j] of the MPBdif via vertical local link.
(2 ≤ i ≤ L − e + 1, and 1 ≤ j ≤ n)

(2) { Stage 1 of Alg Lem2 on MPBdif}
Each row i of the MPBdif executes the for-loop body of Stage 1 of Alg Lem2 on MPBdif

with d = e for the simulation of row (e − i + 1) of the MMPB⟨L⟩.
(1 ≤ i ≤ L, e − L + 1 ≤ i ≤ e, and 1 ≤ j ≤ n)

(3) { Stage 2 of Alg Lem2 on MPBdif}
Each row i of the MPBdif executes the for-loop body of Stage 2 of Alg Lem2 on MPBdif

with d = e for the simulation of row (e + i − 2L) of the MMPB⟨L⟩.
(1 ≤ i ≤ L, 2L − e + 1 ≤ i ≤ 3L − e, and 1 ≤ j ≤ n)

(4) { Transfer of results downward to the original position }
PE[i, j] of the MPBdif transfer the simulation results of PE[e−i−2L+1, j]
of the MMPB⟨L⟩ to PE[i + 1, j] of the MPBdif via vertical local link.
(1 ≤ i ≤ L, e− 3L + 1 ≤ i ≤ e− 2L, i < e− i− 2L + 1, and 1 ≤ j ≤ n)
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the L×n MPBdif 

(the simulating model) 

the 1×n MMPBL 

(the simulated model) 

L rows 

         L buses 

O(L) step 

simulation 

Figure 10: A row of the MMPB⟨L⟩ of size n × n is simulated by the consecutive L rows of the MPBdif

of size n × n. Here, n = 16 and L = log n.

end of Alg Lem3 on MPBdif

Thus, we can prove that the L consecutive rows of the MMPB⟨L⟩ can be simulated in O (L) steps
by the corresponding L consecutive rows of the MPBdif . Since the mesh of size n × n is composed
of n/L submeshes of size L × n, we obtain the following lemma.

Lemma 3 Any step of the MMPB⟨L⟩ of size n × n can be simulated in O (L) steps by the MPBdifof
size n × n.

Figure 11 illustrates the cost for simulating consecutive L rows of the MMPB⟨L⟩ by using the corre-
sponding rows of the MPBdif .

From Corollary 1 and Lemma 3, we can say that any step of the MSB of size n × n can be
simulated in O

(
log2 n

)
steps by the MPBdif of size n × n. In what follows, we show that the

time-cost can be further improved to O (log n) steps.
As described earlier, Alg Cor1 on MMPB⟨log n⟩ consists of Stage 1 and Stage 2. Both Stage 1

and Stage 2 have log n iterations, and in each iteration the simulating MMPB⟨log n⟩ uses only level-
d bus of the MMPB⟨log n⟩. That is, as Alg Cor1 on MMPB⟨log n⟩ proceeds, the level number of
involved buses of the MMPB⟨log n⟩ monotonically increases and then decreases. Here, please note that
the pattern of increase and decrease of the level number of involved buses of Alg Cor1 on MMPB⟨log n⟩

is the same as that of the row number of active region in Alg Lem2 on MPBdif (Figure 9). Hence,
by the similar argument used for proving Lemma 2, a single execution of Alg Cor1 on MMPB⟨log n⟩

(solving CC-labeling problem for a pc-graph of a single row) can be performed in O (log n) steps
by the consecutive log n rows of the MPBdif of size n × n. Then, again, by the similar argument
used for proving Lemma 3, log n parallel executions of Alg Cor1 on MMPB⟨log n⟩ can be done in
O (log n) steps in a pipeline fashion by the consecutive log n rows of the MPBdif . Hence, we obtain
the following lemma:

Lemma 4 The MMPB algorithm proving Corollary 1 can be executed in O (log n) steps by the
MPBdif of size n × n.

Figure 12 illustrates the cost for simulating consecutive log n rows of the MSB by using the corre-
sponding rows of the MPBdif .

Now, from Lemma 4, we can state the main theorem of the paper as follows:

Theorem 1 Any single step of the MSB of size n × n can be simulated in O (log n) steps by the
MPBdif of size n × n.

Since the MPBdif can be obtained from the MSB without using its dynamically reconfigurable func-
tion, we can say that the MSB of size n × n can work with O (log n) step slowdown even if its
reconfigurable capability is disabled.
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the L×n MPBdif 

(the simulating model) 

The L×n MPBL 

(the simulated model) 

 L rows 

         L buses 

O(L) step 

simulation 

Figure 11: The L consecutive rows of the MMPB⟨L⟩ of size n × n is simulated by the corresponding
rows of the MPBdif of size n × n. Here, n = 16 and L = log n.

O(log n) step 

simulation 

the (log n)×n MSB 

(the simulated model) 

the (log n)×n MPBdif 

(the simulating model) 

 log n  rows 

Figure 12: The log n consecutive rows of the MSB of size n × n is simulated by the corresponding
rows of the MPBdif of size n × n. Here, n = 16.

4 Concluding Remarks

In this paper, we showed that the MSB of size n × n can work with O (log n) step slowdown even
if its reconfigurable capability is unused. As a corollary, since we have shown that the MSB of size
n × n can simulate the RM of size n × n in O

(
log2 n

)
steps [13], we can state that the RM of size

n × n can also work with O
(
log3 n

)
step slowdown even if its reconfigurable function is unused.

Although the MPBdif model has only statically partitioned broadcasting buses, it can solve
problems mostly in polylogarithmic time, for it can simulate the MSB in O (log n) steps. In addition,
compared to other major models such as the hyper-cube, mesh of trees, and CCC (Cube Connected
Cycles), the MPBdif is simple and is suitable for 2D layout. Furthermore, the MSB model can be
viewed as a virtual programming platform for the MPBdif with only O (log n) step overhead. Hence,
we think that the MPBdif may be one of the realistic mesh-based parallel computational models.

Finally, it should be mentioned that our simulation algorithm can simulate the MSB in which
the concurrent write is resolved by the MIN rule [13] where the minimum among the sent values
is received when a write-conflict occurs. This is because our algorithm simulates the broadcast
operation of the MSB by connected-component labelling of the corresponding port-connectivity graph
[13]. This fact may make up the slowdown required for the simulation because the MSB with MIN-
bus model is very powerful, for example, it can find the minimum among the values distributed over
the mesh in a constant time.
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