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Abstract

We investigated energy efficient and fault tolerant topologies for wireless sensor networks
(WSNs), addressing the need to minimize communication distances because the energy used for
communication is proportional to the 2nd to 6th power of the distance. We also investigated the
energy hole phenomenon, in which non-uniform energy usage among nodes causes non-uniform
lifetimes. This, in turn, increases the communication distances and results in a premature
shutdown of the entire network. Because some sensor nodes in a WSN may be unreliable, it
must be tolerant to faults. A routing algorithm called the “energy hole aware energy efficient
communication routing algorithm” (EHAEC) was previously proposed. It solves the energy
hole problem to the maximum extent possible while minimizing the amount of energy used for
communication, by generating an energy efficient spanning tree. In this paper, we propose two
provisioned fault tolerance algorithms: EHAEC for one-fault tolerance (EHAEC-1FT) and the
active spare selecting algorithm (ASSA). EHAEC-1FT is a variation of EHAEC. It identifies
redundant communication routes using the EHAEC tree and guarantees 2-connectivity (i.e.,
tolerates the failure of one node). The ASSA attempts to find active spare nodes for critical
nodes. It uses two impact factors, α and β, which can be adjusted so that the result is either
more fault tolerant or energy efficient. The spare nodes fix failures by replacing them. In our
simulations, EHAEC was 3.4 to 4.8 times more energy efficient than direct data transmission,
and thus extended the WSN lifetime. EHAEC-1FT outperformed EHAEC in terms of energy
efficiency when fault tolerance was the most important, and a fault tolerant redundancy was
created when or before a failure occurred. Moreover, we demonstrated that the ASSA was more
energy efficient than EHAEC-1FT, and the effect of using different α and β.

Keywords: Wireless sensor networks, Energy efficient, Fault tolerance, Routing algorithms

1 Introduction

Wireless sensor nodes are now extensively used in many applications to improve people’s lives and
for security. For example, they are used to manage air conditioners, lights, and alarms, to save
electric power, and to warn people of danger by sensing environmental conditions. Sensor nodes are
used for infrastructure elements such as bridges and tunnels to detect conditions that could lead to
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problems such as a collapse, by sensing reflected sound waves. Wireless sensor networks (WSNs)
are fast becoming ubiquitous. However, most sensor nodes in WSNs are battery powered, so we
must consider the battery life because if the nodes are located in dangerous and/or difficult-to-reach
places, they are practically impossible to maintain. Therefore, sensor nodes should be able to operate
for prolonged periods without the need for a replacement battery, with the aim of maintenance-free
operation.

The electric power used by a WSN is mainly consumed by the wireless communications, the
sensors, and the CPU running the programs that control the sensors. The wireless communication
consumes the most power [5] (up to 80% of the total power [6]). Therefore, the most effective way to
improve the energy efficiency is to minimize the energy used for wireless communications. In wireless
communications, energy consumption is mainly determined by the communication distance and the
amount of transmitted data. In particular, because the energy consumption grows in proportion to
the 2nd to 6th power of the communication distance [4][7], energy efficient data routing is needed to
avoid the extra energy consumption caused by long communication distances. Another consideration
is the “energy hole phenomenon” [4], where a node that consumes more energy than the other nodes
because it relays more data will run out of power sooner. This non-uniform energy consumption
results in longer communication distances, resulting in a shorter lifetime for the entire network.
The energy hole problem can directly affect the energy efficient communication route. An energy
hole aware energy efficient communication routing algorithm (EHAEC) that solves this problem was
proposed in our previous work [1]. However, there are usually some unreliable sensor nodes in a
WSN, so a fault tolerance is required when optimizing the communication topology. We propose
two kinds of provisioned tolerance algorithms that tolerate node failures. EHAEC-1FT (EHAEC
for one-fault tolerance) ensures that the network connectivity is preserved, and can tolerate one
node failure in the network. EHAEC-1FT can be extended to X-nFT, which can be used by an
arbitrary spanning tree routing algorithm, X, for n-fault tolerance. The other provisioned tolerance
algorithm is the active spare selecting algorithm (ASSA), which attempts to designate backups for
critical nodes. Compared with including redundant nodes that accompany the critical nodes, ASSA
finds active spare nodes that can replace failed nodes. This paper is an extended version of [2],
which was presented at the CANDAR 2014 workshop.

The remainder of this paper is as follows. We discuss some related studies in Section 2. Section 3
contains some preliminaries and a description of the EHAEC algorithm [1]. Sections 4 and 5 present
the fault tolerance algorithms, EHAEC-1FT and ASSA. Section 6 contains our simulation results,
and a discussion. Section 7 concludes the paper with a summary of the key points.

2 Related Studies

A number of studies have attempted to construct energy efficient wireless communication routes,
solve the energy hole problem, and enhance fault tolerance in data communications.

Some studies attempted to extend the lifetime of a WSN by minimizing data communication
distances through the use of protocols such as LEACH [8] and PEGASIS [9]. LEACH reduces
the energy consumption of the nodes by forming clusters. The node selected as the cluster head
collects each node’s data, aggregates them, and sends the aggregated data directly to the cluster base
station. PEGASIS improves on LEACH by constructing a chain route in which each sensor node only
communicates with its closest neighbors, and only one sensor node at a time sends aggregated data
to the base station. However, LEACH and PEGASIS do not fully consider the energy hole problem.
LEACH rotates the cluster head, whereas PEGASIS changes its designated node. We can further
improve the energy efficiency of LEACH and PEGASIS, because they are not optimized to minimize
the total communication energy consumption of the WSN. Other studies focused on minimizing
the total communication energy consumption using graph-theoretic structures to form a minimum
spanning tree. Solutions include using the Prim, Kruskal and Dijkstra routing algorithms [10].
These algorithms can construct tree topologies that contain all the nodes and minimize the sum
of the edge lengths (communication distances). Although these algorithms effectively minimize
the energy consumed by data communications, they do not solve the energy hole problems, so a
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premature shutdown of the network is possible.

Another group of studies concentrated on solving the energy hole problem, including those by
Olariu and Stojmenovic [4], Wu et al. [11], and Lian et al. [12]. Olariu and Stojmenovic identified the
energy hole problem. They showed that if the energy consumption grows proportionally faster than
the second power of the communication distance, we can prevent non-uniform energy consumption
using an appropriate design. For example, we can place data sinks at strategic locations and adjust
the network radius around the sinks. Although the energy expenditure in such a system is balanced
across the network, it is suboptimal. Wu et al. proposed regulating the number of nodes in each
corona, and setting the ratio of node densities in two adjacent coronas to mitigate the energy hole
problem. Lian et al. proposed moving the sinks to balance the load across the deployment area.
LEACH [8] is another attempt at rotating cluster heads and clusters to avoid non-uniform energy
consumption, because a cluster head consumes more energy. Each node independently decides
whether to be a cluster head. The cluster heads and their corresponding clusters are rotated in a
random manner. Unfortunately, these approaches are not adequately energy efficient.

Some researchers focused on enhancing the fault tolerance of data communications. There are
two methods for handling the fault tolerance problem [3]: (1) proactive approaches that attempt to
provision resources in the network topology to tolerate node failures, and (2) reactive approaches
that attempt to tolerate node failures through real time restoration of lost connectivity. In this
paper, we focused on the proactive approach. There are two variants to the proactive approach.
In the first, fault tolerant topologies are formed at the time of deployment. We did not consider
this approach because WSN nodes in infrastructures such as bridges should be deployed at fixed
positions. In the second, we form a k-vertex connected (referred to as k-connectivity) WSN, or
designate backup nodes for critical nodes in the network. A k-connectivity network has a k−1 fault
tolerance, which means it can tolerate the failure of up to k − 1 nodes [13].

An algorithm aimed at reducing communication energy while preserving network connectivity was
proposed by Li and Hou [14]. They presented a centralized algorithm called the fault-tolerant global
spanning subgraph (FGSSk), which was based on Kruskal’s algorithm. Different components are
iteratively merged until only one k-connected component remains. A localized algorithm called the
fault-tolerant local spanning subgraph (FLSSk) was based on FGSSk, and proposed to control the
topology. The authors showed that FGSSk and FLSSk can preserve k-connectivity and minimize
the maximum transmission power of the network. Moreover, FLSSk maintains bi-directionality for
all links in the topology. Li et al. investigated the minimum transmission range that guarantees
k-connectivity with a high probability [15]. They also presented a localized method for controlling
the network topology that was based on the Yao structure and preserves k-connectivity. Jorgic et al.
proposed an alternative fault tolerance method that uses localized algorithms to detect the critical
nodes and links [16]. Other works have attempted to generate k-connectivity, including [17, 18, 19].

Other proactive approaches designate spares for critical nodes, which act as cut vertexes in the
network topology. The simplest way to achieve this is to place redundant nodes that accompany the
critical nodes. However, if all the nodes serve the application, the spare nodes must be selected from
the active nodes. In [20], Vaidya and Younis proposed NORAS to select spare nodes within the 2-hop
neighborhood of a failed critical node. If non exist, the search widens to include more distant nodes.
When a critical node fails and is detected, the designated spare nodes travel to replace the critical
node, or a series of cascaded relocations on the shortest route between the critical and selected spare
nodes are triggered to split the travelling distance. In [21], the authors proposed PADRA, which
identifies a connected dominating set for the WSN. PADRA designates a failure handler to each
critical node in case it fails. An ideal handler will be a dominatee neighbor of the critical node that
can simply replace the critical node. In our approach, we balanced the energy efficiency, energy hole
problem, and fault tolerance to obtain reliable energy efficient wireless communications.
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Figure 1: Wireless sensor network configuration.

3 Energy Efficient Routing Algorithm

3.1 Preliminaries

We considered a circular WSN with a 100-m radius, a random number of uniformly and randomly dis-
tributed homogeneous sensor nodes, and a base station at the center, as shown in Fig. 1. Compared
with the WSN used in the LEACH and PEGASIS studies where the sensor nodes were deployed in a
square space and were at least 100 m from the base station, our WSN configuration is closer to actual
WSN systems such as those using ZigBee1 devices, which have a maximum communication distance
of 100 m. We also assumed that the base station is powered by a stable power source, so the energy
consumed by the base station is separate from that consumed by the wireless communications. We
used a free space radio propagation model to calculate the transmitting and receiving costs for a
k-bit message at a distance of d. That is,

Transmitting
ETx(k, d) = Eelec ∗ k + ϵamp ∗ k ∗ d2, (1)
Receiving
ERx

(k) = Eelec ∗ k. (2)

These are the same as those used in the LEACH and PEGASIS studies, where Eelec = 50 nJ/bit
for running the transmitter or receiver circuitry and ϵamp = 100 pJ/bit/m2 for running the transmit
amplifier. Because we only focused on extending the WSN lifetime through the use of effective
routing algorithms, we ignored other energy consumptions such as those of the CPU and sensors.
Additionally, for simplicity, we assumed that each node must send 2000 bits of data as in the LEACH
and PEGASIS studies, and that this amount stays the same despite data aggregations.

3.2 Wireless Communication Graph

The initial wireless sensor network has N nodes and can be described as an undirected weighted
graph, G =< V,E >, where V = {0, ..., N−1} is a vertex set indicated by the sensor nodes, and E is
an edge set showing the data communication between two nodes. An edge in the graph is indicated
by (i, j) ∈ V . Because the data sent between two nodes determines the direction of an edge, the
wireless sensor network graph is a directed graph. We let dir(i, j) denote that the direction of edge
(i, j) is from i to j. To calculate the energy consumed by the data communication between nodes
i and j, we use the energy consumption metrics in Equations (1) and (2) to define a nonnegative
weight, w(i, j) = ET(i,j)

+ ER(i,j)
, which is associated with each edge (i, j) ∈ V with dir(i, j). Note

1ZigBee is a registered trademark of the ZigBee Alliance.
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Figure 2: Graphical representation of phony weight.

Figure 3: Phony weight.

that the notation ET(i,j)
is the transmitting energy of node i and ER(i,j)

is the receiving energy of
node j. The total energy consumed by the wireless communication between i and j is w(i, j). The
value of w(i, j) is determined if the network topology is determined, because it only depends on the
distance between i and j.

3.3 Energy Hole Aware and Energy Efficient Communication Routing
Algorithm

Our proposed EHAEC routing algorithm solves the energy hole problem without changing the
network configuration as much as possible, while minimizing the total energy consumption of the
wireless communications. Note that EHAEC achieves a trade-off between solving the energy hole
problem and optimizing the total energy consumption of the wireless communications. The total
energy consumption cannot be minimized if the energy hole problem is considered, because avoiding
an energy hole requires the communication between nodes that increases the energy consumption.
However, EHAEC can minimize the energy consumed by sending and relaying data.

EHAEC is based on Prim’s algorithm [10], which finds the optimal “minimum spanning tree”
for an undirected connected weighted graph. EHAEC is different from Prim’s algorithm in that it
uses a “phony weight” to avoid energy holes as much as possible. Suppose that edges (yi, b) with
dir(yi, b) exist in a “minimum spanning tree” T , yi ∈ T , and i ∈ N . A phony weight for b ∈ T and
x ∈ V \T is defined as

P (x, b) =
∑

yi∈T ER(yi,b)
. (3)

The direction of edge (x, b) is dir(x, b). Phony weight P (x, b) is added to w(x, b), where edge (x, b)
may connect an unconnected node x to a node b in the tree that has already relayed data from other
nodes. The use of phony weights prevents the situation in which one node relays data from many
nodes, to uniformly distribute the energy consumed by sending and relaying data. However, phony
weight P (x, b) is not actually consumed by edge (x, b), because it has already been consumed by
edges (yi, b). Figure 2(a) shows a graphical representation of Equation (3), where i = 2. It shows
that, P (x, b) = ER(y1,b)

+ ER(y2,b)
when node x tries to connect to node b, and nodes y1 and y2 are

already in the tree. This means that the value of the phony weight depends on the number of nodes
connected to node b at time t. Therefore, P (x, b) = P (s, b) for any node s ∈ V \T at time t when
only nodes y1 and y2 are connected to node b (Fig. 2(b)). Let us consider an example of the effect of
using a phony weight. Figure 3 shows the procedure for forming T ′ from T by adding node c, where
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Figure 4: Explanation of EXTRACT-MIN(Q).

node a is the data sink. In Fig. 3(a), nodes a and b were added to tree T . If we next try to add
node c to T , we should either add it to edge (c, a) or (c, b). According to the definition of a phony
weight, because node a has already relayed data from node b, the other edges that may relay data
to node a should add the phony weight to themselves. In Fig. 3(b), assuming the phony weight is
2, we have P (c, a) = ER(b,a)

= 2 and P (c, b) = 0. Therefore, w(c, a) = 6 and w(c, b) = 5. Because
w(c, b) < w(c, a), edge (c, b) is added to tree T ′.

Algorithm 1: EHAEC(G,w,r)

01 Q ← V(G)
02 for each u ∈ Q
03 key[u]←∞
04 π[u]← NIL
05 key[r]← 0
06 while Q ̸= 0
07 u← EXTRACT-MIN(Q)
08 A← {(u, π[u]) : v ∈ V − r −Q}
09 edge direction: dir(u, π[u])
10 for each v ∈ Adj[u]
11 for each s ∈ Adj[π[u]]− u and s ∈ V \A, s ̸= r, u ̸= r, π[u] ̸= r
12 P (s, π[u]) =

∑
x∈A ER(x, π[x]), where π[x] = π[u]

13 w(s, π[u]) = w(s, π[u]) + P (s, π[u])
14 if s ∈ Q and π[s] = π[u] and key[s] is w(s, π[u]) that in last round
15 key[s]← w(s, π[u])
16 if v ∈ Q and w(v, u) < key[v]
17 π[v]← u
18 key[v]← w(v, u)
19 return A

EHAEC works in the following way. The required inputs are graph G of the WSN, and root r
(the base station) of G. The output returns spanning tree A, which avoids energy holes as much
as possible without reconfiguring the network. In EHAEC, all vertexes not in the tree are stored
in a priority queue, Q. The weight of each edge are calculated a prior. Weight of an edge (v, u)
is defined as w(v, u) = ET(v,u)

+ ER(v,u)
. For each vertex v, key[v] is the minimum weight of any

edge connecting v to a vertex in the tree. Field π[v] indicates the parent of v in the tree. Lines
1-5 of the algorithm are the initializations. While Q is not empty, Line 7 extracts a vertex u ∈ Q
incident on a light edge crossing the cut (V − Q,Q) (with the exception of the first iteration, in
which u = r due to line 5)2, which means it extracts a node u which should be add to the tree in
the current loop. Line 8 stores the parent-child vertex set in tree A. Line 09 defines the direction of

2We use Fig. 4 to explain EXTRACT-MIN(Q). Supposing vertexes a and b are in the tree. Hence, Q = {c, d} and
V −Q = {a, b}. The black curve indicates the idea of cut (V −Q,Q). Since EXTRACT-MIN(Q) extracts a light edge
crossing the cut, vertex c is extracted because edge (a, c) is the light edge among edges (a, c), (a, d), (b, c) and (b, d).
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Figure 5: EHAEC and Prim Routing.

edge (u, π[u]). For every vertex v that is adjacent to u but not in the tree (line 10), line 12 defines
the phony weight P (s, π[u]) and line 13 updates the edge weight w(s, π[u]) if vertex s is adjacent to
Adj[π[u]] − u, and vertexes s, u and π[u] are not the root (line 11). Except for root r, if a parent
π[u] is already connected to a child x, phony weight P (s, π[u]) is defined to avoid connecting another
vertex s to π[u] because this may cause an energy hole in vertex π[u]. Lines 14 and 15 determine if
key[s] should be updated. In Lines 16-18, for every vertex v that is adjacent to u but not in the tree
(line 10), if edge (v, u) has the smallest weight, the key and π fields of every vertex v are updated.
The updated key contains the vertex which has the minimum weight edge that may be extract in
the next loop. Finally, in Line 19, EHAEC returns the spanning tree A. EHAEC has the same
complexity as Prim’s algorithm, which is O(|E| lg |V |).

Examples of applying the EHAEC are shown in Figs. 5(1-7). Figure 5(1) shows a unit weighted
graph G =< V,E >, where V = {BS, a, b, c, d, e, f}, vertex BS is the root of the tree, and the other
vertexes are sensor nodes that must be connected to the tree. Note that there are other edges in
graph G, for example, (BS, f), (b, c), and (d, f). However, these edges have large weights, so we
have ignored them. The weight is shown for each edge, for example, w(a, b) = 240 means that the
weight of edge (a, b) is 240µJ . These values are calculated using Equations (1) and (2). We can
now show how EHAEC forms a route. In the first step shown in Fig. 5(1), u = r = BS because
of Lines 5 and 7, hence the starting vertex of the tree forming procedure is BS. Therefore, BS
is on the tree. Since u = r = BS in line 11, lines 12 to 15 are not executed. For every vertex
v ∈ Adj[BS] = {a, b, c}, line 16 judges whether w(a,BS), w(b,BS) and w(c,BS) are less than
key[a], key[b] and key[c], respectively. Line 16 is true since the key fields are infinities, hence,
π[a] = BS, π[b] = BS and π[c] = BS in line 17; key[a] = w(a,BS) = 213, key[b] = w(b,BS) = 220
and key[c] = w(c,BS) = 325 in line 18. In step 2 shown in Fig. 5(2), u = a in line 7 since
key[a] = w(a,BS) = 213 is minimum in step 1. Line 8 stores edge (a,BS) to tree A and line 9
decides the direction of edge (a,BS) is dir(a,BS) since π[a] = BS in step 1. Since π[u] = r = BS
in line 11, lines 12 to 15 are not executed. line 16 judges whether w(b, a), w(c, a) and w(d, a) are
less than key[b], key[c] and key[d], respectively. Line 16 is only true for vertexes c and d. Hence,
π[b] = BS which is not change, π[c] = a and π[d] = a in line 17; key[b] = w(b,BS) = 213 which is not
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change, key[c] = w(c, a) = 224 and key[d] = w(d, a) = 240 in line 18. The same procedure repeats
until step 3 shown in Fig. 5(3). In step 4 shown in Fig. 5(4), after u = e is extracted in line 7,
s ∈ Adj[π[u]]−u = Adj[π[e]]−e = Adj[b]−e = {d, f} in line 11. Therefore, P (d, b) = ER(e, b) = 100
and P (f, b) = ER(e, b) = 100 in line 12. w(d, b) and w(f, b) are updated in line 13. Line 14 judges
whether key[d] is w(d, a), and key[f ] is w(f, b), where w(d, a) and w(f, b) are values in the previous
step. Since it is true that key[f ] is w(f, b) which in the previous step, key[f ] = w(f, b) in line 15,
the w(f, b) here is the value calculated in line 13, hence the key field is updated. The rest part
of step 4 is similar with that in step 1 and 2. The same procedure repeats in step 5, 6 and 7.
In step 7 shown in Fig. 5(7), since all the nodes are connected by the EHAEC, a spanning tree
has been formed. Compared with the route generated by Prim’s algorithm in Fig. 5(8), EHAEC
avoided the energy holes in nodes a and b. Moreover, EHAEC was previously proved to construct
a communication route that consumes the least energy in sending and relaying data in the WSN
[1], because the advantage of using phony weights is that the internal nodes do not consume more
energy when relaying data in every node-adding procedure. Please refer to [1] for more detailed
information about theorems related to EHAEC.

4 EHAEC for One-Fault Tolerance

Our proposed algorithm for one-fault tolerance (EHAEC-1FT) maintains the two-connectivity of
the network, because it can tolerate the failure of one node in the WSN. When the requirement is
more than two-connectivity, it can be extended to X-nFT, which can be used by any spanning tree
routing algorithm X for n-fault tolerance.

Algorithm 2: EHAEC-1FT(A,w,r)
01 for each u ∈ A
02 key[u]←∞
03 for each y ∈ A\{x}, where x ∈ A and π[y] = x
04 for each z ∈ Adj[x]− y
05 for each s ∈ Adj[π[y]]− y and s ∈ A\1FTSG, s ̸= r, y ̸= r, π[y] ̸= r
06 P (s, π[y]) =

∑
a∈1FTT ER(a, π[a]), where π[a] = π[y]

07 w(s, π[y]) = w(s, π[y]) + P (s, π[y])
08 if s ∈ Q and π[s] = π[y] and key[s] is w(s, π[y]) that in last round
09 key[s]← w(s, π[y])
10 if z ∈ A\{x, y} and w(z, x) < key[z]
11 π[z]← x
12 key[z]← w(z, x)
13 1FTSG← {(z, π[z]) : z ∈ A\{r, x, y}}
14 edge direction: dir(z, π[z])
15 return 1FTT = A ∪ 1FTSG

EHAEC-1FT uses EHAEC to find a subgraph of G that, in union with the graph of set A
obtained by EHAEC, can maintain two-connectivity and one-fault tolerance. We call this subgraph
a “one-fault tolerant subgraph (1FTSG)” and the union graph a “one-fault tolerant tree (1FTT)”.
The input to EHAEC-1FT is graph A of EHAEC, and the output is the union graph 1FTT. The
basic idea of EHAEC-1FT is to first suppose that every node in A has failed, and then find new
parent nodes for the child nodes that belonged to the failed nodes. Note that if a node fails, all the
edges were connected to the failed node are deleted from the tree. In EHAEC-1FT, Lines 1 and 2
initiate the edge weights. Line 3 identifies the child nodes of the failed nodes, and Lines 4-14 use
EHAEC to find new parent nodes for only these child nodes. Note that Lines 4-12 and 13-14 in
EHAEC-1FT have the same function as Lines 10-18 and 8-9 in EHAEC, only the parameters are
different. Finally, Line 15 returns tree 1FTT. Because Lines 3-4 are executed O(|V |) times, and
Lines 5-15 are executed O(|E| lg |V |) times, the complexity of EHAEC-1FT is O(|V ||E| lg |V |).
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Figure 6: EHAEC-1FT example.

Table 1: 1FTSG lookup table

Failed node Affected nodes Added edge
a c,d (c,BS)
b e,f (e, d)
c d (d, a)
d NIL NIL
e f (f, b)
f NIL NIL

The EHAEC-1FT example in Fig. 6 uses the output A of EHAEC that is shown in Fig. 5(7).
Figure 6(1) shows the graph when node a has failed. The edges connected to a are deleted because
of this failure. The failure of node a means that c and d are removed from the communication
tree. Therefore, node c takes BS as its new parent node and maintains the connectivity of the
communication tree (Lines 4-14). Therefore, edge (c,BS) with dir(c,BS) is added to subgraph
1-FTSG in Fig. 6(2). Similarly, if nodes b, c, d, e, and f failed in turn, new edges would be added to
1-FTSG, as shown in Table 1. Consequently, 1FTSG is constructed as in Fig. 7(1). Moreover, the
combination of 1FTSG with the tree formed by EHAEC constructs a 1FTT (Line 15), as shown in
Fig. 7(2).

As mentioned above, EHAEC-1FT can be extended to X-nFT to maintain n-fault tolerance for
any tree routing algorithm X. EHAEC-1FT can be extended to satisfy the requirement of tolerating
an n-node failure, as shown in Algorithm 3. X-nFT finds all the child nodes of n failed nodes (Lines
1 and 2), and then uses a particular tree routing algorithm (Line 3) to build new connections between
these child nodes and other nodes in the tree, resulting in n-fault tolerance. For every i = 1...n,
X-nFT returns an i-fault tolerant subgraph, iFTSG (Line 4). Finally, X-nFT returns the union
graph nFTT , which is n-fault tolerant.

Different systems have different fault tolerant redundancy requirements. There are two ways to
make a system fault tolerant: create a fault tolerant redundancy when or before a failure (standby
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Figure 7: Graph of 1FTSG and 1FTT.
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Algorithm 3: X-nFT(A,r)
01 for i = 1 to n
02 for all yi ∈ A\{xi}, where xi ∈ A and π[yi] = xi

03 do TreeRoutingAlgorithm(A,r)
04 return iFTSG
05 return nFTT = A ∪ 1FTSG ∪ 2FTSG ∪ ... ∪ nFTSG

fault tolerance, STB), or constantly have a fault tolerant redundancy (active fault tolerance, ACT).
With STB, the WSN uses tree A of EHAEC for data communication. If n nodes fail, only the parts
of subgraphs 1FTSG...nFTSG that can tolerate the failed nodes are used with tree A. ACT uses
tree nFTT, which is a complete combination of tree A and the fault-tolerant subgraphs.

5 Active Spare Selecting Algorithm

We considered another provisioned tolerance scheme that finds spare nodes for the failed node, which
serve as cut vertexes. In this situation, the spare node takes the responsibility of the failed node. In
most related works, spare nodes are additional nodes that placed at right positions accompany with
the failed nodes. However, in WSN systems for infrastructures such as bridges and tunnels, it is
difficult to place additional nodes because we do not know which node is likely to fail. Placing spares
around some critical node is risky. Moreover, additional spare nodes increase costs. Therefore, in
this section, we present the ASSA, which attempts to select appropriate nodes in the network to be
used as active spare nodes. The spare nodes only substitute the failed critical nodes. Here, critical
nodes are nodes that act as cut-vertexes in the network, i.e., the internal nodes. When a critical
node fails, the ASSA selects an active spare node to take on its responsibilities.

Algorithm 4: ASSA(A,α,β)
01 input impact factor α and β, where α+ β = 1
02 for each u ∈ A\L
03 CL(u) = NumOfSuccessor(u)
04 for each y ∈ A\L, where π[y] = z
05 for each x ∈ Adj[y]
06 CL TEMP [x] = CL(x) + CL(y) + 1
07 w(x, y) = ET(x,y)

+ ER(x,y)

08 calculate NCL = 1
RMS[CL TEMP ] and Nw = 1

RMS[w]

09 for each x ∈ Adj[y]
10 NEC(x, y) = α ∗NCL(x) + β ∗Nw(x, y)
11 for each z ∈ A\L, where π[y] = z, and π[z] ̸= x
12 if z failed
13 for each y ∈ A\L, where π[y] = z, start the loop with CL(y) in decreasing order
14 if ∃x ∈ A\L, where NEC(x, y) is minimum
15 π[y] = x
16 CL(x) = CL TEMP (x)
17 PRCT ← {(y, π[y])}
18 return PRCT

In the ASSA, we use the concept of a sensor node’s critical level CL(x), which is the number
of successor nodes to x (CL(x) = NumOfSuccessor(x)). Generally, a node is more critical if
it transmits data from more child or successor nodes. Therefore, it has a higher critical level if
it has more successors. Moreover, because the ASSA is designed to select active spares using a
combined weight of the node’s critical level and edge weight, we also use an evaluation criterion
EC(x, y) = α∗CL(x)+β ∗w(x, y). Suppose that node z fails and y is a child node of z. For a spare
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Figure 8: ASSA example.

node candidate x, the evaluate criterion considers the weight of the critical level of node x and the
edge weight w(x, y). Because CL(x) and w(x, y) are different metrics, we normalize the values using

N = 1
RMS[x] so that they are comparable. RMS[x] =

√
1
N

∑N
i=1(xi)2 indicates the root mean square,

which is a common normalization method. Hence, CL(x) and w(x, y) are normalized to NCL(x) and
Nw(x, y), respectively, and the normalized EC(x, y) is NEC(x, y) = α ∗ NCL(x) + β ∗ Nw(x, y).
Moreover, we set α + β = 1. System designers can set the values of α and β to express their
inclination towards fault tolerance or energy efficiency.

We can now explain how the ASSA works. First, in Line 1, the values of α and β are chosen by
the system designer. Line 3 initializes the critical levels of all nodes u in tree A (except the leaf node
set L). Lines 4 to 7 define a temporary critical level value (CL TEMP [x]) for each node x that is
a neighbor to node y such that y’s current parent node is z. We set CL TEMP [x] in this way so
that, if node y’s parent node z fails and node y takes node x as its new parent, then the critical
level of x is updated. Line 7 sets the edge weight w(x, y), which indicates the energy consumption
for data communication between nodes x and y. Note that w(x, y) does not include the phony
weight, because the ASSA uses the critical level. Line 8 calculates the normalized CL TEMP and
w(x, y). Lines 9 and 10 calculate the normalized evaluation criterion, NEC(x, y), which determines
if x should be selected as be the active spare node of z. In Lines 11 to 17, if any node z has failed,
all its child nodes (y) will find the new proper parent node x that has the minimum NEC(x, y).
This procedure starts with node y in descending order of CL(y). Line 15 sets x as the new parent
node of y, and Line 16 updates CL(x). Line 17 stores the new link relation of {(y, π[y])} to PRCT ,
where PRCT is defined as the partition route changed tree. Finally, Line 18 returns PRCT . We
calculated the complexity of ASSA in three parts. First, Lines 2 and 3 are executed O(|A − L|)
times. Next, for Lines 4-10, Line 4 is executed O(|A−L|) times, and Lines 5-7 and 9-10 are executed
O(|E|) times. Therefore, the second part is executed O(|E||A−L|) times. In the third part, Line 11
is executed O(|A− L|) times, and Lines 13-17 are executed O(|A− L|) times. Therefore, the third
part is executed O(|A− L|2) times. Overall, the complexity of ASSA is O(|A− L|2).

We now give an example that uses ASSA, as in shown in Fig. 8. Figure 8(1) shows a tree
route generated by a spanning tree algorithm. In Fig. 8(2), an internal node b has failed. Because
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Figure 9: Simulated lifetime for the first situation (energy efficiency is more important than fault
tolerance).

Table 2: Efficiency when energy efficiency is more important than fault tolerance.

Shutdown percentage Direct LEACH Prim EHAEC
1% 1 2.2 3.7 4.8
25% 1 2.2 3.8 4.1
50% 1 1.9 3.3 3.4

active spares should be selected so that node c can tolerate the failure of node b, the normalized
evaluate criterion NEC(x, y) for each possible link between the child nodes and their neighbors are
calculated in Line 10. By comparing the values of NEC(x, y) for different α and β, the appropriate
spare nodes are found using lines 14-17. Figures 8(3-5) show the new routes built by adapting active
spares when α = 1 and β = 0, α = 0.75 and β = 0.25, α = 0.5 and β = 0.5, α = 0.25 and β = 0.75,
and α = 0 and β = 1, respectively.

The ASSA considers both fault tolerance and energy efficiency, and can be adapted to different
applications. First, we must consider the situations when either fault tolerance or energy efficiency
is more important. Energy efficiency is considered more important when the WSN environment is
stable. For instance, when there are no or very few signal interferences, sensor nodes are rarely
damaged, or there are short communication distances. Fault tolerance is considered more important
in the opposite case, when the environment is not stable, or when sensor nodes are not independent
of each other. For instance, if an internal node only can send its data when it has already received
its child nodes’ data. Secondly, we also considered some concrete situations of ASSA, for example,
when the number of nodes is large, or a high density of nodes in a WSN. If the number of nodes
is large, it is easier to find child nodes, and NCL(x) is relatively large. On the contrary, the
communication distance is short if the number of nodes is large or the WSN is dense, so Nw(x, y)
is small. Therefore, NCL(x) is the dominant factor that affects the value of NEC(x, y) if α ̸= 0, in
this case. Hence, if the energy efficiency is more important than fault tolerance, α = 0 and β = 1
are effective. Alternatively, we may have a low density or small WSN. In this case, NCL(x) is small
and Nw(x, y) is large. Consequently, we can set α = 1 and β = 0 if a WSN requires fault tolerance
more than energy efficiency.

6 Simulation

We evaluated the effectiveness of our algorithms by simulating the lifetime of an entire WSN, and
compared it with the lifetime of each node when using direct data transmission and Prim’s algo-
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Table 3: Efficiency when fault tolerance is more important than energy efficiency.

Stoppage percentage EHAEC EHAEC-1FT-STB EHAEC-1FT-ACT ASSA FGSS2

1% 1 1 0.41 1 0.38
25% 1 1.17 0.53 1.25 0.51
50% 1 1.23 0.55 1.32 0.37

rithm. In direct data transmission, sensing data are directly transmitted from each node to the
base station. Because we are concerned with energy efficiency and fault tolerance, we used two
situations when evaluating EHAEC, EHAEC-1FT, and ASSA. That is, we considered when: 1)
energy efficiency is more important than fault tolerance, and 2) fault tolerance is more important
than energy efficiency. We simulated a 50-node WSN configured as shown in Fig. 1, for both situ-
ations. The lifetime of a battery-powered WSN is defined as the number of communication rounds
till λ% of the sensor nodes stop operating, where λ is specified by the system designer [22]. We
assumed that the WSN remained functional as long 50% of the nodes were operating. We also
assumed that each node had an energy capacity of 0.5J . We calculated the lifetime of the nodes by
first calculating the energy consumption of each node for different routes using Equations (1) and
(2), and then calculated the number of data communication rounds (lifetime) for each node using
(node energy capacity)/(node energy consumption).

6.1 Energy-Efficiency-First Evaluation

In the first situation (energy efficiency is more important than fault tolerance), if an internal node
stops operating, its child nodes must find another node to relay their data. In this simulation, the
communication route is rebuilt by the routing algorithms if a node stops operating, and the energy
consumption of each node changes in accordance with the rebuilt route. The algorithm uses this
route rebuilding process to ensure that we use the entire the energy capacity of each sensor node even
if its parent node has stopped operating. Figure 9 shows the simulation results for communication
using direct data transmission and using routes generated by LEACH 3, Prim’s algorithm, and
EHAEC. Table 2 shows the corresponding efficiencies, where efficiency is defined as the WSN lifetime
ratio of (routing algorithm)/(Direct), i.e., the efficiency of direct data transmission is 1. These
results show that EHAEC, Prim’s algorithm, and LEACH performed much better than direct data
transmission, and that EHAEC outperformed Prim’s algorithm and LEACH. Moreover, the gradients
of the EHAEC and Prim curves show that EHAEC can balance the lifetime of each node (i.e., avoid
energy holes) better than Prim’s algorithm. The gradients of the EHAEC and LEACH were very
similar because LEACH also attempts to avoid energy holes by changing clusters and cluster heads.
However, the WSN lifetime was much longer using EHAEC than LEACH. Our simulation results
showed that EHAEC performed twice as well as LEACH.

6.2 Fault-Tolerance-First Evaluation

For the second situation (fault tolerance is more important than energy efficiency), we assumed
that a node had stopped operating when there were no possible edges for it to transmit its data
to the base station, even if the node had not run out of energy. Consider the example in Fig.
7(2). Although the route guarantees 2-connectivity, if nodes b and d have stopped, nodes e and
f are also considered to have stopped because they cannot transmit data to the base station. For
the route generated by EHAEC, we compared the ASSA and EHAEC-1FT with the standby and
active fault tolerances using EHAEC (which does not consider fault tolerance). We used α = 0
and β = 1 in this simulation, considering that we wanted the best performance in terms of energy
efficiency. We also compared these results with FGSSk. Although FGSSk can find a k-connected

3Although our algorithms and LEACH use different network topologies, in these simulations we applied LEACH’s
idea to our WSN topology, as shown in Fig. 1.
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FGSS
2

Figure 10: Simulated lifetime for the second situation (fault tolerance is more important than energy
efficiency).

spanning subgraph, we assumed that it maintained 2-connectivity in the simulations so that we
could compare it with our algorithms. Therefore, FGSSk is FGSS2 in these simulations. Figure
10 shows the simulation results. Table 3 shows the corresponding energy efficiencies. With standby
fault tolerance, EHAEC-1FT was more efficient than EHAEC, and with active fault tolerance it was
less efficient. This is because the communication tree used with the active fault tolerance was larger
than that used with the standby fault tolerance. Therefore, it consumed more energy. From the fault
tolerance perspective, EHAEC cannot tolerate node failure whereas EHAEC-1FT can tolerate one
node failure using standby and active fault tolerance. Moreover, the ASSA was more efficient than
the other three methods, because the batteries of all the nodes were used and because it can tolerate
all node failures at any time. EHAEC-1FT and ASSA are more efficient than FGSS2. However, the
results of FGSS2 and EHAEC-1FT in active mode are almost the same. This is because FGSS2

generates a 2-connected spanning tree based on Kruskal’s algorithm, and the redundant routes are
always applied during wireless communications. Next, we investigated the fault tolerant effects of
the algorithms by comparing the WSN termination speeds in Fig. 11. The speed of the WSN
termination is defined as speed =

lifetimelongest

lifetimeself
, where lifetimelongest is the longest lifetime of the

five simulated algorithms under the current WSN lifetime definition (i.e., the length of time until
λ% of sensor nodes stop operating), and lifetimeself is the lifetime of a WSN using one of the
algorithms. A quicker speed corresponds to a worse fault tolerance. Therefore, Fig. 11 shows that
the ASSA performed the best and FGSS2 was the worst.

We also compared the energy efficiency and failure times using different values of α and β: α = 1
and β = 0, α = 0.5 and β = 0.5, and α = 0 and β = 1. Figures 12 and 13 show the results. In Fig.
12, there were no significant differences when using different values of α and β (because the ASSA
finds spare nodes for the route generated by EHAEC, which is originally energy efficient). However,
the ASSA results appears to be more energy efficient for larger β. There were less node failures
when α was larger (Fig. 13). The result agrees with idea behind the ASSA.

7 Conclusion

We investigated the energy efficiency and fault tolerance of WSNs, given that the communication
distances and energy hole problem are critical to the battery life of the sensor nodes, which affects
the network’s lifetime. Our EHAEC routing algorithm was based on Prim’s algorithm and achieves
energy efficient wireless communications by minimizing the energy consumed by sending and relaying
data. It avoids energy holes to the maximum extent possible without reconfiguring the network,
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Figure 11: Simulated fault tolerant effect when fault tolerance is more important than energy effi-
ciency.

Figure 12: Simulated lifetime for the ASSA with different values of α and β.

thus extending its lifetime. Moreover, considering that a WSN may have unreliable sensor nodes, we
developed two proactive fault tolerant routing algorithms. The EHAEC-1FT algorithm is based on
EHAEC, and constructs two-connectivity routes that achieve one-node failure tolerance in WSNs.
We also extended EHAEC-1FT to X-nFT for n-node failure tolerance using an arbitrary spanning
tree routing algorithm X. We developed the ASSA to select active spare nodes in the network. By
varying the impact factors, α and β, the ASSA can select active spare nodes that make the route
more energy efficient or more fault tolerant.

We evaluated the effectiveness of our proposed algorithms in terms of two situations: energy
efficiency is more critical, or fault tolerance is more critical. When not considering the fault tolerance,
EHAEC extended the lifetime to more than 3.4 to 4.8 times that of a direct data transmission, and
extended the lifetime to more than 1.8 to 2.2 times that of LEACH, in a 50-node network. When
considering the fault tolerance, the proposed algorithms were more effective than FGSSk. EHAEC-
1FT with standby fault tolerance more effectively extended the WSN’s lifetime than EHAEC, and
EHAEC-1FT with active fault tolerance was less effective than EHAEC. EHAEC-1FT was more
effective than EHAEC in terms of the fault tolerance, because it can tolerate the failure of one node.
Moreover, our simulation results showed that the ASSA was more efficient than EHAEC-1FT, that
large values of α produce a highly fault tolerant topology, and that large values of β increase the
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Figure 13: Simulated number of node failures for the ASSA with different values of α and β.

energy efficiency.
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