
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 2, pages 243–262, July 2016

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

Raghunandan Mathur

NEC Technologies India, Noida, U.P, 201303, India

Hiroshi Matsuoka, Osamu Watanabe, Akihiro Musa

Cyberscience Center, Tohoku University, Sendai, 980-8578, Japan
NEC Corporation Tokyo, 108-8001, Japan

Ryusuke Egawa

Cyberscience Center, Tohoku University, Sendai, 980-8578, Japan

Hiroaki Kobayashi

Graduate School of Information Sciences, Tohoku University, Sendai, 980-8578, Japan
Cyberscience Center, Tohoku University, Sendai, 980-8578, Japan

Received: February 15, 2016
Revised: May 6, 2016
Accepted: July 9, 2016

Communicated by Hiroyuki Takizawa

Abstract

Since recent scientific and engineering simulations require heavy computations with large
volumes of data, High-performance Computing (HPC) systems need a high computational ca-
pability with a large memory capacity. Most recent HPC systems adopt a parallel processing
architecture, where the computational capability of the processors is increasing, however, the
performance of the memory system is constrained. The bytes per flop (B/F), which is a ratio of
the memory bandwidth to the flop/s, for the HPC systems have been reduced with the evolution
of the HPC systems. To fully exploit the potential of the recent HPC systems, and to meet the
increasing demand for large memory, it is necessary to optimize practical scientific and engineer-
ing applications, considering not only the parallelism of the applications, but also the limitations
of the memory subsystems of the HPC systems. In this paper, we discuss a set of approaches
to optimization of the memory access behavior of the applications, which enable their execu-
tions with improved performance on the recent HPC systems. Our approaches include memory
optimizations through memory footprint controlling, restructuring of data structures for active
elements, redundant data structure elimination through combined calculations and optimized
re-calculation of data. To validate the effectiveness of our approaches, a plasmonics simulation
application is evaluated on vector platforms NEC SX-ACE, NEC SX-9, and Intel Xeon based
platform NEC LX 406-Re2. By applying our approaches to the implementation, the memory
usage of the plasmonics simulation application can be reduced up to nearly 1/71 of the original,
and its execution can be possible on a single node of a distributed parallel system with smaller
memory capacity. The optimization results in 1.14 times faster execution on SX-ACE and 1.81
times faster execution on LX 406-Re2.

Keywords: Memory Management, High Performance Computing, Software Performance

243

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

1 Introduction

Scientific research is being carried out with the aid of computer simulations for many years. Over
the years, the field of scientific research has observed a vast evolution of hardware and application
code-developing styles. The scientific applications which have witnessed such evolution of hardware
are also termed as legacy scientific applications. These scientific applications are usually written
by computational scientists, not computer scientists. Hence, their code-developing styles tend to
directly depict the algebraic equations and the theory of the physical phenomenon that the applica-
tion simulates. They are designed to be well-structured from theoretical perspective, which enables
easy code understanding. Such application designs involve heavy computations on large datasets
and are also subject to heavy memory usage with excess memory operations. For some application
designs, these excess memory operations may also be redundant in nature. In order to fully exploit
the capability of the recent HPC systems, it is necessary for the existing scientific applications to be
optimized with respect to the recent hardware trend.

According to the general trend, the mainstream of HPC systems has been dominated by the mas-
sively parallel processing systems [1]. The bytes per flop (B/F), a ratio of the memory bandwidth
(Bytes/sec) to the computational performance (Flop/s) has been reduced with newer hardware de-
signs [2]. It is shown in Figure 1 that B/F’s of HPC systems began reducing around the year 2010.
For example, in the case of NEC SX series between SX-9 developed in 2007 and SX-ACE in 2013,
the B/F has decreased from 2.5 to 1.0 [3].

drop in B/F trend

4.0 4.0

2.0

2.5

1.0

0.2 0.2

0.11
0.1

0.5

0.26

0.1

1

10

NEC SX-9

NEC SX-ACE

NEC SX-8R

NEC SX-8 NEC SX-7

K-Computer

SGI UV
2000

SGI UV
3000

SGI Altix
4700

SGI Altix
3700

NEC LX 406-Re2
(Intel Xeon
E5-2695v2)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

B
y
te

s
 p

e
r

fl
o
p
 (

B
/
F
)

ra
ti

o

Year

Figure 1: Trend in B/F Ratios of HPC systems.

Considering the above mentioned constraints of evolving hardware trends and established HPC
application designs, we encounter a major issue in application code development. Many applications
demand large working datasets not only to achieve accurate outputs from a theoretical perspective,
but also to extract higher performance from HPC systems. Such applications with a requirement
of large memory capacity per node are referred to as memory intensive applications. It is observed
from Table 1 that the memory capacities per node of recent top 10 HPC systems vary from 16 GB
to 128 GB [4]. Fat node configurations of these systems may have a larger memory of around 1
TB memory per node, however, for most recent HPC systems, the per node memory is less than
several tens of gigabytes. As in the case of NEC SX-9 and NEC SX-ACE, the memory capacity of
a single node has decreased from 1 TB to 64 GB [3]. Thus, many recent systems have insufficient
memory capacity per node to successfully execute some memory intensive applications, such as the
target application for this study. Moreover, the demand for a large memory capacity is expected
to go up for many scientific applications in the future [5]. This demand can cause an impact on
the power budget and implementation cost for future HPC systems. Therefore, it is necessary for
scientists and engineers to adopt techniques for memory optimization in order to reduce the memory

244

International Journal of Networking and Computing

size requirement for the scientific applications.

Table 1: Memory capacity per node for recent HPC systems.
System Name Manufacturer Memory capacity System Name Manufacturer Memory capacity

per node per node

Sunway TaihuLight [6] NRCPC 32 GB Tianhe 2 [7] NUDT 88 GB
Titan [8] Cray Inc. 38 GB Sequoia [9] IBM 16 GB

K-Computer [10] Fujitsu 16 GB Mira [11] IBM 16 GB
Trinity [12] Cray Inc. 128 GB Piz Daint [13] Cray Inc. 32 GB

Hazel Hen [14] Cray Inc. 128 GB Shaheen II [15] Cray Inc. 128 GB
SX-ACE [3] NEC 64 GB

We explore the opportunity for memory optimization in our study and identify some approaches
for effective memory optimization. Reduced memory accesses indicate that the working data set is
reduced, facilitating better cache utilization. From the perspective of hardware, since memory chips
are driven by high clock frequencies in the recent HPC systems, power consumption of the system
also decreases with a fewer number of memory accesses.

This paper discusses a set of memory optimization approaches which can reduce the overall
memory usage of the target applications, while providing an executional performance gain to the
program. Through our work we also promote the idea of memory optimization as a tool for per-
formance improvement. For evaluation of the approaches, a plasmonics simulation application is
used that simulates optical responses of periodic structures. By applying the approaches to the im-
plementation of the plasmonics simulation application, their effects on the memory usage reduction
and the executional performance are examined.

The rest of the paper is organized as follows. Section 2 discusses the related work to our study.
Section 3 presents the approaches to reducing the memory usage of scientific applications on recent
HPC Systems. Section 4 presents an overview of the plasmonics simulation application and shows
a case study of our memory optimization approaches using the plasmonics simulation application.
Section 5 describes the evaluation of our memory optimization approaches through executions of the
plasmonics simulation program on the vector parallel platforms SX-ACE, SX-9 and the Intel Xeon
based scalar parallel platform LX 406-Re2. Finally, Section 6 summarizes the paper with the future
work.

2 Related Work

Our work on memory reduction for existing algorithms follows some related work. The discussed
memory optimization approaches are generally utilized for application development on embedded
systems [16], however, our work combines several such approaches and evaluates their effects on re-
cent HPC systems. Panda et al. provided good techniques for memory estimation which are utilized
in our work for memory footprint scheduling. Their work also showed some techniques for reducing
the memory usage and changing the data layout, which have inspired our techniques for redundant
data structure elimination and restructuring of data structures, respectively. They provided efficient
techniques for memory optimization, however, they did not discuss the performance benefits of those
techniques.

Wang et al. presented memory reduction as an approach to data locality enhancement [17]. They
presented algorithms for loop transformations that enabled reduced memory usage and achieved a
significant gain in the application’s executional performance. They presented an idea that the
opportunities for memory optimization existed often because the most natural way to specify a
computation task may not be the most memory-efficient. This idea is a major motivation of our

245

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

study. Their work showed that loop transformation techniques enable better cache usage and im-
proves temporal data locality.

Miwa et al. have addressed the issue of memory wall by replacing delinquent load with lines
of code that regenerate the load values [18]. Our technique for data re-calculation also works on a
similar principle by leveraging the high computational power of the systems and reducing the num-
ber of accesses to the main memory. Our work utilizes the principle of re-calculation and achieves
reduced memory size as well as increased performance.

Wang et al. presented the idea that memory usage reduction improves the data locality, which en-
ables increased performance on hierarchical memory systems [19]. The idea of loop transformations
has also been presented as a tool for performance enhancement through analysis of the complexity
of loop fusions [19].

In our study, we have worked along a similar idea of code transformations for memory usage
reduction. In contrast to the idea of loop fusion from [20] and [21], we have utilized loop exchange
to improve the stride access for better cache utilization, inducing better performance. In one of our
approaches, we have replaced the array references with scalar variables as Callahan et al. have pro-
posed [22]. The performance evaluations in our study have also been done on vector capable modern
HPC systems, providing a more comprehensive analysis of the performance results. With the code
transformations, our study also exploits the vectorization capability of the targets for extracting
more performance, as opposed to just the scalar evaluations of related studies.

3 Approaches to memory access optimizations of applica-
tions

This study targets the memory optimization of the existing scientific applications for the recent HPC
systems. For effective memory optimization, we propose approaches to reduce the number of memory
accesses in order to improve the performance of the target applications on recent HPC systems. To
realize these approaches, the memory access patterns of the applications are examined with respect
to the mathematical calculations and physical phenomena represented in the application codes. In
this section, we present several approaches to effective optimization of memory.

3.1 Memory footprint control

For any given application, the duration between an allocation and a deallocation of a data structure
is referred to as its memory lifetime, while the duration between its first access and last access is
referred to as its memory access period. This idea is presented by Panda et al., as a memory esti-
mation technique [16]. Generally, the memory lifetime of a data structure is longer than its memory
access period. Memory footprint control is done by analyzing and rescheduling the memory lifetime
of each variable, in order to adapt to its corresponding memory footprint or access period. This
is done by tracing the activity of each data structure on the memory from its allocation point to
its deallocation point. This activity ensures that the allocation and deallocation timing are aligned
with the first and last memory access of each data structure. Timely deallocations can provide room
for further allocations, thereby facilitating efficient usage of memory, especially for smaller memory
systems.

3.2 Restructuring of data structures

Some applications involve data structures that store massive data on the memory, but only few ele-
ments participate in the actual calculations [23]. Furthermore, Panda et al. discuss a methodology

246

International Journal of Networking and Computing

for live variable analysis to get the minimum memory estimate [16]. This approach is to identify the
active elements of a data structure and use only them for the purpose of storage and calculation.
This drastically changes the calculation flow, and eliminates redundant memory accesses and calcu-
lations. This approach benefits the application in reducing not only the size of memory allocations,
but also the number of memory accesses, as well as the number of redundant calculation instructions
involved in the calculations of the data structures.

3.3 Redundant data structure elimination

Panda et al. have presented a technique for reducing the memory size by eliminating temporary
arrays [16]. Many HPC applications are designed in a way so as to retain redundant data structures
for calculation purposes. In our approach, the idea has been adopted to eliminate not only the
temporary arrays, but also the redundant data structures. This approach is to eliminate temporary
and redundant work arrays and buffers that are used to store intermediate results during calcula-
tions, using techniques for statement fusion and combined calculations. This approach benefits the
application in reducing the number of calculations and the number of memory accesses, providing a
performance improvement.

3.4 Re-calculation of data

It is common for applications that deal with huge amounts of data to store the results of various cal-
culations in large arrays, so that redundant calculation operations on the same data can be avoided.
This is a good idea if the computational power of the target HPC systems is limited. However,
recently with the high computational capability but limited memory capacity of the HPC systems,
a cost for storing huge amount of calculated data is much higher than that for re-calculation on de-
mand without keeping calculated ones. Therefore, we need to eliminate the inessential arrays which
store intermediate calculation results and use up memory. Such data structures can be eliminated
by repeating the calculation operations over the same data throughout the application. Miwa et al.
have discussed an idea to replace cache-missed load instructions with a piece of code which regen-
erates the load value [18]. Similarly, this approach is to reduce the number of redundant memory
accesses by re-calculation of the arithmetic operations and elimination of the data structures that
store intermediate calculation results.

4 Memory optimization for a plasmonics simulation applica-
tion

The above discussed approaches are implemented on the plasmonics simulation application. In this
section, we discuss the characteristics of the application and provide information for implementation
of the approaches for memory reduction, using a suitable example for each approach.

4.1 Overview of the plasmonics simulation application

Plasmonics is a study of the interaction between the electromagnetic field and the free electrons in
a metal. The plasmonics simulation application is used to analyze the effect of optical responses of
light rays on various elements under varying conditions, as samples of various elements like, Sili-
con (Si), Aluminum (Al), etc. are studied by measuring their transmittance and reflectance under
a varying electromagnetic field. A sample three-layer stacked structure is depicted in Figure 2 below.

The plasmonics simulation application is written in Fortran90. The code structure comprises
of the conventional initialization phase and the computational phase. The initialization phase per-

247

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

Metal (Ag)

Insulator
(SiO2)

Figure 2: Sample structure for the study of plasmonics [24].

forms the setup of the data structures for input to the computational phase, where the theory is
computationally realized and calculations are performed.

This application is designed such that majority of the data structures are allocated together in
the initialization phase, and are deallocated together at the end of the program execution. The code
of the application is constructed to contain a main loop in which the input data is read to prepare
Maxwell’s equations, and solve them in the Fourier space in order to resolve the scattering matrix
for each periodic cycle. In this section, the algorithm of the application is described in detail.

The application uses Li’s algorithm [25] to calculate the scattering matrix using the Rigorous
Coupled-Wave Analysis (RCWA) method which relies on finding eigenmodes of Maxwell’s equations
[26]. The application first translates the discrete values of Maxwell’s equations on special points
to the summation of unit waves using the Fourier transformation. The equation is represented as
below.

(FG+ γ2)

(〈E(i)
x 〉

〈E(i)
x 〉

)
=
−→
0 . (1)

Here, F is a coefficient matrix in the expression of the electric field component in the magnetic
field component, G is a coefficient matrix in the expression of the magnetic field component in the

electric field component, γ represents the eigenvalue, 〈E(i)
x 〉 and 〈E(i)

y 〉 represent the Fourier co-
efficients of the electric-field, respectively.

The Maxwell equation for a periodic cycle is represented as a different layer in the Fourier space.
For each periodic cycle, Equation (1) is solved to obtain its eigenmode.

{
〈Ei

x〉k, 〈Ei
y〉k, γ

(i)
k

}2N+1

k+1
. (2)

A scattering matrix is defined using the eigenmodes for each Fourier layer. The scattering ma-
trix from Equation (3) represents the response against stimulants for the whole body of a generic
photonic crystal. The transmittance and reflectance for the element are calculated for varying the
electric field, and finally, the outputs (reflected and transmitted wave) against given input (incident
wave) are calculated.

(〈−→E (M+1)

− 〉

〈−→E
(0)

+ 〉

)
= S

(〈−→E (0)

− 〉
〈−→0 〉

)
. (3)

248

International Journal of Networking and Computing

Here, 〈−→E
(i)

± 〉 represents a state vector of the electric-field, and S represents a scattering matrix.

This application has been identified as the target application for our study. The field of plasmon-
ics is a very important research area for modern science. The target application is a well-structured
scientific application written in order to support ongoing research work. Some characteristics of
the code-writing style of this application resembles the code-structure of the legacy applications
as described in Section 1. Therefore, this application is appropriate for evaluation of our memory
optimization approaches, which are discussed in the following sections.

4.2 Memory footprint control

A simple program flow is depicted in Figure 3, where there are five data structures: array1, array2,
array3, array4 and array5, having different allocation sizes. The application assumes a sequential
program flow from sub1 to sub11 and the vertical axis represents time. In the initial representation,
these data structures are allocated together in the subroutine sub1 and deallocated together in the
subroutine sub11. The duration between allocation and deallocation of a data structure is referred
to as its memory lifetime. Based on the algorithm, the data structures are accessed in certain sub-
routines. The duration between the first access and last access for each data structure is referred to
as its memory access period.

sub1

sub2

sub3

sub4

sub5

sub6

sub7

sub8

sub9

sub10

sub11

INITIAL REPRESENTATION OPTIMIZED REPRESENTATION

PROGRAM FLOW

Heap Memory (MB)

FR
EE M

EM
O

R
Y

 SPA
C

E

FR
EE M

EM
O

R
Y

 SPA
C

E

Ti
m

e

Ti
m

e

Point of allocation

Point of deallocation

Memory Access
Duration

Memory Lifetime

0 GB 64 GB Heap Memory (MB)0 GB 64 GB

Memory Lifetime is
controlled to match the

Memory access duration

ar
ra

y1

ar
ra

y2

Figure 3: Controlling the memory footprint to save the memory space.

Figure 3 shows that if the memory lifetime of the data structure is larger than its memory access
period, then the usage of memory space is not effective. The focus of this approach is on an adjust-
ment of the memory lifetime of each data structure to match with its memory access period, in order
to reduce its memory footprint. Therefore, we move the allocation statements for a data structure
to the subroutine where the data structure is accessed for the first time. Similarly, the deallocation
statements are moved to the subroutine where the data structures are accessed for the last time
in the application’s lifetime. In the optimized representation in Figure 3, each array is allocated
in the subroutine which accesses it for the first time and deallocated in the subroutine where it is
last accessed. Hence, the memory allocations are not cumulative like the initial representation. For
example, array1 is allocated in sub2 and deallocated in sub4. In this way, we can ensure that the

249

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

overall memory allocation requirement of the application is controlled.

This approach does not change the data structure itself. However, allocation and deallocation
timing of each variable might completely change. Since it is a basic optimization scheme for Fortran
programs, it does not strictly affect the theoretical implementation. In our study, the data structures
involved in all phases of the application have benefit from this approach. The allocations for the
data structures for Equations (1), (2) and (3) have been controlled through this. Therefore, its effect
is visible throughout the program.

4.3 Restructuring of data structures

This approach for data structure manipulations is used to reduce the calculation complexity for the
participating matrices. This approach can be examined using a case of matrix multiplication where
the active elements for participation in the calculations are identified.

W W

=

*
*

* *

*

W W

Sam
e

 O
u

tp
u

t

Optimization Scheme:
Reduce 2D matrices

to Vectors

input_matrix temp1 temp2 output_matrix

temp1 temp2

IN
IT

IA
L

 R
EP

R
ES

EN
TA

TI
O

N

O
P

TI
M

IZ
ED

R

EP
R

ES
EN

TA
TI

O
N

input_matrix output_matrix temp1

temp2

*

Figure 4: Representation of the approach for restructuring of data structures.

Figure 4 shows a case of matrix multiplication of three 2D arrays: temp1, input matrix, and
temp2. Their product is stored in another 2D array output matrix. The contents of all the three
participating matrices are analyzed to examine the least number of elements that can participate
in a calculation to produce the same output. It is observed that only half-diagonals of the matrices
temp1 and temp2 are required to produce the same output as the original calculation. Therefore,
temp1 and temp2 are restructured to a vector. Using this approach, we are able to reduce not only
the memory usage for the calculation, but also the calculation complexity.

In the plasmonics simulation application, the calculations for creation of the matrices F and G
from Equation (1) can benefit from the optimization approach of restructuring of data structures.
Moreover, the scattering matrix S, represented in Equation (3) can itself be restructured using this

250

International Journal of Networking and Computing

technique.

4.4 Redundant data structure elimination

To eliminate redundant data structures, techniques for algorithm modification and statement fusion
are employed. An example for algorithm modification is depicted in Figure 5 where matrices in mat
and identity mat (multiplied by the scalar S) are participating in an arithmetic calculation to pro-
duce the matrix out mat. We analyze the arithmetic operations, and eliminate the requirement for
identity mat by slightly modifying the calculations. As shown in Figure 5, instead of performing
a matrix subtraction as depicted in the initial representation, we perform a diagonal-only scalar
subtraction, to obtain the same output. This modification ensures that the redundant data struc-
tures are eliminated. Here, we are able to replace the matrix with a scalar S and hence, reduce the
calculation complexity.

It is a very common practice for scientific applications to involve matrix arithmetic and use
identity matrices or unit matrices. The example shown in Figure 5 can be used to further generalize
the idea of eliminating identity matrices through algorithm modification for various scientific appli-
cations.

In the plasmonics simulation application, scattering matrix (S) from Equation (3) is calculated
in steps by using intermediate results from the previous calculations at each step. These steps
originally involve redundant calculations which use temporary data structures for storage. This
optimization approach has been applied to eliminate such intermediate calculations for the creation
of the scattering matrix.

A1-S A2 A3 A4

A5 A6-S A7 A8

A9 A10 A11-S A12

A13 A14 A15 A16-S

S

S

S

 S

identity_mat = (0.0D0,0.0D0)
 do i=1,n
 identity_mat(i,i) = (1.0D0,0.0D0)
 enddo

do i=1,n
 out_mat (i,i) = in_mat (i,i) - scalar_value
enddo

out_mat(1:n,1:n) = in_mat(1:n,1:n) - scalar_value * identity_mat(1:n,1:n)

id
en

ti
ty

_m
at

in_mat

-

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

IN
IT

IA
L

 R
EP

R
ES

EN
TA

TI
O

N

A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

O
P

TI
M

IZ
ED

R

EP
R

ES
EN

TA
TI

O
N

- S

A1-S A2 A3 A4

A5 A6-S A7 A8

A9 A10 A11-S A12

A13 A14 A15 A16-S

Sam
e o

u
tp

u
t

in_mat

out_mat

out_mat

[Onn]= [Nnn] – S * [Inn]

Figure 5: Representation of the approach for redundant data structure elimination.

251

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

4.5 Re-calculation of data

We reduce the number of redundant memory accesses for a data structure by on-demand re-
calculation throughout the program, as opposed to calculating once and storing the results in a
large data structure on the memory. This process is described using Figure 6 where a simple pro-
gram flow is shown. In the initial representation Subroutine #1 performs a calculation operation
and stores the results onto an array grd mat. Subroutine #2 reads the array grd mat and performs
further calculations.

After applying the on-demand re-calculation approach, the requirement for calculations and stor-
age in Subroutine #1 is eliminated. Instead, the calculation operations for storage are moved to the
Subroutine #2 without any requirement for storage. In this way, we can eliminate the requirement
for large data structures for storage in the program. This approach is utilized in the initialization
phase of the plasmonics simulation application, where the matrices are being constructed. Due to
the structure of the program, some of these matrices are very large in size. Elimination of these
large data structures by re-calculation has a significant effect on the application’s memory usage.

SUBROUTINE #1 SUBROUTINE #2

Calculate and
store in array

grd_mat

Read from array
and proceed

grd_mat (m,n,i,j,p,l) =

-1/(4*pi*pi*m*n)*&

 (cdexp(f1*x*m) - cdexp(-f1*(x-1)*m))*&

 (cdexp(-f2*y*n) - cdexp(-f2*(y-1)*n))

db_mat(s,t,ll) = db_mat(s,t,ll) +

 curr_mat(il,p)*grd_mat(m-j,n-

l,x,y,p,ll)

IN
IT

IA
L

 R
EP

R
ES

EN
TA

TI
O

N

O
P

TI
M

IZ
ED

R

EP
R

ES
EN

TA
TI

O
N

SUBROUTINE #1 SUBROUTINE #2

pd = -1/(4*pi*pi*(m-j)*(n-l))*&

(cdexp(-f1*x*m) - cdexp(-f1*x*m))*&

(cdexp(-f2*y*n) - cdexp(-f2*y*n))

db_mat(s,t,ll) = db_mat(s,t,ll) +

 curr_mat(il,p)* pd

grd_mat

Calculate, store in
scalar and proceed

Storage step is eliminated!

Figure 6: Representation of the approach for re-calculation of data.

This approach can also improve the possibility of automatic code optimizations by compiler. Fig-
ure 7 depicts a sample code structure to illustrate this phenomenon. Figure 7(a) shows the original
code and Figure 7(b) shows the optimized code with the re-calculation methodology implemented.
In Figure 7(a), array grd mat stores the results of previous calculations, so that the program can
re-use it for further calculations. For example, the compilers of NEC SX systems attempt automatic
code optimization through the method of loop interchange for best cache utilization through short
strides of array references. When compared with the p-loop, the l-loop shortens the stride of array
references better. Therefore, the l-loop is auto-vectorized by the SX compiler. On the other hand,
in Figure 7(b), instead of using the array grd mat, the values are obtained by repeated calculations
in every iteration, thereby eliminating the requirement of storage array grd mat. In Figure 7(b),
when the SX compiler attempts automatic optimization, the loops are interchanged differently. Now

252

International Journal of Networking and Computing

the x-loop is auto-vectorized by the SX compiler, because the x-loop shortens the stride of array
references better than the p-loop. For this application, since the loop length of the x-loop is much
larger than that of the l-loop, the average vector length in Figure 7(b) is longer than that in Figure
7(a) for the small dataset. Furthermore, since array tbl is referred by the loop index of the x-loop,
the whole array tbl is stored on the cache because of the automatic loop interchange. Therefore,
this technique also improves the data locality and facilitates for better cache utilization on the SX
systems as well as the Intel Xeon system.

 do n = -nn,nn

 do l = -nn,nn

 s = (m + mm)*na + (n + nn + 1)

 t = (j + mm)*na + (l + nn + 1)

 do y = 1,d2

 do x = 1,d1

 do p = 1, nm

 db_mat(s,t,ll) = db_mat(s,t,ll) + cur_mat(il,p)*grd_mat(m-j,n-l,x,y,p,ll)

 …

 enddo ; enddo; enddo

 enddo ; enddo

L
o
o
p

 e
x
c
h

a
n

g
e

L
o
o
p

 e
x
c
h

a
n

g
e

 do n = -nn,nn

 do l = -nn,nn

 s = (m + mm)*na + (n + nn + 1)

 t = (j + mm)*na + (l + nn + 1)

 …

 do y = 1,d2

 do x = 1,d1

 do p = 1, nm

 if (p == tbl(x,y,ll)) then

 pd = -1/(4*pi*pi*(m-j)*(n-l))*&

 (cdexp(-f1*x*(m-j)) - cdexp(-f1*(x-1)*(m-j)))*&

 (cdexp(-f2*y*(n-l)) - cdexp(-f2*(y-1)*(n-l)))

 else

 pd = (0.0D0, 0.0D0)

 endif

 db_mat(s,t,ll) = db_mat(s,t,ll) + cur_mat(il,p)* pd

 enddo ; enddo ; enddo

 …

 enddo; enddo

(a) Original Code

(b) Optimized Code

Figure 7: A kernel loop of the plasmonics simulation application: (a) Original code and (b) Re-
calculated code.

5 Performance Evaluation

To examine the effectiveness of our approaches, the performance of the plasmonics simulation ap-
plication is evaluated in this section.

5.1 Experimental Setup

The application is executed on three computing platforms: SX-9, SX-ACE, and LX 406-Re2. We
evaluate the memory consumption and its performance per-process. Table 2 shows the hardware
configuration of the evaluation targets.

SX-9 and SX-ACE are vector parallel platforms, and a node of the SX-9 system contains 16
CPUs with a shared memory of 1 TB capacity [27], while a node of the SX-ACE system consists
of one CPU and a main memory of 64 GB. The processor of SX-ACE has four vector architecture
cores where each core has a large vector on-chip cache, named Assignable Data Buffer (ADB). The
capacity of ADB is 1 MB on each core [28]. Therefore, computational performance of SX-ACE
can be extracted better by effective utilization of ADB [3]. The vector length of both SX-9 and
SX-ACE is 256 words [29]. The vector operation ratio and average vector length for an application
are examined for the plasmonics simulation application to measure how effectively it uses the vector
capability of the underlying architecture.

253

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

LX 406-Re2 is an Intel Xeon (E5-2695v2) based scalar parallel platform with two CPUs per node
and 12 cores per CPU. It has a 128 GB main memory, which consists of two memory subsystems
of 64 GB each. The two memory subsystems are connected through two CPUs. The capacity of
L3 cache is 30 MB. This target is also used in order to examine the effectiveness of the memory
optimization techniques on scalar architectures.

Table 2: Hardware Configuration.
Node CPU

System Number Memory Perf. Number Cache
of CPUs Capacity (GB) (Gflops) of Cores Capacity

SX-9 16 1024 102.4 1 256 KB

SX-ACE 1 64 256 4 1 MB x 4 cores

LX 406-Re2 2 128 230.4 12 30 MB (L3)
(E5-2695v2)

As mentioned earlier, the memory usage and performance of the plasmonics simulation applica-
tion are input data dependent. Table 3 shows the parameters for the experiment.

Table 3: Input Dataset parameters.
Small Dataset Large Dataset Huge Dataset

Number of Grids 315 (15x21) 1225 (35x35) 3465 (45x77)

Number of Layers 5 2 5

Fourier Divisions 205 x 355 300 x 300 205 x 355

Memory Reqmnt. (Original) 36 GB 65 GB 543 GB

5.2 Memory size reduction results

In this section, we first analyze the effect of the memory optimization on the overall memory size of
the application and then the effects of each approach are examined individually.

We evaluate the application’s executional capability on the small memory HPC systems like SX-
ACE, by approximating the pre-optimization memory usages for each input dataset. Since the large
and huge datasets demand a requirement for memory sizes that are larger than the available physical
memory of SX-ACE, their pre-optimization versions cannot execute on SX-ACE. Here, we observe
that their original memory requirement is nearly 65 GB and 543 GB, respectively, by executing the
large and huge datasets on SX-9.

The overall memory size reduction after the optimization is shown in Figure 8. The memory size
has reduced to 1/71 of the original for the small dataset, 1/15 of the original for the large dataset and
1/12 of the original for the huge dataset. While executions of the small dataset achieve a remarkable
reduction in memory usage, we observe that the program executes successfully on SX-ACE for the
large and huge datasets with memory usages of 4.25 GB and 44.0 GB, respectively. This shows that
the optimized memory usage is well fitted within the available memory capacity of the target system.

Note that each optimization approach has its individual effect on the memory size of the ap-
plication. Table 4 shows the memory size benefit provided by each optimization approach, when
applied individually to the original application. Memory footprint control shows a fair contribution
to the overall memory reduction of the application. Restructuring of data structures and redundant
data elimination approaches provide a fair contribution to the application’s memory reduction when
evaluated together. It is apparent that the re-calculation approach is the most effective in this eval-

254

International Journal of Networking and Computing

35.63

0.50

0

5

10

15

20

25

30

35

40

Before Opt. After Opt.

M
e
m

o
ry

 S
iz

e
 (

G
B

)

Small Dataset

65.06

4.25

0

10

20

30

40

50

60

70

Before Opt. After Opt.

M
e
m

o
ry

 S
iz

e
 (

G
B

)

Large Dataset

542.50

44.00

0

100

200

300

400

500

600

Before Opt. After Opt.

M
e
m

o
ry

 S
iz

e
 (

G
B

)

Huge Dataset

15.3 times
reduced

71.2 times
reduced

12.3 times
reduced

Figure 8: Memory size reduction.

Table 4: Snapshot of memory benefit from each approach.
Approach Small Dataset Large Dataset Huge Dataset

Memory footprint control 0.9 GB 7.2 GB 23.0 GB

Restructuring of data structures 0.1 GB 0.2 GB 10.7 GB

Redundant data structure elimination 0.6 GB 0.3 GB 1.6 GB

Re-calculation of data 34.1 GB 53.1 GB 380.2 GB

uation, since it eliminates the arrays that consume a large portion of the application’s used memory.

5.3 Experimental Results and Discussions

The memory optimization approaches result in not only the reduction in the overall memory require-
ment for the application, but also the improvement of the application’s executional performance.
We first identify the effect of each approach on the application’s performance step-by-step, and later
analyze the performance of the overall execution. The step-by-step evaluation follows the pattern
from the evaluations in the previous section.

As discussed in Section 3, there are four optimization approaches: memory footprint control
(Approach A), restructuring of data structures (Approach B), redundant data structure elimination
(Approach C) and re-calculation of data (Approach D). These approaches are evaluated in three
steps. First, we evaluate the Approach A individually over the original source code. Next, the
Approaches B and C are applied to the original source code, and evaluated together, since there is
a close dependency between both approaches in the participating data structures. Lastly, we apply
the Approach D to the original source code for evaluation.

255

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

5.3.1 Performance of memory footprint control

Optimization Approach A is applied to the original application. Table 5 shows performance results
in terms of the vector operation ratio, average vector length, FLOP count, vector load element
count and ADB hit ratio remain unaffected by this approach. However, there is a slight degradation
in speed caused by the wait time for simultaneous multiple read/write requests made to a single
memory bank, known as the bank conflict time.

Table 5: Performance results of Approach A on the program execution — Vector System.
SX-ACE — Small Dataset SX-9 — Large Dataset

Original + Original +
Original Approach A Original Approach A

Execution Time (sec) 771.42 782.79 6000.65 6951.04
FLOP Count 2.32 × 1012 2.32 × 1012 2.95 × 1013 2.95 × 1013

V. Load Element Count 9.41 × 1011 9.41 × 1011 - -
Avg. Vector Length 27.61 27.61 89.25 89.25
Vector Op. Ratio (%) 93.34 93.34 97.93 97.93
Bank Conflict (sec) 95.55 97.99 4891.62 5967.55
ADB Hit Ratio (%) 61.62 61.62 - -
B/F Ratio 3.25 3.25 - -

Table 6: Performance results of Approach A on the program execution — Scalar System.
Intel Xeon — Large Dataset

Original +
Original Approach A

Execution Time (sec) 26085.99 24445.55
Instruction Count 4.90 × 1013 4.91 × 1013

Cache Hit Ratio (%) 15.18 14.78

As discussed earlier in this paper, this approach does not affect the data structures directly, but
it specifically affects their allocation and deallocation timing. Hence, the FLOP count, the number
of vector load elements, and the B/F ratio are almost the same as those of the original and optimized
versions of this approach, as shown in Table 5. However, due to the significant change in the memory
allocations, the memory access patterns change drastically. In this situation, SX-9 requires effective
memory mapping, since the bank cycle time of SX-9 is longer than that of SX-ACE. The modified
allocations cause the memory capacity to reduce, but the number of bank conflicts increases. There-
fore, the total execution time of the program increases, with a significant performance degradation
on SX-9.

This approach is also evaluated on a single-core of the Intel Xeon based scalar platform LX
406-Re2. For the large dataset, the original memory requirement of 65 GB is slightly larger than
the 64 GB capacity of a single memory subsystem on a single CPU. Therefore, the execution time
of the original version includes an overhead of memory latency between two CPUs on the same
node. As shown in Table 6, the instruction count remains similar to the original, because there is no
major change in the algorithm or execution order. Hence, the cache utilization is also similar to the
original. However, due to the modification in memory allocations, the overhead of memory latency
is avoided since all allocations are concentrated on a single memory subsystem with a capacity of 64
GB or lower. This is observed from the reduced execution times for this approach.

5.3.2 Performance of restructuring of data structures and redundant data elimination

Some data structures in the program are restructured by Approach B, while they are used as sub-
stitutes for the eliminated redundant data structures by Approach C. Due to such data structures,

256

International Journal of Networking and Computing

the performance effects of both the approaches are closely related to each other. In this step, the
performance results for the original program are compared with those of optimized program with
those for Approaches B and C combined. These approaches directly affect the algorithm and the
design of the data structures, due to restructuring and elimination. The performance effect of this
approach is analyzed using the subroutines of the computational phase which have adopted this
approach.

Table 7: Performance results of Approach B+C — Vector System.
SX-ACE — Small Dataset SX-9 — Large Dataset

Original + Original +
Original Approach B+ Original Approach B+

Approach C Approach C

Execution Time (sec) 28.91 28.10 961.52 930.49
FLOP Count 7.45 × 1011 7.06 × 1011 2.18 × 1013 2.03 × 1013

V. Load Element Count 2.77 × 1011 2.00 × 1011 - -
Avg. Vector Length 213.4 201.8 241.30 239.8
Vector Op. Ratio (%) 99.24 99.18 99.57 99.60
Bank Conflict (sec) 7.07 6.29 575.33 524.57
ADB Hit Ratio (%) 48.31 84.33 - -
B/F Ratio 2.98 2.27 - -

Table 8: Performance results of Approach B+C — Scalar System.
Intel Xeon — Large Dataset

Original +
Original Approach B+

Approach C

Execution Time (sec) 3367.02 2611.15
Instruction Count 9.93 × 1012 9.58 × 1012

No. of Memory Access 7.36 × 1010 4.54 × 1010

Cache Hit Ratio (%) 64.57 66.71

As shown in Table 7 for the small dataset on SX-ACE and large dataset on SX-9, this evaluation
step shows a performance improvement in terms of the execution time, due to the reduction in the
number of memory accesses. The FLOP count is reduced because the multi-dimensional arrays
have either been eliminated or reduced to single-dimensional arrays or scalar variables. Due to the
reduction in the array sizes, the loop indexes and loop lengths are also reduced. Therefore, there
are a slight decrease in the average vector length of the program and also a slight reduction in the
B/F ratio, for the small dataset.

The above factors directly affect the vector efficiency of the program. As a result, the vector
operation ratio for this approach remains almost the same for all executions. Overall, Approaches B
and C provide a reduction in the memory requirement of the application and improve the applica-
tion’s performance. This observation is also verified from the results in the case of the large dataset
for SX-9.

Similar behavior is observed on the Intel Xeon based scalar platform LX 406-Re2. As shown
in Table 8, the cache-hit ratio has improved slightly. However, there are significant reductions in
the number of memory accesses and the instruction count due to the reduced size of the working
dataset by restructuring of the multi-dimensional arrays. Due to these reasons, the execution time
is reduced considerably, resulting in an overall performance gain from this approach.

257

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

5.3.3 Performance of re-calculation approach

In this step, the experimental results obtained by Approach D are compared with those of the orig-
inal. This approach has provided the largest memory reduction compared to the other approaches,
and has hence shown a good improvement in performance. This is shown in Table 9 for the small
dataset on SX-ACE and large dataset on SX-9. As discussed in Section 4.5, this approach has its
major effect on the initialization phase of the application, and has provided a significant benefit for
the memory size reduction, compared to other approaches.

Table 9: Performance results of Approach D — Vector System.
SX-ACE — Small Dataset SX-9 — Large Dataset

Original + Original +
Original Approach D Original Approach D

Execution Time (sec) 750.86 560.96 6245.79 3859.70
FLOP Count 1.57 × 1012 4.22 × 1012 7.64 × 1012 1.53 × 1013

V. Load Element Count 6.65 × 1011 4.13 × 1011 - -
Avg. Vector Length 20.7 159.6 33.40 132.1
Vector Op. Ratio (%) 91.26 98.74 93.84 98.76
Bank Conflict (sec) 91.10 10.96 5655.07 541.99
ADB Hit Ratio (%) 68.72 99.82 - -
B/F Ratio 3.38 0.78 - -

Table 10: Performance results of Approach D — Scalar System.
Intel Xeon — Large Dataset

Original +
Original Approach D

Execution Time (sec) 20444.54.99 12573.78
Instruction Count 2.02 × 1013 5.33 × 1013

No. of Memory Access 7.36 × 1011 1.27 × 107

Cache Hit Ratio (%) 0.91 98.81

From Table 9 for the small dataset on SX-ACE, we confirm that this approach has a significant
effect on the application’s performance. Due to the elimination of large arrays, the number of mem-
ory accesses is reduced. However, due to the increase in the number of re-calculations, the FLOP
count increases to nearly 2.5x compared to its original.

This approach is also effective for optimizing the memory access patterns of the program. As
shown in Table 9 for the small dataset on SX-ACE, the number of vector loads is reduced and the
ADB hit ratio improves to 99.82%. This shows that the approach of data re-calculation results in
better cache utilization through vectorization of the loops that can offer better stride. Moreover,
through better memory access patterns, there is a significant reduction in the bank conflict time.

Due to reasons mentioned in Section 4.5, there is nearly an 8x improvement in the average vec-
tor length for the initialization phase for the small dataset on SX-ACE, providing a better vector
efficiency to the program. With a higher FLOP count and a higher average vector length, the high
vector processing capability of SX-ACE works well, which provides a higher vector operation ratio.
These reasons enable a faster execution of the program on the system. With a higher FLOP count
and lesser vector loads, there is a significant drop in the B/F ratio from 3.38 to 0.78. Overall, this
approach has a significant contribution of 3.5x to the performance improvement of the plasmonics
simulation application. It is a beneficial approach for systems with smaller memory capacity per
node. This observation is also confirmed for the large dataset on SX-9 from Table 9.

This approach is also evaluated on the Intel Xeon based scalar platform LX 406-Re2. As shown in
Table 10, the execution speeds up to nearly 1.6x compared to the original. Due to the re-calculation

258

International Journal of Networking and Computing

of data, the instruction count increases to nearly 2.6x compared to the original and the cache usage
improves from nearly no utilization to nearly full utilization. The cache-hit ratio improves from
0.91% to 98.81% by this approach. This approach has proven beneficial for not only vector systems,
but also scalar systems.

While this approach provides better memory access patterns and good vector efficiency, it in-
creases the number of calculations for the CPU. With increasing the dataset sizes, the performance
benefit of this approach may reduce, since the number of calculations increase the computational
performance resulting in a longer execution time.

5.3.4 Performance of the overall application

The performance data of the optimized executions for the small, large and huge datasets on SX-
ACE are shown in Table 11. The experimental results obtained using all datasets are represented
in Figure 9. Due to the elimination of various redundancies from the original code, the memory
consumption for all the datasets is reduced after the memory optimization. Performance gains are
observed in terms of execution time due to improvements in vector operation ratio, average vector
length and reduction in memory bank conflict time.

500

1500

4500

13500

40500

Before Opt. After Opt.

Ex
e

cu
ti

o
n

 T
im

e
 (

se
cs

)

Small Dataset: SX-9 Small Dataset: SX-ACE Small Dataset: Intel Xeon

Large Dataset: SX-9 Large Dataset: SX-ACE Large Dataset: Intel Xeon

MEMORY EXCEEDS
ON SX-ACE

Figure 9: Performance Improvement.

As shown for the small dataset in Table 11, the memory size is reduced remarkably from nearly
34 GB to 512 MB. The memory access pattern is improved after optimization, and the ADB is being
used more efficiently. The number of memory loads, represented by the vector load element count,
is reduced from 9.41× 1011 to 5.71× 1011, while ADB hit ratio is improved from 61.62% to 85.04%.
Better memory access patterns lead to the reduced number of bank conflicts. The average vector
length is also improved providing a better vector efficiency. The experimental results show that op-
timized memory accesses provide a gain in the computational performance of the application. Hence
our approaches are effective in reducing the memory load and improving the sustained performance

259

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

Table 11: Performance Results on SX-ACE.

Small Dataset Large Dataset Huge Dataset
Before After Before After Before After

Optimization Optimization Optimization Optimization Optimization Optimization

Execution Time (sec) 771.42 674.44 4586.37 106908.52
FLOP Count 2.32 × 1012 4.82 × 1012 3.91 × 1013 1.24 × 1015

V. Load Element Count 9.41 × 1011 5.71 × 1011 Memory 7.65 × 1012 Memory 2.96 × 1014

Comp. Performance (MFLOPS) 3005.2 7149.4 overflow 8536.1 overflow 11632.9
Avg. Vector Length 27.61 161.09 on 142.90 on 190.69
Vector Op. Ratio (%) 93.34 97.42 SX-ACE 98.33 SX-ACE 98.27
Memory Size (MB) 36480 512 4352 44800
Bank Conflict (sec) 95.95 7.22 140.47 4569.02
ADB Hit Ratio (%) 61.62 85.04 64.03 63.39
B/F Ratio 3.25 0.95 1.56 1.90

Table 12: Performance Results on LX 406-Re2.
Intel Xeon — Large Dataset

Before After
Optimization Optimization

Execution Time (sec) 28831.45 14961.90
Instruction Count 4.90 × 1013 9.79 × 1013

Cache Hit Ratio (%) 15.18 59.48

of the application.

As shown in Table 12 for the large dataset on the Intel Xeon based scalar platform LX 406-Re2,
the instruction count is nearly doubled after applying the memory optimization approaches. The
cache-hit ratio also shows a drastic improvement, which proves the importance of memory optimiza-
tion for the system’s cache utilization. The performance in terms of execution time improves by
nearly 2x compared to the original. These results suggest that our approaches work well for scalar
machines as well as vector machines.

6 Conclusions

The bytes per flop (B/F) of the modern HPC systems have been decreasing with newer hardware de-
signs. On the other hand, the memory requirement of the existing and future scientific applications
is expected to increase in terms of memory usage and the number of memory accesses. This situa-
tion leads to a major issue in their deployment on recent HPC systems. To solve this issue, we have
presented approaches to the memory usage reduction of the applications. The proposed approaches
to memory optimization have been discussed based on memory footprint control, restructuring of
data structures for active elements, redundant data structure elimination by combined calculations
and re-calculation of temporary data. From our evaluations, we have confirmed that our proposed
approaches are able to not only reduce the memory usage of the application, but also provide a gain
in computational performance on recent HPC systems. Moreover, we have also proved that these
approaches are beneficial for not only vector platforms NEC SX-9, NEC SX-ACE, but also for the
Intel Xeon based scalar platform LX 406-Re2.

Some of the proposed optimizations drastically change the code structure of the applications,
however, the code transformation itself is simple and can be automated. Using the discussed op-
timization approaches, it is possible to improve the readability and maintainability of the source
code. The automated source code transformation of the scientific applications and validation of our
approaches using other applications are addressed as the future work.

260

International Journal of Networking and Computing

Acknowledgments

The authors would like to thank Mr. Sourav Saha of NEC Technologies India for his continuous
efforts for the memory optimization and application evaluation. We would also like to thank Mr.
Kenryou Kataumi of NEC Solution Innovators for providing his guidance and expertise required for
the investigation. We would like to extend our gratitude to Dr. Masanobu Iwanaga of National
Institute for Materials Science (NIMS) for sharing his research to enable our investigation.

References

[1] J. Dongarra, and A. van der Steen,. High-performance computing systems: Status and outlook.
Acta Numerica, 21:379–474, May 2012.

[2] P. M. Kogge, and T. J. Dysart. Using the TOP500 to trace and project technology and architec-
ture trends. In 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1–11, Nov 2011.

[3] R.Egawa, S.Momose, K.Komatsu, Y.Isobe, A.Musa, H.Takizawa, and H.Kobayashi. Early eval-
uation of the sx-ace processor. The poster presentation at The International Conference for
High Performance Computing, Networking, Storage and Analysis (SC14), 2014.

[4] H. Meuer, J. Dongarra, E. Strohmaier, and H. Simon. TOP 500 Lists June 2016. TOP 500
Supercomputer Sites. http://top500.org.

[5] Application Working Group. Computational Science Roadmap - Overview. on Feasibil-
ity Study on Future HPC Infrastructures, http://hpci-aplfs.aics.riken.jp/document/

roadmap/roadmap_e_1405.pdf, May 2014.

[6] J. Dongarra. Report on the Sunway TaihuLight System, June 2016.

[7] J. Dongarra. A report on Tianhe-2. www.netlib.org/utk/people/JackDongarra/PAPERS/

tianhe-2-dongarra-report.pdf, June 2013.

[8] Oak Ridge National Laboratory. Introducing Titan. Advancing the era of advanced computing.
https://www.olcf.ornl.gov/titan/.

[9] Lawrence Livermore National Laboratory. Sequoia. Machine Catalog. http://computation.
llnl.gov/computers/sequoia.

[10] RIKEN Advanced Institute for Computational Science. Two-page summary on hardware and
software of the K computer. system handout. http://www.aics.riken.jp/en/wp-content/
uploads/system_handout.pdf.

[11] K.Kumaran. Introduction to Mira. https://www.alcf.anl.gov/files/bgq-perfengr.pdf.

[12] M.Vigil, D.Doerfler. Trinity Advanced Technology System Overview. www.lanl.gov/

projects/trinity/_assets/docs/trinity-overview-for-web.pdf.

[13] CSCS Swiss National Supercomputing Centre. Piz Daint. Specifications. http://user.cscs.
ch/computing_systems/piz_daint/index.html.

[14] HLRS High-Performance Computing Centre. Cray XC40 (Hazel Hen). Technical Description.
https://www.hlrs.de/en/systems/cray-xc40-hazel-hen/.

[15] Shaheen Supercomputing Laboratory. Shaheen II Get Started. Shaheen II Spec. https://www.
hpc.kaust.edu.sa/sites/default/files/files/public/GetStartedFlyer.pdf.

261

A Memory-Efficient Implementation of a Plasmonics Simulation Application on SX-ACE

[16] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A. VANDER-
CAPPELLE and P. G. Kjeldsberg. Data and Memory Optimization Techniques for Embedded
Systems. ACM Transactions on Design Automation of Electronic Systems, 6(2):149–206, April
2001.

[17] C. Wang, Y. Song, R. Xu, and Z. Li. Data locality enhancement by memory reduction. ICS
’01 Proceedings of the 15th international conference on Supercomputing, pages 50–64, 2001.

[18] H. Miwa, Y. Dougo, V. M. G.Ferreira, K. Inoue, and K. Murakami. Preliminary Evaluation of
the Load Data Re-Computation Method for Delinquent Loads. In Proceedings of the Interna-
tional Conference on Systems Engineering (ICSEng’05), Aug. 2005.

[19] C. Wang, Z. Li, Y. Song, and R. Xu. Improving Data Locality by Array Contraction. IEEE
Transactions on Computers, 53(9):1073–1084, 2004.

[20] A. Darte. On the Complexity of Loop Fusion. In Proceedings of the 1999 International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’99, pages 149–157, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[21] C. Ding. Improving effective bandwidth through compiler enhancement of global and dynamic
cache reuse. Doctoral thesis, Rice University, 2000. http://hdl.handle.net/1911/19488.

[22] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for Subscripted Variables.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, PLDI ’90, pages 53–65, New York, NY, USA, 1990. ACM.

[23] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools,
chapter 11, Optimizing for Parallelism and Locality. Addison Wesley, 1986.

[24] M. Iwanaga. Photonic metamaterials a new class of materials for manipulating light waves.
Science and Technology of Advanced Materials, 13(5):053002, 2012.

[25] L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered
diffraction gratings. Journal of the Optical Soceity of America A: Optics and Image Science,
and Vision, 13(5):1024–1035, 1996.

[26] M. Iwanaga, and B.Choi. Heteroplasmon Hybridization in Stacked Complementary Plasmo-
Photonic Crystals. National Institute for Materials Science (NIMS), 15(3):1904–1910, 2015.

[27] S. Nakazato, S. Tagaya, N. Nakagome, T. Watai, and A. Sawamura. Hardware Technology of
the SX-9 (1) - Main System. NEC Techncical Journal, 3(4):15–18, Dec. 2008.

[28] S. Momose. M. Resch et al. editors, Sustained Simulation Performance 2014, chapter SX-ACE,
Brand-New Vector Supercomputer for Higher Sustained Performance I, pages 57–67. Springer
International Publishing, 2015.

[29] T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura, H. Takizawa, K. Okabe, and H.
Kobayashi. Performance evaluation NEC SX-9 using real science and engineering applications.
In Proceedings of the ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis (SC09), 2009.

262

