
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 2, pages 149–166, July 2016

A Practical Algorithm for Embedding Graphs on Torus1

Jiahua Yu

School of Computing Science, Simon Fraser University
Burnaby, BC, V5A 1S6, Canada

Qian-Ping Gu

School of Computing Science, Simon Fraser University
Burnaby, BC, V5A 1S6, Canada

Received: February 15, 2016
Accepted: April 4, 2016

Communicated by Akihiro Fujiwara

Abstract

Embedding graphs on the torus is a problem with both theoretical and practical importance.
It is required to embed a graph on the torus for solving many application problems such as
VLSI design, graph drawing and so on. Polynomial time and exponential time algorithms for
embedding graphs on the torus are known. However, the polynomial time algorithms are very
complex and their implementation has been a challenge for a long time. On the other hand,
the implementations of some exponential time algorithms are known but they are not efficient
for large graphs in practice. To develop an efficient practical tool for embedding graphs on
the torus, we propose a new exponential time algorithm for embedding graphs on the torus.
Compared with a well used previous exponential time algorithm, our algorithm has a better
practical running time.

Keywords: Graph algorithms, embedding graphs on surfaces, torus, computational study

1 Introduction

Embedding a graph G on a surface is to draw each vertex of G as a point and each edge between two
vertices as a curve connecting the points of the two vertices on the surface. Graph G is embeddable
on a surface if G can be drawn on the surface in such a way that no two edges cross. For example,
a graph embeddable on a sphere (plane) is called a planar graph. Embedding graphs on surfaces
is an important field in graph theory and has numerous applications such as VLSI design, graph
drawing, visualizing relations and structural properties among data, and so on. Algorithms for
embedding graphs on surfaces have been extensively studied. The simplest surface in the study
of graph embedding is the sphere which has orientable genus zero. Linear time algorithms have
been developed and implemented for embedding graphs on the sphere [5, 7, 12]. These algorithms
and their implementations are widely used in many applications such as the libraries for planar

1A preliminary version of this paper appeared in the Proc. of the 3rd International Symposium on Computing
and Networking (CANDAR2015) [28].

149

A Practical Algorithm for Embedding Graphs on Torus

graphs [1, 2]. Much effort has been made for embedding graphs on surfaces of genus greater than
zero. Linear time algorithms for embedding graphs on surfaces of bounded genus have been known
[15, 17, 18]. These algorithms, however, are too complex to be implemented and are mainly of
theoretical interest. The problem of whether a graph is embeddable on a surface of genus k or not
is NP-complete when k is part of the input [25, 26].

Developing efficient tools for embedding graphs on surfaces is of great interest in practice. A
projective plane is the surface of non-orientable genus one. A linear time algorithm for embedding
graphs on the projective plane is known [16]. This algorithm is simplified with a trade off that
increases the running time to O(n2) [20]. The simplified algorithm has been implemented and seems
the first polynomial time algorithm implemented for embedding graphs on a surface other than the
sphere.

A torus is the surface of orientable genus one. Embedding graphs on the torus is a more prevailing
problem for which much work is in progress and an efficient implementation is promising. A linear
time algorithm for embedding graphs on the torus is proposed [13] and a simplified version with
O(n3) running time is introduced [14]. Although an implementation of the O(n3) algorithm was
announced [3], it does not seem working [19, 24]. To our best knowledge, a working implementation
of polynomial time algorithm for embedding graphs on the torus is not known and available tools
for embedding graphs on the torus are the implementations of exponential time algorithms [22, 27].

All previous algorithms for embedding graphs on the torus follow a common approach called
embedding extension [18]: Given a graph G, the planarity of G is first checked. If G is planar, a
planar embedding of G is used as an embedding of G on the torus. For a nonplanar G, a subgraph
called frame of G is embedded on the torus such that the embedding of the frame contains a non-
contractible cycle on the torus (if a nonplanar G is embeddable on the torus then any embedding of
G on the torus has a non-contractible cycle), and then the remaining parts of G are attached to the
embedding of the frame.

Neufeld and Myrvold introduce an algorithm (NM Algorithm) which chooses a cycle in a nonpla-
nar G as the frame [22]. Graph G is nonplanar if it has a subgraph homeomorphic to K5 (complete
graph of five vertices) or K3,3 (complete bipartite graph of six vertices, three of which connect to
each of the other three) which are called obstructions for the sphere (definitions of homeomorphic
and obstructions for surfaces are given in the next section). Subgraphs homeomorphic to K5 or K3,3

can be used as frames for embedding graphs on the torus as well [18]. Based on this, Woodcock
gives an algorithm which uses such a subgraph as the frame and finds all non-equivalent embeddings
(definition in the next section) of the frame on the torus [27]. For each embedding of the frames in
NM Algorithm and Woodcock’s algorithm, there are exponentially many attachments (the ways to
attach the remaining parts of G) to the embedding of the frame.

It is observed that a more complex frame places more restrictions on the embedding extension,
resulting in a smaller number of attachments to the frame. A trade off is that a more complex
frame has more non-equivalent embeddings on the torus to be checked, resulting in a more complex
implementation. Juvan and Mohar propose an algorithm (JM Algorithm) which uses more complex
frames [14]. For a nonplanar graph G, JM Algorithm further checks if G is embeddable on the
projective plane. For G embeddable on the projective plane, JM Algorithm finds an embedding of G
on the torus or concludes G not embeddable on the torus. For G not embeddable on the projective
plane, JM Algorithm finds a subgraph K homeomorphic to an obstruction for the projective plane as
the frame, finds all non-equivalent embeddings Π(K) of K on the torus and for each Π(K), tries all
attachments to find an embedding of G or concludes G not embeddable on the torus. JM Algorithm
further reduces the number of attachments to each Π(K) from exponential many to polynomial
many by complex techniques which are challenging to implement.

In this paper, we propose a new exponential time algorithm for embedding graphs on the torus.
Similar to JM Algorithm, our algorithm follows the embedding extension approach and uses a
subgraph homeomorphic to an obstruction for the projective plane as the frame. However, we avoid
the complex techniques for reducing the number of attachments and use a simple approach for the
attachment part. Our approach for the attachment may run in exponential time in the worst case but
is efficient in practice and reduces the implementation complexity significantly. By the above, we have
a balanced point between the running time and the implementation complexity for our algorithm.

150

International Journal of Networking and Computing

A major challenge to use a subgraph K homeomorphic to an obstruction for the projective plane as
the frame is to find all non-equivalent embeddings of K on the torus because there can be hundreds
such embeddings for K homeomorphic to one obstruction and there are 103 obstructions. We clear
this hurdle by a simple algorithm for computing the embeddings. New ingredients in our algorithm
also include pre-processing steps to find some graphs whose embeddability on the torus can be
computed without using the attachment part, and prune schemes to reduce the running time for
the attachment part. Computational results show that our algorithm has a better practical running
time than a well used previous exponential time algorithm. Our implementation can also be used
as a base to develop an implementation for JM Algorithm.

The rest of this paper is organized as follows. Next section gives the preliminaries of the paper.
In Section 3, we review the techniques for embedding graphs on the projective plane and torus on
which our algorithm builds. Our new algorithm is described in Section 4. Computational results
are reported in Section 5 and the final section concludes the paper.

2 Preliminaries

A graph G in this paper is undirected and consists of a set V (G) of vertices and a set E(G) of edges.
For a set A ⊆ E(G) of edges, let V (A) be the set of vertices incident to an edge of A. We denote by
degG(v) the node degree of v. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
For A ⊆ E(G) and W ⊆ V (G), we denote by G[A] and G[W] the subgraphs of G induced by the
subset A of edges and subset W of vertices, respectively. Further, for a subgraph H of G, we denote
by G \H the subgraph of G induced by the edge set E(G) \ E(H).

A walk of a graph G is a sequence e1, ..., ek of edges, where ei = {vi−1, vi} ∈ E(G) for 1 ≤ i ≤ k.
A walk is closed if v0 = vk. A walk is called a path if no vertex is repeated in the sequence. A closed
walk is called a cycle if no vertex is repeated in the sequence except v0 = vk. Graph G is connected
if there is a path between any two vertices in G. Graph G is k-connected if it remains connected
after removing any k−1 vertices from G. A subdivision of edge e = {u, v} in G is to replace e with a
new vertex w and two edges {u,w} and {w, v}. A graph H is a subdivision of G if it can be obtained
from G with a series of edge subdivisions. Two graphs G and G′ are homeomorphic if they have a
common subdivision H.

The main reference for graphs on surfaces in this paper is the monograph by Mohar and
Thomassen [21]. A surface (without boundary) is a connected Hausdorff space in which every point
has an open neighborhood homeomorphic to the open subset {(x, y)|0 < x, y < 1} of the Euclidean
plane E2. A surface is orientable if a consistent clockwise rotation can be defined around every
point of the surface, otherwise non-orientable. The sphere is an orientable surface. An open disc in
a surface is an open subset of the surface homeomorphic to the open subset {(x, y)|0 < x, y < 1}
of E2. For an open subset r of a surface, we denote by r the closure of r and bd(r) = r \ r the
boundary of r. To add a handle to a sphere, we remove two disjoint open discs D1 and D2 from
the sphere, and identify bd(D1) with bd(D2) such that the clockwise orientations around bd(D1)
and bd(D2) disagree. The genus of a sphere is defined zero. An orientable surface of genus h is
obtained by adding h handles to the sphere. The torus (see Figure 1 (a)) is obtained by adding one
handle to the sphere. To add a crosscap to a sphere, we remove one open disc D homeomorphic to
{(x, y)|0 < x, y < 1} from the sphere, identify every point (x, 0) of bd(D) with the point (1− x, 1)
of bd(D), 0 ≤ x ≤ 1, and identify every point (0, y) of bd(D) with the point (1, 1 − y) of bd(D),
0 ≤ y ≤ 1. A non-orientable surface of non-orientable genus l is obtained by adding l crosscaps to
the sphere. The projective plane, denoted by N1, is made by adding one crosscap to the sphere.

A graph G is embedded on a surface Σ if vertices of V (G) are mapped to distinct points in Σ
and every edge e = {u, v} is mapped to a curve in Σ with end points u and v such that distinct
edges do not intersect except at the shared end points. The collection of such points and curves is
called an embedding, denoted by Π(G), of G. We may use v ∈ V (G) both for vertex v of G and for
the point in Π(G) corresponding to v, and use e = {u, v} ∈ E(G) both for edge e of G and for the
curve in Π(G) corresponding to e.

Graph G is embeddable on a surface if there is an embedding of G on the surface, otherwise

151

A Practical Algorithm for Embedding Graphs on Torus

contractible cycle on the torus

non-contractible cycle on the torus

(b)

(a) A torus

Figure 1: A torus and cycles on the torus.

non-embeddable. The genus g(G) and non-orientable genus g̃(G) of a graph G are the minimum h
and l such that G is embeddable on the orientable surface of genus h and non-orientable genus l,
respectively. A graph G is a (topological) obstruction for Σ if degG(v) > 2 for every v ∈ V (G),
G is not embeddable on Σ and G \ {e} is embeddable on Σ for every e ∈ E(G). A graph is non-
embeddable on Σ if and only if it has a subgraph homeomorphic to an obstruction for Σ. A graph
embeddable on the torus is called toroidal otherwise non-toroidal.

For an embedding Π(G) of G on Σ, each connected component of Σ \ Π(G) is called a face of
Π(G) or a face of G. Each face r is an open region (subset) of Σ. We denote by R(Π(G)) the set of
faces of Π(G). We say that a vertex v (resp. edge e = {u, v}) is incident to a face r if v ∈ r (resp.
e ∩ r contains a point x with x 6= u and x 6= v). We denote by V (r) and E(r) the sets of vertices
and edges incident to face r, respectively. The vertices and edges incident to face r form a closed
walk in Π(G) that is the boundary bd(r) of r.

A cycle (closed curve) in Π(G) is contractible if it bounds an area homeomorphic to an open
disc, otherwise non-contractible (see Figure 1 (b) for contractible and non-contractible cycles on the
torus). Given an embedding Π(G) of G on a surface Σ, a G-noose is a closed curve on Σ that does
not intersect any edge e = {u, v} of G except its end vertices u, v. The length of a G-noose is the
number of vertices of G it intersects. The minimum length of a non-contractible G-noose is known
as the facewidth of G, denoted by fw(G).

For a graph G embedded on a surface, the rotation of a vertex v of G is a cyclic ordering
(clockwise or counter-clockwise) of the edges incident to it. For a vertex v with degG(v) > 1, there
are (degG(v)−1)! different rotations of v, where (degG(v)−1)! is the factorial of (degG(v)−1). The
rotation system of G is the collection of the rotations of all vertices and a sign +1 or -1 on every edge
of G, where an edge has the sign +1 if the rotations of its two end vertices have the same direction,
and has sign -1 otherwise. A graph embedded on an orientable surface has a rotation system with
the sign +1 on every edge, while a rotation system for a graph embedded on a non-orientable surface
may have both signs +1 and -1 on edges. Given a graph G, each embedding of G on an orientable
surface corresponds to a rotation system of G. Two embeddings of G on an orientable surface are
(combinatorial) equivalent if they have the same rotation system, otherwise non-equivalent. A graph
G has

∏
v∈V (G),degG(v)>2(degG(v)− 1)! different rotation systems on an orientable surface.

3 Review of basic techniques

We briefly review some basic techniques for embedding graphs on the projective plane and torus.
Our algorithm for embedding graphs on the torus builds on these techniques. We first introduce
some notions in these works.

Let K be a subgraph of a connected graph G. A K-bridge [18] in G is a subgraph B of G that is
either an edge e = {u, v} ∈ E(G) with u, v ∈ V (K) but e 6∈ E(K) or a subgraph C ∪X of G, where

152

International Journal of Networking and Computing

(a)

(b)

Figure 2: (a) A graph G and a highlighted subgraph K. (b) K-bridges in G.

C is a connected component of G[V (G) \ V (K)] and X = {{u, v} ∈ E(G), u ∈ V (C), v ∈ V (K)}.
Figure 2 gives examples of K-bridges. Given K, the set of K-bridges B can be calculated with a
modified version of the depth first search (DFS) on the edges of G. For a K-bridge B, V (B)∩V (K)
is called the attachment vertex set of B, denoted by AttV(B).

3.1 Embedding graphs on the projective plane

For embedding graphs on the projective plane N1, a linear time algorithm is known [16]. A simplified
version of the algorithm, called MR Algorithm, with an O(n2) running time and its implementation
are reported [20]. We review MR Algorithm which will be used as a subroutine in our algorithm for
embedding graphs on the torus. For an input graph G, MR Algorithm first checks if G is planar. If
the answer is yes, then a planar embedding of G is computed as an embedding of G on N1. Otherwise,
a subgraph K of G homeomorphic to K5 or K3,3 is computed. Graph G can be decomposed into K
and a set B of K-bridges. MR Algorithm finds all non-equivalent embeddings Π(K) of K on N1 (27
and 6 Π(K) for K homeomorphic to K5 and K3,3, respectively). For each embedding Π(K), every
bridge of B is assigned to a face r of Π(K) and embedded on r.

For each face r of Π(K) in N1, a vertex v in G appears in the boundary bd(r) of r at most once
(r has 0-singularity). A face r is called a candidate for bridge B if AttV(B) ⊆ V (r). To embed B in
a candidate r, each vertex v of AttV(B) is identified by the vertex v in bd(r) and draw the rest of
B on r. This is called an attachment of B to r. A bridge has a unique attachment to a 0-singularity
candidate. An attachment of B to r is legal if a planar embedding of B exists on r. A candidate r
is admissible to a bridge B if B has a legal attachment to r. Two bridges B1, B2 and a face r are
compatible if r is admissible to B1 and B2 and the union of legal attachments of B1 and B2 to r has
a planar embedding on r, otherwise B1, B2, r are incompatible.

If each bridge of B has an admissible candidate (otherwise G is not embeddable on N1), MR
Algorithm converts the problem of assigning bridges to faces into the 2-SAT problem. Assume that
each bridge of B has at most two admissible faces. The 2-SAT instance for the bridge assignment
problem is constructed as follows:

• For every bridge B and every face r ∈ R(Π(K)), a Boolean variable (B, r) is created such that
if B is assigned to r then (B, r) = true, otherwise (B, r) = false.

• For each bridge B which has only one admissible face r, a clause ((B, r) ∨ (B, r)) is created.

• For each bridge B which has two admissible faces r1 and r2, two clauses ((B, r1)∨ (B, r2)) and
((B, r1) ∨ (B, r2)) are created to guarantee that B is assigned to only one face.

• For every incompatible triple B1, B2, r, a clause ((B1, r)∨ (B2, r)) is created to guarantee that
B1 and B2 will not be both assigned to r.

It is easy to check that a true assignment for the 2-SAT instance gives an assignment of bridges to
faces such that a planar embedding of the bridges can be found in the face assigned to the bridges.

153

A Practical Algorithm for Embedding Graphs on Torus

(a)

C

C C’

(b)

Figure 3: (a) A cycle C of K5 is embedded as a non-contractible cycle on the torus. (b) The torus
is cut along C into a cylinder.

Given that there are O(n) bridges, O(1) faces and O(n2) incompatible 3-tuples, the 2-SAT formula
has O(n) variables and O(n2) clauses and can be solved in O(n2) time.

If every bridge of B has at most two admissible faces, then whether G can be embedded on N1

can be decided by checking if the 2-SAT instance is satisfiable or not. However, not every bridge
in B has at most two admissible faces. A good news is that only a constant number of bridges
have three admissible faces, and all other bridges have at most two. For each bridge B with three
admissible faces, the assignment of B to each admissible face can be enumerated. A combination of
an enumeration of every such face is called an arrangement. For each arrangement, a 2-SAT instance
is created to solve the bridge assignment problem for other bridges. The number of arrangements is
a constant for K5 and K3,3.

3.2 Algorithms for embedding graphs on the torus

Neufeld and Myrvold introduce a simple algorithm (NM Algorithm) for embedding graphs on the
torus [22]. The algorithm is based on the following observation: Every embedding of a nonplanar
toroidal graph G on the torus has a non-contractible cycle C. Figure 3 (a) gives an example of C in
an embedding of K5. Given a nonplanar toroidal graph G, intuitively, NM Algorithm finds a cycle
C of G as the frame and embeds C as a non-contractible cycle on the torus, cuts the torus along C
to get a cylinder, makes a duplication of C on each end of the cylinder, and tries to get a planar
embedding for the rest part of G on the cylinder (see Figure 3 (b) for an example). It is shown [22]
that for a nonplanar toroidal graph G, at least two cycles of a cycle basis of G are non-contractible
in any embedding Π(G) of G on the torus; and at least two cycles in the cycle basis of a subgraph K
of G homeomorphic to K5 or K3,3 are non-contractible in any embedding Π(G) on the torus. Skoda
and Mohar [24] further show that at least one cycle in the cycle basis of K homeomorphic to any
subgraph K4 of K5 or any subgraph K3,2 of K3,3 is non-contractible in any embedding Π(G) on the
torus. By this result, an embedding of G on the torus can be found by trying only distinct cycles of
the cycle basis of K homeomorphic to K4 or K3,2.

An improved version of NM Algorithm works as follows [24]: Given a graph G, if G is planar
then a planar embedding of G is used as an embedding of G on the torus. For a nonplanar G,
the algorithm finds a subgraph K of G homeomorphic to K5 or K3,3 and a subgraph K ′ of K
homeomorphic to K4 or K3,2. For each cycle C in the cycle basis of K ′, the algorithm embeds C as
a non-contractible cycle Π(C) on the torus, cuts the torus along C to get a cylinder, puts C on one
end of the cylinder, makes a duplication C ′ of C on the other end of the cylinder, and for every edge
e in G\C incident to a vertex of C, attaches e to either C or C ′ to see if such an attachment gives a
planar embedding of G\C on the cylinder. Let EC be the set of edges in G\C incident to a vertex of
C. Since each edge of EC can be attached to C or C ′, NM Algorithm checks 2|EC | = 2O(n) different
attachments. NM Algorithm can be modified to an efficient tool for detecting some non-toroidal
graphs [24]. This will be used in our algorithm as a pre-processing step.

The approach for embedding graphs on N1 in Section 3.1 can be naturally applied to get an

154

International Journal of Networking and Computing

algorithm for embedding graph G on the torus [18]. Based on this, Woodcock [27] gives an algorithm
which uses a subgraph K of G homeomorphic to K5 or K3,3 as the frame, finds all non-equivalent
embeddings Π(K) of K on the torus (231 and 20 Π(K) for K homeomorphic to K5 and K3,3,
respectively), and for each Π(K), assigns the K-bridges to candidates r of Π(K) by a recursive
approach.

Unlike in the embedding of G on N1, for a face r of Π(K) on the torus, a vertex v in G may
appear in the boundary bd(r) of r twice (r has 1-singularity if a vertex appears in bd(r) twice). For
a 1-singularity r, each vertex v appearing in bd(r) 1 ≤ j ≤ 2 times is replaced by j distinct vertices
v1, ..., vj to convert the closed walk of bd(r) to a cycle C(r). Given a 1-singularity face r, an unfolded
face ru is a region homeomorphic to an open disc with C(r) as its boundary (i.e., bd(ru) = C(r)).
For each vertex v ∈ V (r), we denote by Vr(v) the set of the vertices replacing v to form C(r).

To embed B in a candidate r of 0-singularity, each vertex v of AttV(B) is identified by the vertex
v in bd(r) and draw the rest of B on r. For a 1-singularity face r, each v is identified by some vertex
vi in Vr(v) and draw the rest of B on the unfolded face ru of r. Each of the above is called an
attachment of B to r. Notice that for a 1-singularity candidate r, v may appear in bd(r) twice and if
so, there are two attachments of B to r w.r.t. v. If B has k vertices appearing in bd(r) twice, there
are 2k different attachments to r. This is a major difference of embedding G on the torus from that
on N1. For each bridge to face assignment, the embedding of B in ru for every attachment of B to
r is checked. There are 2O(|AttV(B)|) different attachments of B to r. The total number of checks
for all bridges and all faces is 2O(n).

Both NM Algorithm and Woodcock’s algorithm have 2O(n) attachments to check. The constant
behind the Big-Oh in the exponent of 2O(n) in NM Algorithm is larger than that in Woodcock’s
algorithm because |EC | is larger than the number of vertices in AttV(B) appearing in bd(r) twice
(K5 and K3,3 place more restrictions for the extension than a cycle).

A linear time algorithm for embedding graphs on the torus is introduced in [13]. Juvan and Mohar
give a simpler but O(n3) time algorithm (JM Algorithm) [14]. Both algorithms use the embedding
extension approach. JM Algorithm uses a subgraph K of G homeomorphic to an obstruction for
N1 as the frame. For any embedding Π(K) of K on the torus, each face of Π(K) has 0-singularity
or 1-singularity. JM Algorithm eliminates each 1-singularity face r by separating r into ”sub-faces”
with selected paths such that duplications of a vertex v in bd(r) are in different ”sub-faces”. A
further step is taken to arrange at most two candidate faces for each bridge and a constant number
of arrangements need to be considered. Within each arrangement, the bridges are assigned to faces
by the 2-SAT approach. While these algorithms have polynomial running time, the constants behind
the Big-Oh can get large, which reduces their practical efficiency. Furthermore, the algorithms are
complex and their implementations become impractical. An implementation of JM Algorithm was
announced [3]. However, the implementation does not seem working [19, 24]. For these reasons, the
polynomial running time algorithms have remained for theoretical interest so far.

4 A new algorithm for embedding graphs on the torus

In this section, we introduce a new algorithm for embedding graphs on the torus. We start from
our observation on the differences of existing algorithms and a guideline for the new algorithm. All
algorithms in the previous section follow the embedding extension approach as shown in Table 1. A
general trend is that simpler frames make an algorithm easier to implement but place less restrictions
for the embedding extension and thus resulting in a higher time complexity. Previous algorithms are
at the two extremes of the trade off, it is desirable to find a balance in the middle where efficiency is
improved but the implementation does not become a burden. To accomplish this, we try to combine
the clear outline of exponential time algorithms and effective but less sophisticated techniques from
polynomial time ones. Next we introduce a general scheme of the new algorithm followed by more
detailed explanations on the key issues in Section 4.1. Some techniques for improving the practical
running time of the new algorithm are discussed in Sections 4.2-4.5.

155

A Practical Algorithm for Embedding Graphs on Torus

Table 1: Comparison among algorithms for embedding graphs on the torus.
Algorithm Frames Extension unit Notes
NM cycle Remaining graph
Woodcock K homeomorphic to K-bridges

K5, K3,3

JM K homeomorphic to K-bridges Avoid
Obstructions for N1 1-singularity faces

4.1 New algorithm

We propose a new algorithm for embedding graphs on the torus. Given a graph G, our algorithm
uses a subgraph of G homeomorphic to an obstruction for N1 as the frame and try to extend an
embedding of the frame to get an embedding of G on the torus. A subgraph homeomorphic to an
obstruction for N1 has a larger size and more complex structure than a subgraph homeomorphic to
K5 or K3,3 and places more restrictions for the embedding extension. Below are the major steps of
the algorithm:

• For input graph G, use MR Algorithm in Section 3.1 to test whether G can be embedded on
N1. If so, compute an embedding ΠN (G) on N1. Otherwise, compute a subgraph K of G
homeomorphic to an obstruction for N1 and the set B of K-bridges.

• Given ΠN (G), if the facewidth of ΠN (G) is at least four (fw(ΠN (G)) ≥ 4), output G is non-
toroidal and terminate. Otherwise compute an embedding Π(G) of G on the torus from ΠN (G)
(this can be done efficiently [8]) and terminate.

• Given K, compute all non-equivalent embeddings Π(K) of K on the torus.

• For every embedding Π(K), try to extend Π(K) to an embedding Π(G) of G on the torus:
for every bridge-to-face assignment (B, r), where B is a K-bridge of B and r is a candidate
(face) of Π(K) for B, for every attachment of B to r, if the attachment extends Π(K) to an
embedding Π(G) then output Π(G).

If none of the extensions above succeeds then output G non-toroidal.

In the new algorithm, we use the O(n2) time MR Algorithm to test if G is embeddable on N1. If
an embedding ΠN (G) of G on N1 is found, the facewidth of ΠN (G) can be calculated in linear time.
If ΠN (G) has facewidth at most three then ΠN (G) can be converted to an embedding Π(G) of G
on the torus in linear time [8]. If G is not embeddable on N1, a subgraph K of G homeomorphic to
an obstruction for N1 can be found in O(n3) time using edge elimination and MR Algorithm.

Given an embedding Π(K) on the torus, let B be the set of K-bridges in G. We try to attach
each bridge B of B to every candidate r for B. Since a face r of Π(K) may have 1-singularity, for
each bridge B to candidate r assignment, we check every possible attachment of B to r to see if this
attachment gives an embedding of G on the torus. There are 2O(|AttV(B)|) different attachments of
B to r. For each bridge B of B, there are O(1) candidates of Π(K) for B. The total number of
checks for all bridges and all candidates is at most∏

B∈B
O(2O(|AttV(B)|)) = 2O(|B|) × 2O(n) = 2O(n).

Since a larger and more complex frame is used in the new algorithm, the constant behind the Big-Oh
in the exponent of 2O(n) is smaller than that in the previous algorithms.

A major challenge in the new algorithm is to find all non-equivalent embeddings Π(K) of a
subgraph K homeomorphic to an obstruction for N1 on the torus. In the previous algorithms, all
non-equivalent embeddings of K homeomorphic to K5 and K3,3 are manually created. This approach
is impractical for the obstructions for N1 because an obstruction can have a large number (a few

156

International Journal of Networking and Computing

Algorithm Torus-Embedding
Input: A connected graph G of n vertices and m ≤ 3n edges.
Output: An embedding Π(G) of G on the torus or G is non-toroidal.
begin

Pre-processing Step I: Test whether G is non-toroidal by Procedure Non-Toroidal (Section 4.3).
if G is planar then Output a planar embedding Π(G) and return.
if G is non-toroidal then Output G non-toroidal and return.

Pre-Processing Step II: Find a core subgraph H of G by Procedure Core-Graph (Section 4.4).
if G is non-toroidal then output G non-toroidal and return.

Test whether H is embeddable on N1 by MR Algorithm (Section 3.1).
if YES then Let ΠN (H) be an embedding of H on N1.

if fw(ΠN (H)) ≤ 3 then Find an embedding Π(H) from ΠN (G) by the algorithm in [8],
attach G \H to Π(H) to get Π(G) and return.

else Output G non-toroidal and return.
else

Find a subgraph K of H homeomorphic to an obstruction for N1

by MR Algorithm (Section 3.1) and find the set B of K-bridges of H.
Find all non-equivalent embeddings Π(K) of K on the torus

by Algorithm All-Embeddings (Section 4.2).
for every Π(K) do

Π = Π(K), B′ = B and test whether Π can be extended to an embedding Π(H)
on the torus by Procedure Recursive-Extension (Section 4.5).

if YES then attach G \H to Π(H) to get Π(G) and return.
end for

end if
Output G non-toroidal.

end.

Figure 4: New algorithm.

hundreds) of non-equivalent embeddings on the torus and there are 103 different obstructions. We
clear this hurdle by a simple algorithm (Algorithm All-Embeddings in Figure 5) which finds all
non-equivalent embeddings of K on the torus by enumerating all rotation systems for K. Algorithm
All-Embeddings has running time O(

∏
v∈V (K),degK(v)>2(degK(v)−1)!). Since the number of vertices

and node degree of each vertex in K are small constants, the algorithm is efficient in practice. More
details of Algorithm All-Embeddings are given in Section 4.2.

Some non-toroidal graphs can be detected efficiently by a modified NM Algorithm [24]. Based
on this, we use a simple and efficient procedure to find some non-toroidal graphs. We also test if a
graph is planar by this procedure which is included in the new algorithm as Pre-processing Step I
and explained in Section 4.3.

For the graphs which are not detected planar or non-toroidal in Pre-processing Step I, we try to
reduce the input instance size for the new algorithm. Given such a graph G, we compute a subgraph
H (called core graph) of G and try to find the embedding of H instead of G. This reduces the
problem size for the algorithm, especially for the bridge-to-face attachment part which may run in
exponential time. The computation of core graphs is included in the new algorithm as Pre-processing
Step II and introduced in Section 4.4.

We further apply a recursive approach to check the bridge-to-face attachments. Bridges are
assigned and attached one by one and a next bridge is processed only if the current bridge does not
lead to any violation to the embeddability. In this way, the algorithm would trace back or stop at
points where current structure is already not embeddable and thus save the time on checking the
remaining attachments of bridges to faces. More details are given in Section 4.5.

The new algorithm with the improvements above is given in Figure 4. Notice that if a graph G

157

A Practical Algorithm for Embedding Graphs on Torus

Algorithm All-Embeddings
Input: A graph G of n vertices and m ≤ 3n edges.
Output: All non-equivalent embeddings Π(G) of G on the torus.
begin

Let U(G) = {v|v ∈ V (G) ∧ degG(v) > 2} and W (G) = V (G) \ U(G).
Fix an arbitrary rotation for each vertex in W (G).
if U(G) = ∅ then Find the embedding Π(G) corresponding to the

current rotation system, output Π(G) and return.
for each vertex ui ∈ U(G) do Fix an edge e1i as the first edge in its rotation.
Let S be an empty set of embeddings.
Select one vertex u1 from U(G) as the reference vertex.
Select two different edges e21 and e31 incident to u1 s.t. e11 /∈ {e21, e31}.
d = degG(u1).
if d is odd then Require that e21 be in position range [2, d+1

2] in the rotation of u1.
for each rotation system defined by the orderings of the remaining edges do

if the rotation system gives an embedding Π(G) on the torus then S = S ∪ {Π(G)}
end for

else Require that e21 be in position range [2, d
2] in the rotation of u1.

for each rotation system defined by the orderings of the remaining edges do
if the rotation system gives an embedding Π(G) on the torus then S = S ∪ {Π(G)}

end for
Require that e21 be at position d

2 + 1 in the rotation of u1.
Require that e31 be in position range [2, d

2] in the rotation of u1.
for each rotation system defined by the orderings of the remaining edges do

if the rotation system gives an embedding Π(G) on the torus then S = S ∪ {Π(G)}
end for

end if
Output S and return.

end.

Figure 5: Finding all non-equivalent emdeddings of G by enumerating rotation systems of G.

of n vertices has more than 3n edges then G is non-toroidal.

4.2 Finding all non-equivalent embeddings

All non-equivalent embeddings of G on a surface can be computed by enumerating all rotation
systems of G. Figure 5 gives an algorithm for finding all such embeddings of G on the torus by
enumerating the rotation systems. For each vertex v in G, there are (degG(v) − 1)! rotations of
v. So the algorithm in Figure 5 has running time O(

∏
v∈V (G),degG(v)>2(degG(v) − 1)!) which may

not scale well for graphs of large size or large node degree. For our purpose, the algorithm is only
applied to a frame K homeomorphic to an obstruction for N1. Because the number of vertices v
with degK(v) > 2 and degK(v) are small constants, the algorithm performs well. Furthermore, the
algorithm needs to be run on each obstruction only once since the results can be stored for later use.
Given a rotation system of G, the corresponding embedding Π(G) on the torus can be constructed
efficiently [27, 20].

4.3 Pre-processing Step I: non-toroidality check

While a larger and more complex frame contributes more information to the final structure of
possible embeddings of G on the torus, a smaller frame can be used to find non-toroidal graphs more
efficiently. For a frame K of G, let B be the set of K-bridges in G. If a bridge B in B can not be
embedded on any face (plane) of Π(K) then we can conclude that G is non-toroidal. We call such a

158

International Journal of Networking and Computing

a

b c

d e f

g h i

a

b c

d e f

g h i

(a) Take K as frame (b) Take any cycle of K as frame45

Figure 6: Frames of different sizes and their K-bridges.

bridge a forbidden subgraph. Given a non-toroidal G, a larger K may give a set B of bridges, each
of them is compatible with some face of Π(K) but the union of some bridges constitutes a forbidden
subgraph G′. To conclude G non-toroidal in this case, we have to enumerate all embeddings for the
bridges in B. On the other hand, the forbidden subgraph G′ may become a K-bridge for a smaller
frame K and the non-toroidal conclusion can be made more efficiently (finding G′ not embeddable
on a plane). Figure 6 gives such an example.

As shown in Figure 6 (a), if the subgraph homeomorphic to K5 is selected as the frame K then
B has three bridges {{g, d}, {g, e}, {g, f}}, {{h, d}, {h, e}, {h, f}} and {{i, d}, {i.e}, {i, f}}. Every
bridge is compatible with some face of Π(K). However, the three bridges are admissible to two faces
of Π(K) for every embedding of K, implying that two bridges need to be embedded in a same face,
and any two bridges are not compatible with any face of Π(K). That is, the union of the three
bridges form a forbidden subgraph K3,3 and G is non-toroidal. To draw this conclusion, we have to
enumerate all embeddings for every combination of two bridges.

As shown in Figure 6 (b), for any cycle C of K4 as the frame K, the forbidden subgraph K3,3 is
contained in a K-bridge B. If we embed C as a non-contractible cycle on the torus, then B can not
be embedded on any face of Π(K). If this is true for every cycle of K4 then the graph is non-toroidal
[24]. This conclusion can be made in linear time.

NM Algorithm can be modified to find some non-toroidal graphs as shown above [24]. Based on
this, we include an efficient procedure for detecting some non-toroidal graphs as Pre-processing Step
I in our algorithm. In this test, we use cycles in the cycle basis of a subgraph G′ of G homeomorphic
to a subgraph K4 of K5 or a subgraph K3,2 of K3,3 as frame K and check if B has a forbidden
subgraph. If so, we conclude G non-toroidal, otherwise we proceed to the next step. By this test,
we can find non-toroidal graphs more efficiently and thus improve the overall running time of the
new algorithm. The procedure is given in Figure 7. Since there are constant number of cycles in
the cycle basis of G′, and the set of bridges and planarity test can be computed in linear time, the
procedure has linear running time.

4.4 Pre-processing Step II: Finding core graph

To further improve the practical running time of our algorithm, we try to reduce the size of input
graphs for the algorithm which may run in exponential time. For a large graph G to be embeddable,
only a few small subgraphs of G are hard to embed and the remaining of G can be attached easily.
These small subgraphs constitute a core graph of G. We try find a core graph H of G, find an
embedding Π(H) of H on the torus first and then attach G \H to Π(H). This reduces the size of
graphs for the algorithm.

We use the bi-connected components and tri-connected components [11] to find a core graph.
It is proved in [4] that the genus of a graph is equal to the sum of the genera of its bi-connected

159

A Practical Algorithm for Embedding Graphs on Torus

Procedure Non-Toroidal
Input: A graph G of n vertices and m ≤ 3n edges.
Output: G is planar or G is non-toroidal or G maybe toroidal.
begin

if G is planar then Output a planar embedding Π(G) of G and return.
Find a subgraph G′ of G homeomorphic to a subgraph K4 of K5 or

a subgraph K3,2 of K3,3 and the set C of all cycles in the cycle basis of G′.
for each cycle C ∈ C do

Take C as frame K and compute the set B of K-bridges in G.
if all bridges in B are planar then Output G maybe toroidal and return.

end for
Output G is non-toroidal.

end

Figure 7: Pre-processing Step I: test if G is non-toroidal.

components. By this result, a toroidal G has at most one nonplanar bi-connected component BC
and each component C of G\BC is planar. Further, BC has at least one and at most two nonplanar
tri-connected components. We take the union of the nonplanar tri-connected components in BC as
a core graph H of G. Each connected component C of G \ H is planar and V (C) ∩ V (H) has at
most two vertices. Given an embedding Π(H) of H on the torus and a planar embedding Π(C) of
C, for each vertex v ∈ V (C) ∩ V (H), we denote by vC the copy of v in Π(C) and by vH the copy
of v in Π(H). An embedding of C ∪H on the torus can be obtained by identifying vC and vH as
one vertex for every v ∈ V (C) ∩ V (H). The size of core graph H is smaller than that of G. This
improves the running time for the algorithm.

It it worth mentioning that tri-connected component calculation is non-trivial to implement.
One implementation publicly available can be found in Open Graph Drawing Framework(OGDF)
[6, 10]. The procedure for computing a core graph of G is given in Figure 8. The procedure has
linear running time [6, 10].

Procedure Find-Core
Input: A nonplanar graph G of n vertices and m ≤ 3n edges.
Output: G is non-toroidal or a core subgraph H of G.
begin

Find set BC of bi-connected nonplanar components of G. /* BC 6= ∅ */
if |BC| ≥ 2 then Output G is non-toroidal and return.
Let BC be the bi-connected nonplanar component of BC.
Find the set T C of tri-connected nonplanar components of BC.
if |T C| > 2 then Output G non-toroidal and return.
Output the union of the components of T C as core graph H and return.

end

Figure 8: Pre-processing Step II: Finding a core graph H of G.

4.5 Recursive embedding

Our new algorithm takes a recursive approach to enumerate all possible embeddings of the core
graph H on the torus. By the recursive approach, we could prune some search branches which
do not result in an embedding of H on the torus and thus improving the running time. Given a
core graph H, a frame K homeomorphic to an obstruction for N1, the set B of K-bridges and all
embeddings Π(K) of K on the torus are computed. For each embedding Π(K), we try to attach

160

International Journal of Networking and Computing

Procedure Recursive-Extension
Input: A nonplanar graph G of n vertices and m ≤ 3n edges, a frame K of G,

a subset B′ of the K-bridges and an embedding Π of a subgraph of G.
Output: G is non-toroidal or an embedding Π(G) of G on the torus.
begin

if B′ = ∅ then Output Π as Π(G) and terminate.
for every bridge B ∈ B′ and every candidate r of Π for B do.

for every legal attachment of B to r do
Include the embedding of B in Π and remove B from B′.
Test whether Π can be extended to an embedding Π(G) of G

by Procedure Recursive-Extension.
end for

end for
Output G is non-toroidal and return.

end

Figure 9: Extend Π(K) to Π(H) recursively.

each bridge in B to every candidate of Π(K) for the bridge recursively. The procedure is given in
Figure 9.

5 Computational results

In this section, we show experimental results for the new algorithm. We implemented an improved
version of NM Algorithm by Skoda and Mohar [24] and our new algorithm in C++. Both implemen-
tations are based on the OGDF [6] library, which includes many graph data structures and useful
algorithms. Besides efficient implementation of planar embedding algorithms, one major advantage
of this library over others is that it contains an implementation of SPQR-Tree [10], which is used
for calculating 3-connected components of a graph and is complex to build from scratch. In the
implementation of the new algorithm, we also include a graph matching library VFLib [9] for graph
homeomorphism.

We run our implementations on a laptop with Intel(R) Core(TM) i3-2350M CPU 2.3GHz, 8GB
physical memory and operating system Windows 7. While the processor has multiple cores, only
one of them is used for the experiments. This comes both for simplicity and for consistency with
computational results in others’ research.

The algorithms are tested with three categories of graphs. Category 1 (C1) instances are based
on Delaunay triangulations of point set taken from TSPLIB [23]. These original graphs were widely
used in research on planar graphs. While these graphs are planar, they can make good inputs for
torus embedding by adding some additional edges. Category 2 (C2) instances are randomly generated
toroidal graphs. These graphs have edge number between 2n and 3n so that the generated graphs are
not trivially toroidal. They are also guaranteed to be simple, connected and nonplanar. Category 3
(C3) instances are randomly generated graphs with edge number between n and 3n where toroidality
is unknown. We compare the performance of our algorithm with that of NM Algorithm. The running
time of the algorithms are given in Tables 2 and 3 for C1 graphs, and in Tables 4 and 5 for C2 graphs
and C3 graphs, respectively. In the tables, n = |V (G)| and m = |E(G)|. We test 100 graphs for each
graph size and show the average running time (Avg), worst case running time (Max) and standard
deviation (Std). The running time is in milliseconds and a time less than 1 millisecond is indicated
by 0. NA indicates that the algorithm did not stop in 24 hours.

Graphs of Category C1 are based on Delaunay triangulations of point set. These triangulations
have the property that each face except for the outer one is bounded by three edges. For one such
triangulation H, adding one edge e that does not lie on any face r (e = {u, v, } 6⊆ V (r), r ∈ R(H))
to H breaks its planarity but the resulting graph is still toroidal. Further additional edges have a

161

A Practical Algorithm for Embedding Graphs on Torus

large chance to break its toroidality. In our experiments, we construct C1 graphs by adding one
or two random edges to these triangulations. We divide C1 graphs further into two subcategories:
C1A graphs and C1B graphs, obtained by adding one random edge and two random edges to the
triangulations, respectively. Therefore, C1A graphs are all toroidal and C1B are mostly non-toroidal.
With this construction, C1A and C1B represent two boundary cases of input: toroidal graphs that
are close to be non-toroidal and non-toroidal graphs that are close to be toroidal. C1A graphs are
harder to embed than other toroidal graphs considering its larger number of edges. Toroidality of
C1B graphs are harder to detect because less edges could lead to trivial non-toroidality detection
by pre-processing steps. As a result, they can properly represent the worst case inputs for the
algorithms.

The running time of NM Algorithm and our algorithm for C1A graphs is given in Table 2. The
average time of the algorithms is also shown in Figure 10.

Table 2: Running time for C1A graphs.
n m NM Algorithm New Algorithm

Avg Max Std Avg Max Std
51 141 191 8,732 900 175 558 132
130 378 3,541 70,820 11,756 671 2,455 488
225 623 72,985 949,600 234,513 3,216 19,400 4,366
280 789 NA NA NA 2,046 192,400 19,313

Figure 10: Average running time for C1A graphs.

The running time of NM Algorithm and our algorithm for C1B graphs is given in Table 3. The
average time of the algorithms is also shown in Figure 11.

Table 3: Running time for C1B graphs.
n m NM Algorithm New Algorithm

Avg Max Std Avg Max Std
51 142 234 5,830 795 183 386 77
130 379 4,692 70,820 22,458 654 1,878 345
225 624 25,575 188,500 109,473 2,318 7,328 1,777
280 790 NA NA NA 600 4,811 1,052

Category 2 instances are randomly generated toroidal graphs with edge number between 2n and
3n. By bounding the number of edges in graphs, it avoids dense graphs that are guaranteed to be

162

International Journal of Networking and Computing

Figure 11: Average running time for C1B graphs.

non-toroidal and too sparse graphs whose embedding becomes trivial. Unlike the extreme cases in
C1A instances, graphs in this category represent more general cases where embedding can be either
hard or easy. More importantly, it avoids fixed structures from the base graphs, making the results
more general and graph-independent. Results for this category are shown in Table 4.

Table 4: Results with C2 graphs as input
n m NM Algorithm New Algorithm

Avg Max Std Avg Max Std
20 [40, 60] 163 4,961 636 35 112 14
30 [60, 90] 31 630 82 46 114 16
40 [80, 120] 72 4,789 477 64 142 25
50 [100, 150] 557 53,820 5,354 77 191 29
60 [120, 180] 53 2,363 246 93 197 36
70 [140, 210] 131 11,890 1,182 115 321 51
80 [160, 240] 17 412 59 128 362 55
90 [180, 270] 307 12,700 1,733 151 387 67
100 [200, 300] 836 35,520 4,960 178 519 90
110 [220, 330] 1,675 112,300 13,226 187 571 83

Category 3 graphs are also randomly generated but their toroidality are not known. These
randomly generated graphs have big chance to be non-toroidal, this data set puts more focus on the
performance on non-toroidal graphs. The results are shown in Table 5.

In Tables 2 and 3, NM Algorithm shows a dramatic growth in running time as the input graph size
increases. When the input graph has size 280, NM Algorithm fails to yield a result in a reasonable
time. In contrast, the new algorithm handles this case well by finishing within a few seconds in
average and a few minutes at most. Despite that the new algorithm also has exponential running
time in theory, it has an efficient practical performance for the toroidal (C1A) graphs which are hard
to embed and the non-toroidal (C1B) graphs which are hard to detect.

Table 4 shows that the average running time for the new algorithm increases closely to linear and
its average and maximum running time is more efficient than NM Algorithm. This trend matches
the results for C1A (toroidal) graphs as well.

Table 5 shows a different aspect of the algorithms’ performance. Graphs in C3 consists of more
non-toroidal cases than the previous two categories. In the generated graphs, the proportion of
toroidal graphs decreases exponentially in the input graph size. The running time of NM Algorithm
indicates that NM Algorithm is more efficient to detect the random non-toroidal graphs. For the

163

A Practical Algorithm for Embedding Graphs on Torus

Table 5: Results with C3 graphs as input
n m NM Algorithm New Algorithm

Avg Max Std Avg Max Std
20 [20, 60] 10 175 31 20 71 17
40 [40, 120] 16 1,315 131 28 74 16
60 [60, 180] 8 286 33 30 76 16
80 [80, 240] 3 103 13 40 85 15
100 [100, 300] 9 706 70 40 78 15
120 [120, 360] 7 272 37 44 87 18
140 [140, 420] 3 124 12 47 138 20
160 [160, 480] 2 3 1 48 134 22
180 [180, 540] 2 4 1 53 100 20
200 [200, 600] 2 5 1 59 116 27

new algorithm, its running time is still stable in the input size regardless of the toroidal proportion.
Therefore, its running time is less dependent on the toroidality of input graphs. Although its average
running time exceeds that of NM Algorithm for the random non-toroidal graphs, this time is still far
less than a second and stays within an acceptable range. It is worth to mention that NM Algorithm is
efficient for detecting the random non-toroidal graphs but is far less efficient than the new algorithm
for the non-toroidal (C1B) graphs which are hard to detect.

A computational study on NM Algorithm (the original version [22]) and Woodcock’s algorithm
(using a subgraph homeomorphic to K5 and K3,3 as the frame) is reported [27]. We do not have an
access to the code, the graph instances and the computer used in the study. It is difficult to have a
direct comparison between the results in this paper and these in [27] because of different computing
platforms and data sets. The method for generating the random toroidal graphs in [27] is similar
to that for C2 graphs. We quote some results from [27] for the random toroidal graphs in Table 6.
The running time in the table is in milliseconds by a computer with a CPU of 3.6GHz. The average
time (Avg) is on 100 instances of a same size. A rough comparison between the results for C2
graphs (Table 4) and these quoted from [27] for the random toroidal graphs (Table 6) is as follows:
The CPU used for Table 4 has 2.3GHz and the CPU used in Table 6 has 3.6GHz [27]; the running
time of the original NM Algorithm increases faster in the graph size than that of the improved NM
Algorithm; and similarly, the running time of Woodcock’s algorithm increases faster than the new
algorithm in this paper.

Table 6: Results quoted from Table 5.2 in [27] for the random toroidal graphs. NM Algorithm used
in this table is the original version.

n NM Algorithm Woodcock’s Algorithm
Avg Max Avg Max

20 4 40 1 10
30 22 150 3 20
40 90 1,340 10 70
50 248 2,410 19 230
60 449 2,360 31 410
70 703 4,840 69 2,010
80 1,656 26,480 92 3,480
90 3,679 64,720 923 77,810
100 3,529 57,050 145 1,390
110 8,579 276,180 351 11,650

From the analysis above, we conclude that the new algorithm is more efficient and more preferable

164

International Journal of Networking and Computing

in general. As long as toroidality of input graphs are unknown, we can safely assume that both
toroidal and non-toroidal graphs exist and worst cases will happen.

6 Concluding remarks

In this paper, we proposed a new algorithm for embedding graphs on the torus. The computational
results show that the running time of the new algorithm does not increase rapidly in the graph size
for both toroidal and non-toroidal graphs. Especially, the new algorithm is much faster than the
previous algorithms for the toroidal graphs and thus gives an efficient tool for the applications which
require the embeddings of graphs on the torus. The tool is available on request. The implementation
of our algorithm can be considered as one big step towards a full implementation of the O(n3) time
JM Algorithm. The remaining work for implementing JM Algorithm is to realize the functions to
avoid 1-singularity faces. This work may be complex and challenge but worth to explore. It is also
interesting to find the complete set of obstructions for the torus. It is proved that there is a constant
number of obstructions for the torus but the complete set of obstructions is not known yet (at least
239451 obstructions have been identified [27]). Our algorithm can be applied to find the set.

Acknowledgment

The authors thank Skoda for his improved version of NM Algorithm and the code (in JAVA) of the
algorithm, and thank Mohar and Skoda for their discussions on the problem of embedding graphs
on the torus.

References

[1] Library of Efficient Data Types and Algorithms, Version 5.2, 2008. http://www.algorithmic-
solutions.com/enleda.htm.

[2] Public Implementation of a Graph Algorithm Library and Editor, 2007.
http://pigale.sourceforge.net/.

[3] Algorithms for embedding graphs in surfaces, 2014. http://www.fmf.uni-lj.si/ mohar/.

[4] Battle, J.; Harary, F.; Kodama, Y. Additivity of the genus of a graph. Bulletin of the American
Mathematical Society 1962, 68, 565–568.

[5] Boyer, J.M.; Myrvold, W. Simplified O(n) planarity algorithms 2001.

[6] Chimani, M.; Gutwenger, C.; Jünger, M.; Klau, G.W.; Klein, K.; Mutzel, P. The open graph
drawing framework (OGDF). Handbook of Graph Drawing and Visualization 2011, pp. 543–569.

[7] Demoucron, G.; Malgrange, Y.; Pertuiset, R. Graphes planaires: reconnaissance et construction
de représentations planaires topologiques. Revue Française de Recherche Opérationelle 1964,
8, 14.

[8] Fiedler, J.; Huneke, J.P.; Richter, R.B.; Robertson, N. Computing the orientable genus of
projective graphs. Journal of Graph Theory 1995, 20, 297–308.

[9] Foggia, P. The vflib graph matching library, version 2.0, 2001.

[10] Gutwenger, C.; Mutzel, P. A linear time implementation of SPQR-trees. Proceedings of 2000
Graph Drawing, GD00, LNCS 1984, 2001, pp. 77–90.

[11] Hopcroft, J.E.; Tarjan, R.E. Dividing a graph into triconnected components. SIAM Journal
on Computing 1973, 2, 135–158.

165

A Practical Algorithm for Embedding Graphs on Torus

[12] Hopcroft, J.; Tarjan, R. Efficient planarity testing. Journal of the ACM (JACM) 1974, 21,
549–568.

[13] Juvan, M.; Marincek, J.; Mohar, B. Embedding a graph into the torus in linear time. preprint
1994, (abstract in the Proceedings of the 1995 International Conference on Integer Program-
ming and Combinatorial Optimization, IPCO1995, LNCS 920, pp. 360-363).

[14] Juvan, M.; Mohar, B. An algorithm for embedding graphs in the torus. preprint 1998.

[15] Kawarabayashi, K.; Mohar, B.; Reed, B. A simpler linear time algorithm for embedding graphs
into an arbitrary surface and the genus of graphs of bounded tree-width. Proceedings of the
49th IEEE Symposium on Foundations of Computer Science. 2008, pp. 771–780.

[16] Mohar, B. Projective planarity in linear time. Journal of Algorithms 1993, 15, 482–502.

[17] Mohar, B. Embedding graphs in an arbitrary surface in linear time. Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing. ACM, 1996, pp. 392–397.

[18] Mohar, B. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal
on Discrete Mathematics 1999, 12, 6–26.

[19] Myrvold, W.; Kocay, W. Errors in graph embedding algorithms. Journal of Computer and
System Sciences 2011, 77, 430–438.

[20] Myrvold, W.; Roth, J. Simpler projective plane embedding. Electronic Notes in Discrete
Mathematics 2000, 5, 243–246.

[21] Mohar, B.; Thomassen, C. Graphs on surfaces; Vol. 10, JHU Press, 2001.

[22] Neufeld, E.; Myrvold, W. Practical toroidality testing. Proceedings of the eighth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics,
1997, pp. 574–580.

[23] Reinelt, G. TSPLIB-A traveling salesman problem library. ORSA journal on computing 1991,
3, 376–384.

[24] P.Skoda, B.; Mohar, B. personal communication, 2012.

[25] Thomassen, C. The graph genus problem is NP-complete. Journal of Algorithms 1989, 10,
568–576.

[26] Thomassen, C. Triangulating a surface with a prescribed graph. Journal of Combinatorial
Theory, Series B 1993, 57, 196–206.

[27] Woodcock, J.R. A faster algorithm for torus embedding. Master’s thesis, University of Victoria,
2006.

[28] Yu, J.; Gu, Q. A practical algorithm for embedding graphs on torus. Proceedings of the third
International Symposium on Computing and Networking, 2015, pp. 50-57.

166

