
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 2, pages 181–194, July 2016

Web-based Volunteer Computing for Solving the Elliptic Curve Discrete Logarithm Problem

Shoma Kajitani

Okayama University
Okayama, Japan

Yasuyuki Nogami

Okayama University
Okayama, Japan

Shunsuke Miyoshi

Okayama University
Okayama, Japan

Thomas Austin

San Jose University
San Jose, California, United States of America

Khandaker Md. Al-Amin

Okayama University
Okayama, Japan

Nasima Begum

Okayama University
Okayama, Japan

Sylvain Duquesne

University of Rennes 1, Campus Beaulieu
Rennes, France

Received: February 15, 2016
Revised: April 21, 2016
Accepted: July 4, 2016

Communicated by Toru Nakanishi

181



Web-based Volunteer Computing for Solving the ECDLP

Abstract

Elliptic curve discrete logarithm problem (ECDLP) is the basis of security of elliptic curve
cryptography (ECC). The security evaluation of ECC has been studied by solving an ECDLP.
We need a large amount of computational resources for the evaluation. This paper proposes
a new system collecting computational resources with Web-based volunteer computing (Web-
based VC). In the system, web applications are allocated to volunteer participants (workers)
as jobs. Web applications are built by utilizing technologies called Native Client (NaCl) and
Portable NaCl (PNaCl). This paper evaluates the performance of the system and solves 70-
bit ECDLP with Web-based VC. The performance of the web application utilizing NaCl is
approximately 6.4 times higher than that of the web application written in JavaScript. Also,
the performance of the web application utilizing PNaCl is approximately 4.2 times higher. In
the case of NaCl, 70-bit ECDLP is solved in only 1389 seconds. If we collect 100,000 PCs by
Web-based VC, 114-bit ECDLP will be solved in only approximately 1 day.

Keywords: Elliptic curve cryptography, Web-based VC, Native Client

1 Introduction

Elliptic curve cryptography (ECC) is one of the public key cryptographies. Elliptic curve discrete
logarithm problem (ECDLP) is the basis of security of ECC. The strength of the security has been
evaluated by solving a reasonable size of ECDLP. In order to solve ECDLP, we need a large amount
of computational resources. For example, in 2009, 112-bit ECDLP was solved by 215 PlayStation
3 within around half a year [1]. It is difficult to collect more computational resources because the
cost is too expensive.

This paper proposes a new system collecting a large amount of resources with volunteer com-
puting (VC). VC is an internet-based parallel computing system. VC gathers volunteer participants
(workers) through the Internet and uses the idle computational resources of the worker’s personal
computers (PC). Thus, VC realizes a high performance computing system at low cost. In the con-
ventional VC system with BOINC [2], workers need some steps to participate in a VC project, e.g.
installing dedicated client software to their computers and registering their e-mail addresses. These
steps are troublesome for workers.

Web-based VC system is a new approach for VC system. In Web-based VC system, workers
participate in a VC project by accessing a specific web page. In Web-based VC system, it is
expected to increase the number of workers, because it is easy for workers to participate in a VC
project compared with the conventional VC system. However, the computational performance of
each worker is relatively low because workers execute a web application on a web browser. In order
to improve the performance, this paper developed such web applications by utilizing technologies
called Native Client (NaCl) and Portable NaCl (PNaCl) [3].

This paper implements a computing system with Web-based VC for solving ECDLP. First, this
paper evaluates the performance of the web application utilizing NaCl and PNaCl. The perfor-
mance of the web application utilizing NaCl is approximately 6.4 times higher than that of the web
applicaton written in JavaScript. Also, the performance of the web application utilizing PNaCl is
approximately 4.2 times higher than that of the web application written in JavaScript. Then, 70-bit
ECDLP is solved with Web-based VC. In the case of NaCl, 70-bit ECDLP is solved in 1389 seconds.

Moreover, we estimated the time to solve 114-bit ECDLP from these exeperimental results. If
we collect 100,000 PCs by Web-based VC, 114-bit ECDLP will be solved in only approximately 1
day.

2 Preliminaries

This section introduces ECDLP. The difficulty of solving ECDLP guarantees the security of elliptic
curve cryptography (ECC). Then, this section introduces Pollard’s rho method.

182



International Journal of Networking and Computing

2.1 ECDLP

Let Fp be a prime field. An elliptic curve E is defined over Fp by the equation as follows:

E : y2 = x3 + ax+ b, with a, b ∈ Fp, (1)

E(Fp) is the set of rational points on the curve E defined over Fp. Let #E(Fp) be the order of
rational points including the infinity O. Then, let r be the order of a cyclic group in E(Fp). For
simplicity, this paper deal with the case of r = #E(Fp). The relation between P and Q is shown in
Eq.(2), where P and Q are rational points on the curve, and s is a scalar such that.

Q = [s]P . (2)

From Eq.(2), we can say that it is easy to obtain Q from P and s. When the number of rational
points is huge, then its inverse problem becomes too difficult to obtain s from P and Q. This problem
is called elliptic curve discrete logarithm problem (ECDLP), and it is the basis of the security of
ECC.

2.2 Pollard’s Rho Method

Pollard’s rho method [4] is well known as an efficient technique for solving ECDLP. This method
mainly consists of 2 parts as follows.

1. Generating a lot of random rational points,

2. Detecting a collision among the generated points.

Rational points Ti are iteratively obtained by calculating Eq.(3) with random numbers ai, bi,
where 0 < ai, bi < r.

Ti = [ai]P + [bi]Q. (3)

When a collision is detected such as Ti = Tj(i 6= j), ECDLP is solved. In other words, the scalar
value s of Eq.(2) is obtained.

The original rho method is shown in Algorithm. 1. In this paper, we have generated a table
which consists of n rational points for generating random rational points. n is an arbitrary positive
integer and it is the size of the table. Let Wi be a rational point in the table. The rational points Ti is
generated from Ti−1 and Wl , where l is an index of the table. The function η(Ti−1) returns the index
l corresponding to Ti−1. According to the birthday paradox, a collision occurs with a probability
of 50% when

√
πr/12 rational points have been generated. Thus, the original rho method averagely

needs to store
√
πr/12 rational points in order to detect a collision. The number of stored points

can be reduced by the distinguished point method [5]. Let θ be a parameter for the distinguished
point method. The number of stored points is reduced by 1/θ because the method stores only the
distinguished points. When θ is too large, any collision doe not occur among the stored data. It is
sometimes said that θ should be less than 25% of the ECDLP size.

In our previous work, an improvement of rho method has been proposed [6]. For solving ECDLP
efficiently, this paper focuses on how to apply Web-based VC for solving ECDLP together with the
improvement.

183



Web-based Volunteer Computing for Solving the ECDLP

Algorithm 1: Pollard’s Rho Method

Input: P , Q(= [s]P ) ∈ E(Fp) (0 ≤ s < r)
Output: s
n is an arbitary positive integer,1

for i = 0 to n− 1 do2

ai, bi are random elements (0 ≤ ai, bi < r),3

Wi ←[ai]P + [bi]Q.4

a0, b0 are random elements (0 ≤ a0, b0 < r),5

T0 ← [a0]P + [b0]Q.6

i← 17

while Ti 6= Tj(0 ≤ j < i) do8

l← η(Ti−1),9

ai ← ai−1 + al, bi ← bi−1 + bl, Ti ← Ti−1 +Wl,10

i← i+ 1.11

s← −(ai − aj)(bi − bj)−1 (mod r).12

3 Previous Work

This section explains the previous work of some of the authors of this paper [6], [7].

3.1 Summary of the Computing System

The previous work solved ECDLP by a parallel computing system. The summary of the system is
shown in Fig. 1. The system is composed of servers and many clients.

Figure 1: Summary of the computing system

Pollard’s rho method is used in the previous work for solving ECDLP. This method consists of
2 parts as described in Sec. 2.2. The first part generates many random rational points. The second
part detects a collision among the generated points. In the computing system, the clients generate
random rational points and the servers detect a collision.

At first, the clients generate many random rational points. Then the clients execute an appli-
cation generating rational points. This application is developed using C++ language with g++
compiler. When the client generates the specified number of rational points, the client sends coor-

184



International Journal of Networking and Computing

dinates of the generated points to the server. The server and a client communicate by using a TCP
socket. The clients continue to generate rational points until a collision is occurred.

In the 2nd step of rho method, the server detects a collision. The server receives coordinates of
the generated points and stores them in a MySQL database. When the collision is occurred, the
server notifies the clients.

3.2 Experimental Results of Previous Work

In the previous work [7], 94-bit ECDLP was solved. This work used 2 servers and 69 clients in
Okayama university. The machines of these clients were used for about 2 days and 94-bit ECDLP
was solved. The detailed comparison with the proposed system is discussed in Sec. 6.4.

4 Volunteer Computing

This paper proposes a new computing system for solving ECDLP. The proposed system uses volun-
teer computing (VC) to collect a large amount of calculation resources. This section introduces VC
systems, specially Web-based VC system.

4.1 Summary of VC Systems

Volunteer computing (VC) is a large-scale Internet-based parallel computing system. VC collects
many volunteer participants (workers) through the Internet and uses their calculation resources. VC
has realized a high performance system such as a supercomputer at SETI@HOME [8] project. The
greatest advantage of VC is that a high performance system is realized at a very low cost.

In VC system, jobs are allocated from a server to workers through the Internet. Workers calculate
it and return a calculation result to the server.

4.2 Conventional VC System

In the conventional VC system with the software BOINC, workers need some procedure to participate
in the VC system which are as follows:

1. Downloading BOINC client software.

2. Installing the client software and rebooting PC.

3. Starting the client software.

4. Choosing VC projects to participate.

5. Registering worker information by e-mail address.

These procedures are sometimes troublesome for workers. In the conventional VC system, the
job is made for each computing platform. Although developing for each platform needs labor or
cost, but the job is optimized.

4.3 Web-based VC System

As a new approach for VC system, Web-based VC system [9] has been proposed. In Web-based VC
system, workers use a Web browser, and participate in the VC project by the following procedure.

1. Starting a web browser.

2. Accessing a specific web page.

In Web-based VC system, all the worker needs to access a specific web page from a web browser.
This is very easy for workers. Therefore, Web-based system is expected to collect much more workers
compared to the conventional VC system. In this paper, Web-based VC is used for solving ECDLP.

However, the computational performance of each worker is actually lower than the conventional
system. In the conventional VC system, the job is optimized for a certain platform. On the other

185



Web-based Volunteer Computing for Solving the ECDLP

hand, in Web-based VC system, the job is not optimized because it is executed on a web browser
as a web application. Therefore, the computational performance of each worker becomes lower than
the conventional system.

5 Proposed Computing System

This paper proposes a computing system using Web-based VC for solving ECDLP. This section
shows an implementation of the proposed system. First, the proposed system is briefly introduced
in Sec. 5.1. Second, Sec. 5.2 shows how to build web applications. Then, the behavior of a web
server is explained in Sec. 5.3. Next, a web page of our system is shown in Sec. 5.4 Then, the
parallelization method and the reduction of the data sent to the server is explained in Sec. 5.5.

5.1 Summary of the Proposed System

This section shows a summary of the proposed system. (see Fig. 2)

Figure 2: Summary of the proposed system

The most typical feature of the proposed system is that the clients of the proposed system use
a web browser. The client of the proposed system (hereinafter, referred to as “web-worker”) can
join the system only by accessing a website for solving ECDLP. When a web-worker accesses the
website, a web server sends the web application to the web-worker. The web-worker executes the
web application and generates many rational points. After that, the coordinates of the generated
rational points are sent to the web server. The web server and the database server in the previous
work communicate by using a TCP socket. When the web server receives a calculation result from
a web-worker, the web server also sends it to the database server.

5.2 Web Application

5.2.1 Web application and its problem

A Web application generating random rational points needs to be built for web-workers. In the
previous work, the client (hereinafter, referred to as “native-worker”) executes a native application.
A native application is an application built for a certain platform. Specifically, the native application
was built by compiling C++ codes with g++ compiler in the previous work. On the other hand,

186



International Journal of Networking and Computing

web-workers execute the web application on a web browser. Therefore, the web application needs
to be built for web-workers.

In this paper, web applications are built by utilizing Native Client (NaCl) and Portable Native
Client (PNaCl). In general, the native application works more efficiently than the web application
because the native application is built for a certain platform. In order to improve the performance
of the web application, we use technologies called NaCl and PNaCl in this paper.

5.2.2 Native Client and Portable Native Client

Native Client (NaCl) is a sandboxing technology for running the compiled C and C++ code on the
web browser efficiently and securely. NaCl allows safely running the compiled code on a web browser
as a web application and it runs at near native speeds. The C and C++ code are compiled with
NaCl toolchain contained in the dedicated SDK (NaCl SDK). NaCl toolchain is based on GCC. The
compiled code is independent of user’s operating system (OS).

Portable Native Client (PNaCl) extends NaCl with architecture independence. A C and C++
code is compiled with PNaCl toolchain contained in NaCl SDK. PNaCl toolchain is based on Clang
which is a compiler for C and C++ languages. The compiled code can be executed on a web browser
without depending on user’s OS and architecture. Therefore, the web application runs as a 32-bit
application even if the worker’s PC is 64-bit OS.

These technologies are used in Folding@home [10] which is a famous VC project. Folding@home
uses not only the conventional VC system but also Web-based VC system utilizing PNaCl [11].

5.2.3 Developing a web application

In this paper, the web application generating rational points which is made by compiling C++ codes
with NaCl SDK. The application performs about 100-bit integer arithmetic. In order to perform
such arithmetic efficiently, 128-bit integer was used in the previous work. 128-bit integer is a kind
of GCC extension. However, the C++ code using 128-bit integer can not be compiled with PNaCl
toolchain because PNaCl toolchain is not based on GCC. Moreover, 128-bit integer is available only
on 64-bit architecture. In other words, the application for 32-bit architecture needs to be built
without 128-bit integer.

Therefore, two types of applications are developed in this paper. One application is developed by
using 128-bit integer. This application is made by compiling with NaCl toolchain. It runs only on
64-bit architecture. The other application is developed using GMP (GNU Multiple-Precision) library
[12]. GMP is a free library for multi-precision arithmetic. This application is built by compiling
with PNaCl toolchain. Although the calculation efficiency is lower than the application using 128-bit
integer, the application using GMP does not depends on architectures.

5.2.4 Security and Pepper API

Generally, applications embedded in a web page are executed automatically while opening the web
page. Thus, there are some risks such as viral infections. In the proposed system, the web-worker
executed the web application safely because of NaCl and PNaCl. NaCl and PNaCl are sandboxing
technologies for running the web application in a sandbox. The communication with other processes
is restricted in a sandbox. Thus, the web application cannot operate other applications or some
important data even if it contains virus codes.

NaCl and PNaCl module communicate with other processes by using Pepper API. In the proposed
system, NaCl and PNaCl module communicate with JavaScript. The summary of communications
between NaCl module and JavaScript is shown in Fig. 3. JavaScript sends the web application to
NaCl module by using Pepper API after receiving it from the web server. The web application runs
in the NaCl module and rational points are generated. Then, NaCl module sends the coordinates of
generated rational points to JavaScript by using Pepper API.

187



Web-based Volunteer Computing for Solving the ECDLP

Figure 3: Communication between NaCl module and JavaScript

5.3 Web Server

The web-worker sends a request message to the web server on accessing the website. Then, the web
server replies to it with the web application including HTML files and JavaScript files. JavaScript
files are used to communicate with the web server, NaCl module, and PNaCl module as described
in Sec. 5.2.4.

The web server also sends a seed value to the web-worker. The seed value is used to generate
random numbers, and random numbers are used to generate random rational points. If some different
web-worker receives the same seed value, the same random rational points are generated. In order
to avoid this problem, the seed value depends on the access date and web-worker’s IP address in the
proposed system.

Besides, the web server sends calculation results to the database server on receiving them from
web-workers. The coordinates of generated rational points are sent from web-workers to the web
server as a calculation result when the web-workers generate the specified number of rational points.
Then, the web server sends calculation results to a database server by using a TCP socket. After
that, the database server notifies the web server whether a collision is occurred or not. If a collision
has been occurred, the web server also notifies the web-workers.

5.4 Web Page

The web page shown in Fig. 4 is opened after the web-worker receives the web application and
so on. Also, the web application automatically runs on opening the web page. When the specified
number of rational points is generated, the web-worker sends them to the web server as a calculation
result. This is because if a rational point is sent whenever it is generated, the server communicate
with web-workers far too frequently. In this work, the web-worker returns the calculation result once
about half an hour. The web-worker continues to generate rational points while the page is opened.

The web page displays some values as follows:

188



International Journal of Networking and Computing

Figure 4: Web page of the proposed system

• Number of returned calculation results

• Seed value

• Progress of a calculation

• Number of web-workers

• Number of generated rational points (stored in the database)

• Average number of rational points for solving ECDLP

The number of web-workers and generated rational points are sent from the web server. The number
of web-workers is updated when a web-worker accesses or leaves the web page. The number of
generated rational points is updated on returning a calculation result.

5.5 Parallelization method and reduction of the data sent to the server

When the web page for joining the ECDLP attack is opened, the web-worker downloads the attack
program on the web browser and then begins to generate random rational points. Then, the web-
worker sends the data to the server as a specified number of rational points has been generated.
Since a lot of web-workers join and then send the data, it is not practical for the server to receive and
store the huge amount of data. In addition, the server needs to find a collision from the huge data.
In order to reduce the number of sent and stored rational points, the distinguished point method is
efficiently utilized as described in Sec. 2.2.

As an example, let us consider the case that θ = 210. The web-worker iteratively generates
rational points. Among them, the web-worker distinguishes and stores rational points such that
its x–coordinate is divisible by θ = 210 only1. When the number of rational points stored at the
web-worker has reached to the specified number, the web-worker sends them to the server. Let N
be the number of generated rational points, N/θ rational points on average is sent to the server as
shown in Fig. 5. Thus, the parameter θ is able to efficiently reduce the data size sent to and stored
in the server. However, the size of θ should not be too large as described in Sec. 2.2

1In this case, it is easily distinguished because the binary representation of the x–coordinate has 10 zeros from
LSB such as (1010 · · · 110000000000)2.

189



Web-based Volunteer Computing for Solving the ECDLP

Figure 5: Reduction of the data sent to the server with distinguished point method

6 Experiments

This paper evaluated the proposed system by solving 70-bit ECDLP. First, the performance of
NaCl and PNaCl were evaluated by comparing the computational performance of web applications
with that of native applications. Then, 70-bit ECDLP was solved with the proposed system. In
the experiment, the web server allocated web applications for solving 70-bit ECDLP as jobs to
web-workers.

6.1 Performance Evaluation of NaCl

Table 1: Worker’s PC environment for NaCl comparison

OS Windows 7 Professional 64bit
CPU Intel(R) Core i7-870 2.93GHz

Memory 8GB
Web browser Google chrome ver.43.0.2357.130

Table 2: Performance evaluation result of NaCl

Type of applications
web application

native application
NaCl JavaScript

ECDLP size 70-bit
The number of tabs 1

The number of generated points 32,768,000
Computation time [sec] 46.21 294.98 12.92

This experiment evaluated the computational performance of NaCl. The solving 70-bit ECDLP

190



International Journal of Networking and Computing

Table 3: Worker’s PC environment for PNaCl comparison

OS Ubuntu 14.04 LTS 32bit
CPU Intel(R) Core i7-870 2.93GHz

Memory 8GB
Web browser Google chrome ver.44.0.2403.125

Table 4: Performance evaluation result of PNaCl

Type of applications
web application

native application
PNaCl JavaScript

ECDLP size 70-bit
The number of tabs 1

The number of generated points 32,768,000
Computation time [sec] 88.08 368.78 33.56

application using 128-bit integer was executed on NaCl as a web application and on a terminal as
a native application. Also, the web application written in JavaScript was executed. The native
application is a executable file which is compiled C++ codes with g++ compiler. This experi-
ment measured the computation time of the web applications and the native application. Then,
the computational performance was evaluated by comparing them. In this experiment, the appli-
cation generated the specified number of rational points for easily comparing. The experimental
environment is shown in Table 1 and the results are shown in Table 2.

According to the experimental results, the web application on NaCl required 46.21 seconds to
generate 32,768,000 rational points. In the case of the web application written in JavaScript, 294.98
seconds is required to generate them. On the other hand, the native application required 12.92
seconds to generate them. It confirms that the performance of NaCl is approximately 6.4 times
higher than that of JavaScript, though it is approximately 3.6 times lower than the performance of
the native application.

6.2 Performance Evaluation of PNaCl

This experiment evaluated the computational performance of PNaCl. The solving 70-bit ECDLP
application using GMP library was executed on PNaCl as a web application and on a terminal as
a native application. Also, the web application written in JavaScript was executed. Then, their
computation time were measured. The experimental environment is shown in Table 3 and the result
is shown in Table 4. In this experiment, the applications were executed on a 32-bit OS PC because
the web application runs on PNaCl as a 32-bit application even if worker’s PC is 64-bit OS.

According to the experimental results, the web application on PNaCl required 88.08 seconds to
generate 32,768,000 rational points. In the case of the web application written in JavaScript, 368.78
seconds is required to generate them. On the other hand, the native application required 33.56
seconds to generate them. It confirms that the performance of PNaCl is approximately 4.2 times
higher than that of JavaScript, though it is approximately 2.6 times lower than the performance of
the native application.

6.3 Solving 70-bit ECDLP

This experiment solved 70-bit ECDLP with proposed system and compared NaCl with PNaCl. In
this experiment, the web server has the database for detecting a collision because the scalability
of the experiment is small. The server PC environment is shown in Table 5, and a worker’s PC
environment is shown in Table 1. The experimental results are shown in Table 6.

191



Web-based Volunteer Computing for Solving the ECDLP

Table 5: Server PC environment

OS Ubuntu 14.04 LTS 64bit
CPU Intel(R) Core i7-3770 3.40GHz

Memory 4GB
Web server Apache ver. 2.4.7
Database MySQL ver. 5.5.41

Table 6: Experimental results of solving 70-bit ECDLP

Type of application NaCl PNaCl
ECDLP size 70-bit

The number of tabs 8
Average number for a collision 13,185,766,025

θ for distinguished point 215

The number of generated points 9,238,478,848 10,293,411,840
The number of stored points 281,936 314,130

Time of solving ECDLP 3086 sec 6583 sec
The number of genearated points per second ≈ 2,993,674 ≈ 1,563,635

The average number of generated rational points for detecting one collision was
√
πr/12 ≈

13185766025, where r = 664113186492198813709 (70-bit). The parameter θ for the distinguished
point was 215. If θ is too large, any collision does not occur among the stored data. Thus, 70-bit
ECDLP was averagely solved when

√
πr/12/215 rational points are stored in the database.

In the case of NaCl, 70-bit ECDLP was solved in 3086 seconds with a PC. On the other hand, in
the case of PNaCl, 70-bit ECDLP was solved in 6583 seconds. The number of generating points per
second is shown in Table 6. According to this results, it is shown that the computational performance
of NaCl is approximately 2 times higher than that of PNaCl.

The following point is given as a reason for the experimental results. As described in Sec. 5.2.2,
an application runs on PNaCl as a 32-bit application even if worker’s PC is 64-bit OS. On the other
hand, an application runs on NaCl as a 64-bit application. In this experiment, solving ECDLP
applications are executed on a 64-bit OS PC, thus the computational performance of NaCl is higher
than that of PNaCl.

6.4 Comparison with Previous Work

In this section, the proposed system particularly with NaCl is compared with the previous system
which is described in Sec. 3. The comparison is shown in Table 7. In the case of the proposed
system with NaCl, approximately 3 million rational points are generated per second. In the case of
the previous system, approximately 24 million rational points are generated per second. According
to this results, the performance of the proposed system is approximately 8 times lower than that of
previous system. However, in Sec. 6.1, it is shown that the performance of the web application on
NaCl is approximately 3.6 times lower than that of the native application. We assumed that the
data transmission processing of JavaScript made the difference between these results.

Next, the parameter θ for distinguished point method is set to 220. The data transmission
frequency is more reduced by increasing the parameter θ. Table 8 shows the experimental results of
θ = 220. According to this results, the performance of the proposed system has been improved. It is
approximately 3.7 times lower than that of previous system. Therefore, it is observed that the data
transmission makes a large overhead in the proposed system when θ is not enough large.

192



International Journal of Networking and Computing

Table 7: Comparison with the previous system (θ = 215)

Type of application NaCl Native
ECDLP size 70-bit

The number of tabs (threads) 8
Average number for a collision 13,185,766,025

θ for distinguished point 215

The number of generated points 9,238,478,848 14,653,456,384
The number of stored points 281,936 447,188

Time of solving ECDLP 3086 sec 601 sec
The number of genearated points per second ≈ 2,993,674 ≈ 24,381,791

Table 8: Comparison with the previous system (θ = 220)

Type of application NaCl Native
ECDLP size 70-bit

The number of tabs(threads) 8
Average number for a collision 13,185,766,025

θ for distinguished point 220

The number of generated points 9,762,242,560 14,587,789,312
The number of stored points 9,310 13,912

Time of solving ECDLP 1389 563 sec sec
The number of genearated points per second ≈ 7,028,252 ≈ 25,910,815

6.5 Estimation about Solving 114-bit ECDLP

We estimated the time for solving 114-bit ECDLP with web-based VC. This estimation is shown in
Table 9.

Pollard’s rho method averagely needs to generate
√
πr/12 random rational points in order to

occur a collision as described in Sec. 2.2. In the case of 114-bit ECDLP, the rho method averagely
needs to generate

√
π × 2114/12 (≈ 7.37384604894×1016) random rational points. All of them don’t

need to be stored in the database because rho method can reduce the number of stored points by
the distinguished point method. According to the experimental result of solving 70-bit ECDLP,
7,028,252 rational points are generated per second with a PC. Therefore, it will take approximately
333 years to solve 114-bit ECDLP with a PC.

Existing VC projects collect many workers. For example, PrimeGrid [13] which is a famous VC
project has about 100,000 active workers. If we collect 100,000 PCs, 114-bit ECDLP will be solved
in only approximately 1 day.

Table 9: Estimation about solving 114-bit ECDLP

Type of application NaCl
ECDLP size 114-bit

θ for distinguished point 227

The number of PCs 1 100,000
Estimation time for solving 333 years 1.21 days

193



Web-based Volunteer Computing for Solving the ECDLP

7 Conclusion

This paper solved 70-bit ECDLP with Web-based VC and evaluated the computational performance
of NaCl and PNaCl. Solving ECDLP applications were executed on NaCl and PNaCl as web
applications.

According to the experimental results, the performance of NaCl is approximately 6.4 times higher
than that of JavaScript and the performance of PNaCl is approximately 4.2 times higher than that
of JavaScript. Then, 70-bit ECDLP was solved in 1389 seconds with a PC when the application was
executed on NaCl. If 100,000 PCs are collected by Web-based VC, 114-bit ECDLP will be solved in
only approximately 1 day.

References

[1] Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, “Solving a 112-bit
Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction”,
2009.

[2] BOINC: http://boinc.berkeley.edu.

[3] Native Client: https://developer.chrome.com/native-client.

[4] J. Pollard, “Monte Carlo Methods for Index Computation (mod p)”, Math. Comp, vol. 32, pp.
918-924, 1978.

[5] H. Cohen and G. Frey ed., “Handbook of Elliptic and Hyperelliptic Curve Cryptography”, Chap-
man & Hall, 2006.

[6] S. Miyoshi, Y. Nogami, “Collision Detection with DNS in Rho Method on BN Curve”, 2014
IEEE International Conference on Consumer Electronics - Taiwan, pp. 49-50, Taiwan, 2014.

[7] S. Miyoshi, Y. Nogami, T.Kusaka, N.Yamai, “Solving 94-bit ECDLP with 70 Computers in
Parallel”, 17th International Conference on Pairing-Based Cryptography, pp. 2491-2494, France,
2015.

[8] SETI@home: http:setiathome.berkeley.edu.

[9] S. Takaki, K. Watanabe, M. Fukushi, N. Amano, N. Funabiki, T. Nakanishi, “A proposal of Web
Browser-based Volunteer Computing Platform”, IPSJ SIG Technical Report, 2014-HPC-143(29),
pp. 1-8, 2014. (in Japanese)

[10] Folding@home: https://folding.stanford.edu/.

[11] Folding@home Chrome Client: http://folding.stanford.edu/nacl/.

[12] GMP: https://gmplib.org/.

[13] PrimeGrid: http://www.primegrid.com/.

194


