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Abstract

High performance scientific codes are written to achieve high performance on a modern HPC
(High Performance Computing) platform, and are less readable and less manageable because
of complex hand optimization which is often platform-dependent. We are developing a toolset
to mitigate that maintainability problem by user-defined easy-to-use code transformation: The
science code is written in a simpler form, and coding techniques for high performance are intro-
duced by code transformations. In this paper, we present xevtgen, which is a code transformer
generator of our toolset. Transformation rules are defined using dummy Fortran codes with
some directives, and we expect our design makes our tool easier to learn for Fortran program-
mers. Some examples of code transformations, as well as an application to a real scientific
application, are shown to discuss the practicality of the proposed approach. Xevtgen assumes
XSLT as a backend, and generates an XSLT template from the dummy Fortran code. That
design of xevtgen exploits the power of XSLT, and inherits some limitations of XSLT. In our
plan, those limitations will be mitigated by additional tools in our toolset.

Keywords: Fortran, Code transformation, Code generation

1 Introduction

As clusters and supercomputers are widely available nowadays, high performance scientific codes
tend to have tens or hundreds thousands of lines of codes. There may be two major reasons of those
large sizes of codes. One reason is that, as the processors’ clock frequency almost no longer increases,
we have to exploit advanced features of latest computer architecture: parallelism, memory hierarchy,
etc. That requires more and more complex coding, deeply dependent on the computer architecture
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of a specific execution platform. The other reason is that, because higher performance is provided
by advanced hardware, scientists choose more complex simulation models for their analysis, which
were not possible in the past. Those two reasons will continue to exist, perhaps more intensively, in
the future.

In this work, we are concerned with the former reason of the complexity of high performance
scientific codes. The platform-dependent coding makes the codes less readable and less manageable,
and harder to port to a new platform. Our project aims to mitigate that coding complexity in high
performance scientific codes, by using code transformations. One of challenges we are tackling in
our project is to design an appropriate interface of such code transformation rules that is easy for
science programmers, who are familiar to only one or very few programming languages. Compiler
experts could develop a custom compiler or a code transformer for their own code transformations,
but it is not so easy for average programmers to develop such a tool by themselves. In this paper,
we present xevtgen, which is a tool that generates code transformations. An advantage of xevtgen
is that the code transformation rules can be described in conventional Fortran plus some special
directives, without much knowledge on theory and practices about compilers. Therefore, Fortran
programmers can learn and use our tools more easily than developing a custom compiler or a code
transformer.

Xevtgen is based on XSLT, which is one of the most well-known and well-available XML trans-
formation framework. This paper also reports how xevtgen generate an XSLT template from a
dummy Fortran program. By using XSLT as transformation engine, we can exploit the power of
XSLT in our toolset. But this design also inherits some limitations of XSLT. We explain our plan
in which those limitations will be mitigated by additional tools.

This paper consists of 10 sections. Section 1, this section, is an introduction. In Section 2,
an overview of our approach and toolset is explained. From Section 3, the main part of this paper
begins. Section 3 is a brief introduction of how to describe code transformations in xevtgen. Section
4 explains simple and straightforward examples of code transformations. Section 5 explains a little
more elaborated examples from our development of autotuning software using xevtgen. Section 6
explains an application of xevtgen to a real-world application program for performance portability.
In Section 7, the implementation of xevtgen, that is, how Fortran dummy codes are translated into
XSLT templates, is explained. Section 8 describes some limitations of xevtgen by itself, and reveals
our plan to solve them. Section 9 compares our work to related work. Section 10 gives concluding
remarks.

2 Overview

2.1 Xevolver approach

It is frequently said that “coding what to compute” and “coding how to compute” are not separated
well in lower-level programming languages, such as Fortran and C. By using higher-level languages
such as MATLAB, or domain specific languages (DSL) such as stencil programming DSLs[3], pro-
grammer can concentrate on “what to do.” However, regrettably, some languages cannot utilize full
power of the newest computers, and some languages cannot provide enough programmability for
general purpose computing. Therefore, many HPC scientific codes are still written in Fortran, C
and C++.

Another reason to use conventional programming languages is that there are many existing codes,
developed and maintained for decades. Therefore, in our project, we assume such existing legacy
codes, and develop a methodology and a toolset to achieve high performance in such codes without
introducing major modifications of the existing codes.

Our aim is to separate “how to compute” in such codes, especially on high performance comput-
ers, from “what to compute.” We chose to use code transformation for that purpose[16]. That is,
the source code is mostly written to describe “what to compute,” and there are separate code trans-
formation rules that modify the source code toward high-performance, perhaps platform-dependent
codes. The high performance computer architecture in an extreme-scale computing era will be
different from that in the present, but using our toolset, the original code itself does not need to
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adapt to the new architecture if separate code transformation rules are properly written for the new
architecture.

The platform-dependent optimizations should be generally done by compilers developed for those
platforms. In reality, it is hard to write an optimized code which outperforms very-well-developed
optimizing compilers. Still, there are many occasions where compiler optimizations are not applied
as the code developers expect. Compilers are conservative, that is, they do not apply optimization
unless they are sure that the behavior of the program does not change. Some other reasons are
that, for example, the code is too long to analyze, some analyses such as aliasing cannot be fully
solved, or compilers cannot prove safety of some optimizations, which is known to be safe by the
developers. We observe that, there are always gaps between compiler optimizations and developers’
expectations.

Based on that observation, we are developing Xevolver, a code transformation framework, and
its utility toolset Xevolver tools. We refer to the whole set of software just as “Xevolver.”
Xevolver is expected to fill the gap between compiler optimizations and developers’ knowledge
about possible optimizations. In this paper, we assume that the developers know the gap, and know
how to modify their codes for higher performance. Our aim is to provide code transformation tools
for code developers. Although we are also planning to support C and C++, this paper presents only
the Fortran version which is under active development.

2.2 Xevolver Tools

In this paper, we introduce xevtgen, which is a part of Xevolver tools. Xevolver tools consist
of four parts. The first part is xevparse/xevunparse, which parses a Fortran source code into an
XML document using Xevolver. The Fortran source code is translated into an XML tree which
represents an Abstract Syntax Tree (AST) of the source code. The XML format is defined by
Xevolver. The second part is xevtgen, which is the main topic of this paper. The input of xevtgen
is a Fortran-like code which describes a set of code transformation rules, and its output is a template
file of XSLT. XSLT is one of the standard specifications to describe XML data conversion rules.
Thus, by using xevtgen and an XSLT engine, we can transform an XML document representing
the original Fortran code so that the transformed XML document accordingly represents another
Fortran code. Xevunparse can back-translate the transformed XML document to its corresponding
Fortran code. The other two parts are xevdriver and xevutils. The xevdriver provides a
simple script language to control code transformations using our toolset. The xevutils provide
some miscellaneous functions that are useful in transformations, for example, choosing new names,
controlling the order of code transformations, helping debugging of code transformations, modularize
set of code transformations, and so forth.

3 Xevtgen

We develop xevtgen, because most Fortran programmers are unfamiliar to XSLT and similar XML
transformation systems, even to XML. For such Fortran code developers, it is really painful to learn
XML and XSLT. Our experience is that XSLT is quite hard to debug, unless the developer is very
well familiar to most features of the XSLT coding. This is perhaps because XSLT assumes a little
simpler XML transformations than that of a practical Fortran AST. Motivated by this, we designed
xevtgen so that the user does not need to know XML and XSLT at all.

Before explaining definitions of code transformations, we explain command line usage of xevtgen.
The xevtgen command takes two arguments:

xevtgen infile outfile

Here the first argument infile is the file with code transformation definitions, and the second argument
outfile is the name of the file to which XSLT translation rules are output. The infile is formatted as
a Fortran program, as is discussed below, and the outfile is in XML. (It is more precise to say that
infile is an XML document which is converted from a Fortran-like code by xevparse. However for
simplicity, we call the input file of xevparse as infile of xevtgen.)
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To transform a program src.f90 to dst.f90 by using the XSLT code transformation rules
generated as outfile, one should run the commands as follows:

xevparse src.f90 src.xml

xsltproc outfile src.xml > dst.xml

xevunparse dst.xml dst.f90

Xevolver is developed based on ROSE compiler infrastructure[12], and hence supports most features
of Fortran 77/90/95 and 2003.

3.1 Infile format

The infile describes the code transformation. Its basic format is just a dummy Fortran program —
here a “dummy” program may do no meaningful computation, but must be conformant with the
Fortran programming language — plus some directives. The generic directive format is as follows:

directive := !$xev clause [clause . . .]

clause := name | name(term[,term, . . .])

term := name | int | str | ‘exp‘
| name([term[,term, . . .])

where int is an integer, str is a string, and exp is a Fortran expression. Integers and strings are in
the Fortran format. A name consists of alphanumerics, underscores, and periods. Each directive
starts with !$xev, followed by one or more clauses. Each clause has a name, possibly followed by
arguments, i.e., a list of terms enclosed by parentheses. Each term is one of name, integer, string,
Fortran expression, or name with arguments. A directive with a begin clause corresponds to a
directive with an end clause, and they form a single statement. A directive without begin is a single
statement by itself.

3.2 Defining a code transformation in xevtgen

An xevtgen infile defines one or more code transformations. The most basic transformation is literal
replacement. For example, if infile contains a directive

!$xev tgen trans exp src(‘N‘) dst(‘10**3‘)

then xevtgen generates an XSLT transformation rule that converts all occurrences of variable N

into integer 10**3. Here the first two clauses !$xev tgen represent that the directive is of xevtgen
rule. The next clause trans introduces a transformation rule. The following clause specifies the
type (explained below) of the transformation rule. In this example, exp implies that the rule is a
transformation from an expression to another expression. The expression in the src clause, which
is N in this example, defines what pattern of Fortran code fragment is extracted to be transformed.
We call it source pattern. Expression in the dst clause, which is 10**3 in this example, defines the
result of the transformation. We call it destination pattern.

There are six types of entities in xevtgen:

• Name: names of variables, functions, modules, named labels of DO and IF statements, etc. in
Fortran, and name of clauses and terms in directives.

• Value: integer or string values, either in Fortran program or in directive.

• Clause: clause of directive.

• Term: term of directive.

• Exp: Fortran expression.

• Stmt: statement of either Fortran program or directive.
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Transformation rules of terms and expressions are defined as in the above example. Transformation
rules of clauses and statements are specified with two directives, for example:

!$xev tgen trans stmt src begin

IF (I .EQ. 0) EXIT

!$xev tgen trans stmt src end

!$xev tgen trans stmt dst begin

IF (I == 0) THEN

EXIT

END IF

!$xev tgen trans stmt dst end

Currently, xevtgen does not support transformation of names and values. One may want to
change the name of a function from foo to bar. Transformation of names will provide a one-step
solution to this requirement. But because of some technical issues caused by the XML structure
and limitations of XSLT, such a solution is not provided in xevtgen. We are planning to provide a
separate tool to change names and values.

3.3 Tgen-variable

Code transformations need meta-variables, which enable transformations with some parameters. In
xevtgen, they are called tgen-variables. Tgen-variables work in two ways: one is a wildcard in
the source pattern, and the other is to convey information from a source pattern to its destination
pattern. The following is a simple example of using a tgen-variable.

!$xev tgen var(a) exp

!$xev tgen trans exp src(‘sq(a)‘) dst(‘a*a‘)

In the first line, a is declared as a tgen-variable of type exp. In the source pattern sq(a), it matches
any call of a function named sq with a single argument, since a behaves as a wildcard. In the
destination pattern a*a, the subexpression a of the source pattern sq(a), that is, the argument of
sq, is copied into each occurrence of a. Thus,

k = sq(4) + sq(b) + sq(3+c)

is transformed into

k = 4*4 + b*b + (3+c)*(3+c)

Here, a small difference from macros of C language is that, the parentheses of (3+c)*(3+c) automat-
ically appear, since the replacement is done at an AST level, not at a text level. If the tgen-variable
appears in the source pattern, then the transformation rules are applied to the tgen-variable. For
example, sq(sq(3)) will be transformed into (3*3)*(3*3). But the recursive application can be
prohibited by adding norec clause in the tgen-variable declaration.

In many cases, tgen-variables appear as named variables in the pattern, as in the example above.
There are some special forms. The following example contains uses of tgen-variables of type stmt.

!$xev tgen list(body if, body else) stmt

!$xev tgen src begin

IF (.false.) THEN

!$xev tgen stmt(body if)

ELSE

!$xev tgen stmt(body else)

ENDIF

!$xev tgen src end

!$xev tgen dst begin

!$xev tgen stmt(body else)

!$xev tgen dst end
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Here, !$xev tgen stmt(name) behaves as one single tgen-variable of type stmt. One cannot write
just body if instead of !$xev tgen stmt(body if). This is because we use dummy Fortran code
to represent transformation. As body if is not a valid Fortran statement, it is not accepted by the
parser.

This example introduces two more things: First, trans stmt can be omitted in !$xev tgen

src and !$xev tgen dst, since they are so frequently used. Second, !$xev tgen list(name list)
declares tgen-variables of list kind, matching lists of non-negative numbers of entities.

In the above example, !$xev tgen stmt(body if) catches all statements between IF and ELSE,
and !$xev tgen stmt(body else) catches all statements between ELSE and ENDIF. The present
code transformation conducts, if the condition of IF is a constant .false., then the IF sentences is
removed, and only the body of ELSE-part remains.

Note that the above transformation is not safe in general. The body of THEN-part may contains
a statement with a label, and there may be a GOTO statement with that label. At least at the
current status, our toolset does not provide a checking mechanism of such an unsafe transformation.
It should be emphasized that our purpose is to provide code transformations to avoid modifying the
original code, and thus, as is the case in conventional manual code modification, programmers still
need to be responsible for the correctness or safety of their code transformations.

Figure 1 shows a little long example, which splits a loop into two. A source code is assumed to
have a loop, for example,

!$xev loop split

DO k = 1, N

a(k) = . . .
!$xev split point

b(k) = . . .
END DO

and after transformation, it will become

DO k = 1, N

a(k) = . . .
END DO

DO k = 1, N

b(k) = . . .
END DO

that is, there become two loops, keeping loop indices and ranges, and the statements before !$xev

split point are stored in the body of the first loop, and the statements after !$xev split point

are in the body of the second loop. This loop splitting, also known as loop fission, sometimes improves
locality of computations, and is one of the basic loop transformation techniques for HPC. Generally,
a scientific code needs to be modified for achieving high performance because the compiler does not
necessarily work as expected. Therefore, this kind of basic loop transformation techniques are yet
needed for performance tuning of practical scientific codes.

The transformation rule contains three definitions of transformations. The first transformation
(lines 5 to 19) is an initialization. It finds a DO loop preceded by !$xev loop split. Then it
creates the first loop with an empty body, and with the same index variable and range. Here, the
increment i2 is included in the pattern, but it matches with DO loops without increment. This
is a little tricky, but convenient to write slightly general transformation rules. Next see the third
transformation (lines 41 to 62), which moves the first statement in the second loop to the last
statement in the first loop. Last, the second transformation (lines 21 to 39) is a finalization. If the
first statement of the second loop is !$xev split point, then the split has been successfully done.
It just removes some directives.

Only one of them is applied at once. The transformation is assumed to be applied repeatedly,
until no transformation is done any more. The order of three transformation rules is significant. If
the code matches multiple transformations, then the transformations defined first is applied. This
prioritization on earlier transformations is different from XSLT, but is conventional in programming
languages with pattern matching functionalities.
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3.4 Conditional transformation

Users may need to choose transformations depending on some conditions. If the condition appears
in a matching pattern, then just defining multiple transformations may be enough, placing a more
specific matching pattern before a more general matching pattern.

Another possible condition is related to an ancestor node in an AST. For example, one statement
should be transformed only if it is within the definition of a specific function. In xevtgen, such a
condition can be specified by a context. Such a context can be defined as

!$xev tgen ctxdef(infoo) stmt begin

FUNCTION foo(args)

!$xev tgen stmt(body)

END FUNCTION

!$xev tgen ctxdef end

and is named as infoo. The defined context is referred in the matching pattern as

!$xev tgen src context(infoo) begin

. . .
!$xev tgen src end

Then the transformation is only applied within the definition of the function foo.

Anything which can be specified as a source pattern can be a context. The pattern should
contain one or more tgen-variable(s). When the transformation rules are applied to a code fragment
which corresponds to such a tgen-variable, the context is regarded as valid, and the rules with the
context are applied. Otherwise, the context is regarded as invalid, and the rules with the context
are ignored. In the above example, !$xev tgen stmt(body) is the tgen-variable in the context
definition, and it corresponds to the body of the function definition. Thus the transformation rule
with context(infoo) is applied only to the code fragments within the definition of function foo.
By using contexts, one can define, for example, rules which are valid only within some specified DO
loop, within an argument of some function call, or within some specified directive structure.

Some additional functionalities related to contexts are provided by xevtgen. One is logical
operations of contexts, such as context(and(ctx0, or(ctx1, not(ctx2)))), where ctx0, ctx1

and ctx2 are context names. Another feature is a context for another context: If a context (say,
ctx1) definition is conditioned by another context (say, ctx0), then the context ctx1 will be active
only when it is in context ctx0. A context (say, ctx2) can cancel another context (say, ctx1). Those
features are designed to resemble scoping rules in many programming languages.

The third method of limiting matching patterns is conditions, which is designed to catch more
detailed conditions in the matching pattern. A condition is defined by condef, for example, as
follows:

!$xev tgen var(x) exp

!$xev tgen condef(upd) stmt contains begin

i = x

!$xev tgen condef end

The condition upd becomes active if the variable i is updated by an assignment (note that x is a
tgen-variable, so can be any expression). Then it can be used, for example, as follows:

!$xev tgen var(i0, i1, i2) exp

!$xev tgen list(body) stmt condition(upd)

!$xev tgen src begin

DO i = i0, i1, i2

$xev tgen stmt(body)

END DO

!$xev tgen src end
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Here, the condition is referred to as condition(upd) in the declaration of tgen-variable body. Then,
if a source pattern contains a reference to the tgen-variable body, then it fires only when the code
fragment that corresponds to body satisfies the condition: in this case, contains an assignment
statement to the variable i. So the above pattern matches if the loop index i is updated within the
loop body, and perhaps one can warn the programmer. The assignment to i can be found within
a deeper program structure, for example, within an inner DO loop or an IF construct within the
outer DO loop indexed with i.

There are four kinds of conditions in xevtgen: is, same, contains, and listwith. The condition
is means that the tgen-variable directly matches the pattern given by the condition. It is useful
when the condition definition contains tgen-variables, and when the condition is used in logical
operations and, or, and not. The condition same means that the tgen-variable has the same name
or value as the condition specifies, which can be used only for names and values. Condition same

for other types, such as expression and statements, are not supplied in xevtgen. Such a condition
corresponds to a unification, and XSLT does not provide unification, so xevtgen does not. Section
5.1 introduces a technique which is similar to unification. The condition contains means that the
tgen-variable contains the specified pattern. The condition listwith is activated only when the
specified pattern is an element of the list that the tgen-variable represents.

As described above, xevtgen allows users to define transformation rules without any knowledge
about compilers, XML, nor XSLT. Basically, users just need to write two versions of a code, the
source pattern and the destination pattern. Moreover, combining matching patterns with contexts
and conditions, xevtgen can provide many matching conditions which is available in XSLT. But the
possible set of transformations of xevtgen is less than that of XSLT. For example, one can write
XSLT template with character string manipulations, which is not made available in xevtgen. In a
sense, that restriction reduces the risk of defining syntactically illegal rules.

Overall, xevtgen has been designed and developed so that it can be used to define code trans-
formations frequently required in performance tuning of scientific codes. The following sections will
show several use cases to demonstrate that xevtgen can define various code transformations useful
in practical programming.

4 Simple examples

This section shows two use cases to exemplify the expression ability and limitations of xevtgen

(rather than performance tuning with xevtgen).

4.1 Choose

The first example is an implementation of choose, which is something like the conditional operators
p?x:y in the C language. One can use choose(p, x, y) in expressions, which is expanded to IF
sentences. Note that choose(p, x, y) cannot be implemented as a function, because y should be
evaluated only if p is true, and y should be evaluated only if p is false.

In this paper, we focus on a very simple implementation, to keep the explanation brief. First,
we assume there is only one occurrence of choose in a program. If there are many choose instances,
they must be translated one by one, and such a control will be achieved by using xevutils and
xevdriver of our toolset. Second, we assume a choose expression in an assignment, which is simplest
to treat. If choose appears in the condition of an IF statement, it would be better to evaluate the
condition before the IF statement.

It is possible to define choose in one file, but for simplicity, we explain it in three transformations.
The first transformation is to find choose and make an IF statement.

!$xev tgen var(p, x, y, u) exp

!$xev tgen condef(has choose) contains exp(‘choose(p,x,y)‘)

!$xev tgen var(chexp) exp cond(has choose)

!$xev tgen src begin

u = chexp
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!$xev tgen src end

!$xev tgen dst begin

IF (p) THEN

!$xev choose then

u = chexp

ELSE

!$xev choose else

u = chexp

END IF

!$xev tgen dst end

An assignment of some expression chexp that contains choose is transformed to an IF statement
with condition p, the first argument of choose. The assignment statement is copied to both THEN
part and ELSE part, preceded by directives with choose then and choose else, respectively.

The second transformation is as follows. If an expression choose(p, x, y) is in a statement
followed by choose then, then it is transformed into just x. If it is followed by choose else, then
it is transformed into y.

!$xev tgen var(s) stmt

!$xev tgen var(p, x, y) exp

!$xev tgen ctxdef(ch1) stmt begin

!$xev choose then

!$xev tgen stmt(s)

!$xev tgen ctxdef end

!$xev tgen trans exp src(‘choose(p,x,y)‘) dst(‘x‘) context(ch1)

!$xev tgen ctxdef(ch2) stmt begin

!$xev choose else

!$xev tgen stmt(s)

!$xev tgen ctxdef end

!$xev tgen trans exp src(‘choose(p,x,y)‘) dst(‘y‘) context(ch2)

The third transformation is just to remove choose then and choose else, which is not shown
here, because it is trivial. Let us apply these transformations to the following Fortran code:

function test(a, b)

integer :: a, b, test

test = choose(a < b, -1, 1)

end function

After the first transformation, it will become:

function test(a, b)

integer :: a, b, test

IF (a < b) THEN

!$xev choose then

test = choose(a < b, -1, 1)

ELSE

!$xev choose else

test = choose(a < b, -1, 1)

END IF

end function

Then it is converted by the second transformation:

function test(a, b)

integer :: a, b, test
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IF (a < b) THEN

!$xev choose then

test = -1

ELSE

!$xev choose else

test = 1

END IF

end function

Finally it becomes as follows:

function test(a, b)

integer :: a, b, test

IF (a < b) THEN

test = -1

ELSE

test = 1

END IF

end function

4.2 Unswitching

Unswitching is a widely-used coding technique, that moves IF switches with loop-invariant conditions
out of DO loops. Let us first see an example of target code:

subroutine test(n, a, ch)

integer :: n, ch

real :: a(n)

!$xev loop unswitch

do i = 1, n

if (ch .eq. 0) then

a(i) = 1.0 / i

else if (ch .eq. 1) then

a(i) = i

else if (ch .eq. 2) then

a(i) = 0.0

else

a(i) = 1.0

end if

end do

end subroutine test

Unswitching translates the code above into the following code:

subroutine test(n, a, ch)

integer :: n, ch

real :: a(n)

if (ch .eq. 0) then

do i = 1, n

a(i) = 1.0 / i

end do

else if (ch .eq. 1) then

do i = 1, n

a(i) = i

end do

else if (ch .eq. 2) then

do i = 1, n

a(i) = 0.0

end do
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else

do i = 1, n

a(i) = 1.0

end do

end if

end subroutine test

The former code is more readable, but the latter code performs better on many platforms. Some
compilers can do unswitching automatically, but sometimes cannot, because it is hard for compilers
to check whether the conditions are loop-invariant or not.

The following code is a definition of unswitching transformation.

!$xev tgen var(i, i0, i1, p, q) exp

!$xev tgen list(body1, body2, body3) stmt

!$xev tgen src begin

!$xev loop unswitch

do i = i0, i1

if (p) then

body1 = xevtgen var

else if (q) then

body2 = xevtgen var

else

body3 = xevtgen var

end if

end do

!$xev tgen src end

!$xev tgen dst begin

if (p) then

do i = i0, i1

body1 = xevtgen var

end do

else

!$xev loop unswitch

do i = i0, i1

if (q) then

body2 = xevtgen var

else

body3 = xevtgen var

end if

end do

end if

!$xev tgen dst end

!$xev tgen src begin

!$xev loop unswitch

do i = i0, i1

if (p) then

body1 = xevtgen var

else

body2 = xevtgen var

end if

end do

!$xev tgen src end

!$xev tgen dst begin

if (p) then

do i = i0, i1

body1 = xevtgen var

end do
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else

do i = i0, i1

body2 = xevtgen var

end do

end if

!$xev tgen dst end

It consists of two rules, one for three or more conditional branches, the other for two (IF-THEN-
ELSE). Our parser converts a series of ELSE IF switches into a nested IF-THEN-ELSE syntax, so the
above two cases are enough for any number of IF switches. Some statement like body1=xevtgen var

is equivalent to !$xev tgen stmt(body1), which are sometimes slightly more readable.
The above transformation produces a code which is little uglier than expected as:

if (ch .eq. 0) then

...

else

if (ch .eq. 1) then

...

else

if (ch .eq. 2) then

...

else

...

end if

end if

end if

but it is possible to define a code transformation to convert the code above into a simpler one.

5 Some use cases in code generation

Xevolver and xevtgen are not restricted to transformations that preserve the semantics of the
codes. In this section we introduce a use case of xevtgen for a kind of meta-programming. We are
developing a code generator for mathematical routines of autotuning based on Bayesian statistical
modeling[15]. Our generator takes an input file that describes a Bayesian model in a format of
Fortran code. Then it outputs an executable Fortran code that computes a fitting of observed data
into the given Bayesian model. We do not explain the details, but introduce some transformations
that are used in our code generation.

5.1 Triplet transformation

Before explaining the code transformations, we introduce an extension of transformations in xevtgen,
which we call triplet transformation.

The need of triplet transformation comes from the lack of unification in XSLT. Without unifi-
cation, the matching rule (the source pattern) cannot depend on the source code. For example, we
have no way to find the specification of a variable found in the source code, or to find the occur-
rences of an expression found in the source code. Triplet transformation is a method to mitigate
that restriction.

A simple example is a macro. Here we have the following source code:

!$xev macro(N, 100)

x += N * N

and want to transform it to the code below.

x += 100 * 100
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To do that, we just need an xevtgen infile as

!$xev tgen trans exp src(‘N‘) dst(‘100‘)

To attain the usual semantics of macro directive, expressions N and 100 should be specified within
the macro directive, which is in the source code. But in xevtgen the replacement patters must be
specified in the infile of the xevtgen, rather than the code to be transformed.

Triplet transformation is a simple trick to enable it. It consists of three transformations. First,
we prepare a dummy infile:

!$xev tgen trans exp src(‘aaa‘) dst(‘bbb‘)

where aaa and bbb are dummy expressions. Next, we define another transformation, which we call
specializing rule, as follows.

!$xev tgen var(xxx, yyy) exp

!$xev tgen src begin

!$xev macro(‘xxx‘, ‘yyy‘)

!$xev tgen src end

!$xev tgen dst begin

!$xev tgen trans exp src(‘aaa‘) dst(‘xxx‘)

!$xev tgen trans exp src(‘bbb‘) dst(‘yyy‘)

!$xev tgen dst end

Those two transformation rules are sufficient to a triplet transformation. At the first transformation,
the specializing rule is applied to the source code that have one or more !$xev macro lines. The
source code will be transformed into the following:

...

!$xev tgen trans exp src(‘aaa‘) dst(‘N‘)

!$xev tgen trans exp src(‘bbb‘) dst(‘100‘)

...

The above transformed code is used at the second transformation, and is applied to the dummy
infile. It results in the following code, which we call specialized infile:

!$xev tgen trans exp src(‘N‘) dst(‘100‘)

which is exactly what we wanted to have. At the third transformation, the specialized infile is
applied to the source code, and the macro transformation is done. (In this example, the source code
can have only one macro definition. To treat multiple macro definitions, we need an external helper
that sequentialize multiple transformations.)

A triplet transformation is illustrated in Figure 2. Here, the thick boxes represent the files exist
before the transformations and the thin boxes represent the files created by the transformations. The
thick arrows represent sources and destinations of the transformations, and the thin arrows show
transformation rules. It looks much more complex than a simple transformation, but the only added
file is the specializing rule, which inserts some information of the source code into the transformation
rule.

5.2 Finding array size

Next, a few transformations used in our code generator are explained. The first transformation finds
the array size specification, which is given as follows.

1 real :: xxx(100)

2

3 !$xev tgen list(aaa) exp

4 !$xev tgen condef(has xxx) contains exp(‘xxx(aaa)‘)
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5 !$xev tgen list(vars) cond(has xxx) exp

6

7 !$xev tgen var(t) exp

8 type :: t

9 integer :: dummy

10 end type t

11

12 !$xev tgen list(rem) stmt

13 !$xev tgen ctxdef(sizedefined) stmt begin

14 type(t) :: vars

15 !$xev tgen stmt(rem)

16 !$xev end tgen contextdef

17

19 !$xev tgen src context(sizedefined) begin

20 !$xev catch size(‘xxx‘)

21 !$xev end tgen src

22 !$xev tgen dst begin

23 !$xev size info(‘xxx‘, ‘aaa‘)

24 !$xev end tgen dst

25

26 !$xev tgen src begin

27 !$xev catch size(‘xxx‘)

28 !$xev end tgen src

29 !$xev tgen dst begin

30 !$xev size info(‘xxx‘, ‘1‘)

31 !$xev end tgen dst

The above code is a dummy infile, and xxx should be replaced with a real variable name via a triplet
transformation.

Line 1 specifies that xxx is an array. Lines 3 to 5 give a standard usage of a condition: The
condition in line 4 has a variable part aaa, which is declared in line 3. The condition must be used
in a tgen-variable, which is defined in line 5. In the following rules, vars represents any list of
expressions that contains xxx(...).

Lines 7 to 10 define a user-defined type t, which is actually a dummy type, because the type
name t is a tgen-variable. That is used in line 14.

Lines 12 to 16 define a context named sizedefined. Line 14 means that, the context is activated
if there is a variable specification with any type (type(t)) that contains xxx(...) in vars. The
context is valid in the following statements, as designated by !$xev tgen stmt(rem).

Lines 19 to 24 define the transformation from catch size to size info. There the tgen-variable
aaa is replaced with the array size specifier, as it is specified in line 4 as xxx(aaa). For exam-
ple, if there is a specification with integer :: xxx(10, 20), then the transformation generates
size info(‘xxx‘, ‘10, 20‘).

If there is no such a specification, then xxx seems to be a scalar variable, and the transformation
defined in lines 26 to 31 will be activated. It inserts 1 in size info directive.

5.3 Declaring a new temporary array

In the next example, we insert a declaration of a new temporary array yyy, which has the same
dimension as obtained in size info. In our real usage, we rearrange multiple dimensions into one
dimension (for example, yyy(10*20) is generated from xxx(10,20)), but we omit that part for
simplicity. The simplified transformation rule is as follows.

1 !$xev tgen list(aaa) exp

2 !$xev tgen condef(has size) contains stmt begin

3 !$xev size info(‘xxx‘, ‘aaa‘)

4 !$xev end tgen condef

5 !$xev tgen list(body with size) stmt cond(has size)
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Table 1: System specifications.
Specifications

NEC NEC Intel NVIDIA NVIDIA
SX-9 SX-ACE Xeon E5-2630v2 Telsa K20 Tesla C2070

Type Vector Vector x86 GPU GPU
Year 2007 2013 2013 2012 2009

Peak Perf. 102.4 Gflop/s 256 Gflop/s 124.8 Gflop/s 1170 Gflop/s 515 Gflop/s
Memory Size 1000 GBytes 64 GBytes 128 GBytes 5 GBytes 6 GBytes
Memory BW 256 Gbytes/s 256 GBytes/s 51.2 GBytes/s 208 GBytes/s 150 GBytes/s

No. Cores 1 4 6 2496 448
Core Clock 3.2 GHz 1 GHz 2.6 GHz 0.71 GHz 1.15 GHz

Last-level Cache 256 KBytes 1 MBytes 15 MBytes 1.5 MBytes 768 KBytes

6

7 !$xev tgen src begin

8 !$xev end of spec

9 !$xev tgen stmt(body with size)

10 !$xev end tgen src

11 !$xev tgen dst begin

12 real :: yyy(aaa)

13 !$xev end of spec

14 !$xev tgen stmt(body with size)

15 !$xev end tgen dst

Again, this is a dummy infile, and xxx and yyy should be replaced with names of real variables via
a triplet transformation.

Lines 1 to 5 define a tgen-variable body with size that represents a list of statements containing
!$xev size info(‘xxx‘, ‘...‘).

Lines 7 to 15 give a transformation to insert an array declaration. Here it is assumed that a
line !$xev end of spec is inserted at the end of the specification part. It is technically possible
for xevtgen to search for the end of the specification part, but it needs very lengthy coding. So we
assume a mark that shows the end of the specification part, for simplicity and efficiency. Under that
assumption, the transformation is easy. Note that the tgen-variable aaa conveys the size information
from the size info directive to the destination pattern of the transformation rule.

Here, it is assumed that size info directive is placed after end of spec. Thus this is an example
that information is brought from a place after the transformed directive, while the previous example
brings information from a place before the transformed directive. One can write more complex
transformation rules that collect information before and after the transformation point.

By using those methods, we can insert execution statements. By using 29 transformation rules,
we could generate a model fitting code from a Bayesian model. That result will be reported in our
future work.

6 Optimization of a real-world application with xevtgen

This section shows a case study of using xevtgen for optimizing a real-world application, called
Numerical Turbine [8], which has been originally developed and optimized for the NEC SX-9 vector
computing system installed at Tohoku University Cyberscience Center [14]. In this case study,
xevtgen is used to migrate Numerical Turbine to other platforms so that the kernel codes are
executed on the processors listed in Table 1. NEC SX compiler is used for the SX-9 and SX-ACE
systems. PGI Accelerator compiler 16.4 is used for the others, and OpenACC directives [11] are
used to compile the code for GPUs.

As observed in many other scientific applications, Numerical Turbine has a lot of (at least 44)
similar loop nests that have almost the same loop structure shown in Figure 3(a). To achieve
high performance, those loop structures must be changed so as to make better use of the system
performance considering the architectural characteristics. In the original code, the length of each
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innermost loop is basically increased so that the SX-9 vector computing system can exploit the
loop parallelism. On the other hand, it is not always best for GPUs to use the parallelism of the
innermost loop. Hence, so-called loop interchange is frequently used to optimize Numerical Turbine
for GPUs.

One problem is that it is difficult for the compiler to judge if each loop nest in the original
code is interchangeable and parallelizable. Our preliminary evaluation indicates that those loop
structures have to be altered as shown in Figure 3(b) in order to allow the OpenACC compiler
to parallelize the loop nests. Note that it is necessary to insert several statements to prevent the
loop interchange from changing the program behaviors. Obviously, it is difficult for compilers to
automate this transformation by properly inserting the statements. Accordingly, for GPUs, all of
the loop nests in the code need to be modified to make their loop structures more friendly to the
OpenACC compiler.

It is effortful even for expert programmers to manually change all the 44 loop nests. In our
previous work [16], one transformation rule is written in XSLT and used for transforming the loop
nests in the same way as in Figure 3. The case study in [16] has demonstrated that Xevolver is
useful to perform such repetitive code modifications by using a mechanical code transformation,
which is defined by XSLT rules of only 36 code lines in the case study.

In [16], however, the users are supposed to have expert knowledge about both of performance
tuning and XML technologies, even though HPC programmers are rarely familiar with both of them.
On the other hand, in the case of xevtgen, the same rule can be represented as a dummy Fortran
code of 28 code lines shown in Figure 4. This rule is general enough to transform all of the 44 loop
nests whose structures are almost the same as that in Figure 3(a). For the generality, the code in
lines 2 to 11 defines a list of statements, which organize a code pattern written in lines 6 to 9. The
original and transformed code patterns actually defining the transformation rule are written in lines
12 to 27. This means that the rule could be simpler if the rule is used only for transforming a more
specific code pattern.

According to our observation, such a simple transformation rule is often required for optimizing
a specific code in practice. Such a rule could be simple but specific to a particular code, i.e., not
usable for other codes, and thus requires a custom code transformation rule. In such a situation,
xevtgen will be helpful to define and use a custom code transformation for optimizing the particular
code without major code modifications.

In terms of the number of code lines, the dummy Fortran code is about 22% shorter than the
XSLT rules. A more important point is that the users can write the dummy Fortran code if they
know the Fortran syntax and the basic usage of xevtgen described in this paper. On the other hand,
to describe the XSLT rules in [16], the users need to learn XML, XSLT, and ASTs generated by the
ROSE compiler. Accordingly, it is obvious that the users can describe custom code transformation
rules much more easily by using xevtgen than writing XSLT by hand.

Figure 5 shows the performance impact of the code transformation in Figure 4. The vertical axis
indicates the speedup ratio of the transformed code to the original one. Thus, if the speedup ratio
is less than one, the performance of the system is degraded by the code transformation.

Note that different architectures might prefer different loop structures and hence require different
loop optimizations. In this case study, the original code is optimized for the SX-9 vector computing
system, while the code transformation is defined for GPU-aware loop optimizations. As a result,
the code transformation significantly improves the GPU performances, i.e., K20 and C2070, and
degrades the performances of the others. These results clearly indicate that, if a code is simply
optimized for a particular system, the optimization often leads to performance degradation of others.
In the case of using code transformations, however, this performance degradation is not a problem
because each system can use its own code transformation. In this particular case, the original code
without any code transformation is used for the SX systems, and the transformed code is used for
the GPU systems. In this way, the Xevolver approach can decouple “how to compute” from “what
to compute” written in standard Fortran, and xevtgen allows users to benefit from the approach
much more easily.
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7 Implementation Overview

In this section, the implementation of xevtgen is briefly explained.
As explained in Section 2, the xevtgen infiles (written in Fortran) are first transformed into

XML documents by xevparse. Xevparse parses a Fortran code based on Xevolver, also parses
!$xev directives, and outputs an XML document. Fortran source codes should be also converted to
XML documents by xevparse.

After reading an infile formatted in XML, xevtgen works in two paths. In the first path, the
numbers of tgen-variable declarations, contexts, and transformation rules are counted. In the second
path, xevtgen outputs the outfile, as an XSLT template file, while traversing the XML tree once
again.

The XSLT template file has just one big transformation rule, schematically shown as follows.

<xsl:template match="*">

declare XSLT parameters
<xsl:choose>

<xsl:when test="match source pattern">
generate destination pattern

</xsl:when>

possibly more when nodes
<xsl:otherwise>

make a copy
</xsl:otherwise>

</xsl:choose>

</xsl:template>

The phrases in italics will be explained below. The last one, make a copy is a well-known XLST
idiom that makes a copy of the current node, and recursively applies the rules to the children (see
Figure 7).

We chose to use one big transformation rule with when branches, because we use a different
method to prioritize matchings than XSLT: an earlier rule has higher priority than a later one, while
in XSLT, priority is defined by numbers. It could be implemented with numbered priority, but the
current implementation is more straightforward.

7.1 Declaring XSLT parameters

Xevtgen uses three types of XSLT parameters. First, one parameter is used for each tgen-variable.
Once a node or a set of nodes is caught by a tgen-variable, it is transferred to the subsequent
transformations.

Second, one string parameter is used to maintain the information about whether each node is in
a context or not. Each character in this parameter corresponds to one context defined in the infile,
and it is ‘t’ if the node is within the context, and ‘f’ otherwise. The string is modified when a new
context is found.

Third, one parameter is used for sibling transformation, which is not found in XSLT. Sibling
transformation will be explained later in Section 7.5.

These parameters and <xsl:choose> are written in the outfile when the second path of xevtgen
begins. When xevtgen finds a tgen-variable declaration or a condition definition, it registers those
information to its internal data structure. When xevtgen finds a rule of src-dst pair or a context
definition, it outputs a corresponding new xsl:when node. When xevtgen finds other kinds of XML
nodes, it does nothing and keeps traversing the children and the siblings. At the end of the second
phase, xevtgen outputs the xsl:otherwise node and closes the template.

7.2 Matching source pattern

One transformation rule of xevtgen creates a xsl:when node of the XSLT template. An XPath[6]
expression for the xsl:test attribute corresponds to the source pattern of the xevtgen rule.
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First suppose that the source pattern has no tgen-variable. Then the current node matches the
source pattern when the subtree rooted by the current node is exactly the same as the subtree in the
source pattern. In the current implementation, we ignore texts (which is used to indent the XML
document) and comments. Xevtgen generates an XPath expression that requires:

• The current node has the same name as the source pattern,

• Each attribute of the source pattern has a matching attribute in the current node,

• The current node and the source pattern have the same number of attributes,

• Every child of the current node exactly matches the corresponding child of the source pattern,
and

• The current node and the source pattern have the same number of child nodes.

We need to check the number of attributes (and children), not to allow a matching with a node
which has more attributes (and children, respectively) than the source pattern. But if a child node
is a list kind of tgen-variable, then the comparison of the numbers of children is not written to allow
different numbers of children.

When xevtgen finds a tgen-variable in the source pattern, the corresponding XPath rule is not
written. The path from the root of the source pattern to the tgen-variable is registered to an inner
data structure. If the tgen-variable has conditions, an XPath rule corresponds to the conditions is
written.

7.3 Generating destination pattern

When xevtgen reaches the destination pattern of a rule, it outputs XSLT codes to generate the
destination pattern (which can be empty).

If the current node is not a tgen-variable, then a copy node with the same set of attributes is
generated. Here, the children are also generated recursively.

If the current node is a tgen-variable, then the corresponding subtree is generated. If the tgen-
variable is defined within the corresponding source pattern, then an XPath referring to the corre-
sponding node is written. If the tgen-variable has norec specification, then a copy of the subtree is
made, and otherwise, the rules are applied to the subtree with xsl:apply-templates.

If the tgen-variable is not defined within the corresponding source pattern, then it must be
defined in a preceding transformation and be transferred via an XSLT parameter. So the reference
to the corresponding XSLT parameter is generated. The transformation rules are not applied to
tgen-variables transferred from preceding transformations.

7.4 Context

Context is nothing but a code transformation rule with source and destination patterns exactly
the same. Not only context definition, but also a src-dst pair of transformation rule can be at-
tributed as a context. The XSLT parameter corresponding to the context is modified when an
xsl:apply-templates is invoked within the context.

7.5 Sibling transformation

In XSLT, a node or a subtree is converted to another. No mechanism is provided to transform a list
of sibling nodes to another list of sibling nodes. For example, XSLT can convert A to B C, but does
not provide a way to directly define a conversion from A B to C, i.e., a pair of two sibling nodes A
and B is converted to a different node C. We found this limitation is very inconvenient for xevtgen.
We call a transformation rule from a list of sibling nodes into another, sibling transformation, and
implemented it in xevtgen. Examples of sibling transformation are found in this paper: the context
ch1 and ch2 in Section 4.1, and “unswitch” transformation in Section 4.2, and the rule in Section
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5.3. The number of siblings is not limited to two, but for simplicity, the following descriptions
assume two siblings.

The basic idea of sibling transformation is simple. To transform A B into C, a pair of transfor-
mations are defined: one to transform A followed by B to C, and another to remove B preceded by
A.

There is a subtle problem in this implementation. Consider a rule to transform A B to A′ B.

!$xev tgen var(B) stmt

!$xev tgen src begin

A

!$xev tgen stmt(B)

!$xev end tgen src

!$xev tgen dst begin

A’

!$xev tgen stmt(B)

!$xev end tgen dst

Here B part is caught by a tgen-variable B, and copied in the destination pattern. Note that
xevtgen applies the transformation rules to the tgen-variables by default. When the rules are applied
to the tgen-variable B, it is removed by the rule, since it is B preceded by A. Then the result is A′

instead of A′ B.
To solve this problem, an XSLT parameter is used to identify the applied rule. Then the rule for

B preceded by A is defined to remove it only if it is not the destination pattern of the applied rule.
And the rule for A is conversion into A′ B, where B is not removed because it is in the destination
pattern of the rule.

7.6 An example of generated XSLT template

In this section, we show output examples for the first transformation in Section 3.3 (sqrt example).
First, the Fortran dummy code is converted to an XML document by xevparse as shown in Figure 6.
Here, only the part of the pragma is shown, but actually it is surrounded by default Fortran preambles
and postambles. This XML document should be input to xevtgen, and the output is as shown in
Figure 7.

8 Limitations and prospective solutions

Xevtgen is not a complete tool, but a code transformer generator, and we are developing related
tools in our toolset Xevolver tools. In this section, we describe some limitations of xevtgen and
how they will be solved in the toolset we are developing.

Because xevtgen outputs code transformation rules in XSLT, it inherits all the limitations of
XSLT. The most notable limitation in our preliminary experiences was the lack of unification. Match-
ing between a subtree in a code and a subtree in the infile of xevtgen is possible, but one cannot
compare two subtrees in the same source code. It becomes possible by creating a new infile referring
to the source code. That generation of infile can be done by our toolset, since the infile format
follows standard Fortran plus directives, which is exactly the format our toolset can do transfor-
mations. Triplet transformation reported in Section 5.1 is an example, and in our plan, it can be
specified in a simpler manner with xevdriver and xevutils.

Another limitation is that, the code is transformed only from source to destination, and thus
recursive application of code transformations, which plays an essential role in many code transforma-
tion systems, cannot be done solely by xevtgen. Xevdriver will control such recursive application
of transformations.

In many code transformations, one has to introduce new variables. The new variable name
must be different from any existing variable names. Also, sometimes one has to rename labels, as
labels in a scope must be unique. Introduction of new names and new labels is, if not impossible,
difficult or at least inefficient only with xevtgen. Xevutils will provide such functions. Another
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limitation caused by the XSLT is the lacks of transformations of names and values. We will provide
a separate tool for those transformations. Also, the xevutils will provide information exchange
among multiple files, for example, to enable interprocedural transformations.

The code transformation generated by xevtgen is based on the syntactic information. Extracting
semantic information from codes by using xevtgen is technically possible, but will be complex and
inefficient. In our plan, xevutils include some tools that embed semantic information in the code.
By referring such embedded semantic information, code transformations depending on semantics
will become available.

The transformations defined with xevtgen may not keep the semantics of the code. Preserving
the semantics is not only hard to attain in general, but also unwanted in some cases: it is too
restrictive. It is possible to write code transformation rules with xevtgen that breaks Fortran
syntax, though its possibility is much more limited than direct XML transformations.

9 Related work

There are too many research works in source-to-source code transformations to list them up. By
limiting the scope into Fortran, and limiting those tools that provide general source-to-source trans-
formations (that is, not limited to a predefined set of transformations), still there are several closely
related papers [12, 10, 18, 7, 1, 13]. Many of them provide deeper analysis than what xevtgen does,
and high-level interface to predefined transformations.

An advantage of xevtgen compared to those related studies is its simple interface. The trans-
formation can be defined by a dummy Fortran code with simple directives, while the other code
transformation tools require a certain level of knowledge in theory and practices about compiler
construction, and knowledge about some programming language (C, C++ or Java) in addition to
Fortran. The simplicity of xevtgen might be closer to the C preprocessor, which is basically a
text rewriting tool. But, unlike text rewriting tools, xevtgen’s transformation reflects the Fortran
syntax, and it is easy to keep the transformed code following the Fortran syntax.

Xevtgen resembles to syntactic macro systems. However, there are some differences between
xevtgen and other syntactic macro systems [9, 17, 5]. The biggest difference is that, xevtgen

applies transforms onto particular code patterns defined in dummy Fortran codes, while in most
macro systems, macros (and also C++ template) are invoked by macro identifiers. This is important
for our purpose: in many cases there is already a source code of a huge number of lines, and some
transformations need to be applied. Rewriting code with newly defined macros will be cumbersome
and error-prone, and the maintainer of the code may not want to modify the code for a particular
platform. Transformations of xevtgen can be applied without modifying the original code, or with
little modifications such as insertions of some directives. Another difference is that, macro systems
extend the language syntax, but xevtgen does not. So the xevtgen source code can be understood
with the standard knowledge about the Fortran language.

The purpose of the work reported in [2] is similar to ours. They use a complex tool chain to
attain code analysis and rewriting. However, their approach assumes that users already know how
to use each tool of their tool chain. Thus, the users need to learn the usage of several tools. On
the other hand, xevtgen allows users to write transformation rules in Fortran plus a small set of
directives. Therefore, xevtgen is expected to be easier-to-learn than other tools that need special
languages and/or tools for defining code transformations.

In HPC code tuning, various simple transformations are frequently needed. In some supercom-
puter centers, such knowledge is documented by showing examples of code rewrites, each of which
consists of the code before rewrite and the code after rewrite. Sometimes it is straightforward to
modify such a rewrite example into an xevtgen rule. Based on that observation, we expect that
xevtgen can be used also for documentation of useful code rewrites. Actually, our collaborators[4],
who have collected HPC code rewrites independently from xevtgen, are now trying to formulate
their knowledge into xevtgen rules. It would be useful to collect such code rewrites in a format both
human readable and machine executable.
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10 Conclusion

In this paper, we have reported xevtgen, a code transformer generator of Xevolver tools. Trans-
formations can be defined by a dummy Fortran code with some directives. Users do not need to know
theory and practices of compilers to define code transformations. We have shown several examples
and use cases of xevtgen. The implementation of xevtgen, which generates an XSLT template from
infile, is briefly explained.

By using list tgen-variables and repeated applications, xevtgen can provide reasonably useful
transformations. Some missing features will be provided by other parts of our toolset, as is discussed
in Section 8. In combination with the toolset, xevtgen will provide the basic functionality of user-
defined code transformation.

Acknowledgment

This work is partially supported by a JST CREST project “An evolutionary approach to construction
of a software development environment for massively-parallel heterogeneous systems.” The authors
would like to thank Prof. Yamamoto of Tohoku University for allowing us to use the Numerical
Turbine application. The authors are grateful also to the anonymous reviewers, whose comments
enhance and improve this article.

References

[1] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. DMS: Program transformations
for practical scalable software evolution. In Proc. 26th International Conference on Software
Engineering (ICSE’04), pages 625–634, 2004.

[2] Daniel Chavarria-Miranda, Ajay Panyala, Wenjing Ma, Adrian Prantl, and Sriram Krish-
namoorthy. Global transformations for legacy parallel applications via structural analysis and
rewriting. Parallel Computing, 43:1–26, 2015.

[3] Zachary Devito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina, Mike
Barrientos, Erch Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso,
and Pat Hanrahan. Liszt: A domain specific language for building portable mesh-based pde
solver s. In 2011 International Conference for High Performance Computing , Networking,
Storage and Analysis (SC’11), pages 9:1–9:12, 2011.

[4] Ryusuke Egawa, Kazuhiko Komatsu, and Hiroaki Kobayashi. Designing an HPC refactoring
catalog toward the exa-scale computing era. Sustained Simulation Performance 2014, pages
91–98, 2014.

[5] Kanako Homizu, Ken Wakita, and Akira Sasaki. An implementation of a hygienic syntactic
macro system for JavaScript using parsing expression grammar and a scheme macro expander.
IPSJ Transactions on Programming, 6(2):85–101, 2013.

[6] Michael Kay. XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Programmer).
Wrox Press Ltd., 4 edition, 2008.

[7] Uwe Kuester. A language for the definition of Fortran source to source transformations. In
Computational Science and High Performance Computing IV, pages 181–190. Springer, 2011.

[8] Satoshi Miyake, Satoru Yamamoto, Yasuhiro Sasao, Kazuhiro Momma, Toshihiro Miyawaki,
and Hiroharu Ooyama. Unsteady flow effect on nonequilibrium condensation in 3-D low pressure
steam turbine stages. In ASME Turbo Expo 2013, 2013.

[9] Hiroyasu Nagata. FORMAL: a language with a macro-oriented extension facility. computer
Languages, 5:65–76, 1980.

283



Xevtgen: Fortran code transformer generator for high performance scientific codes

[10] Boyana Norris, Albert Hartono, and William Gropp. Annotations for productivity and per-
formance portability. In Petascale Computing: Algorithms and Applications, Computational
Science, pages 443–462. Chapman & Hall / CRC Press, Taylor and Francis Group, 2007.

[11] OpenACC.org. OpenACC – Directives for Accelerators, 2011.

[12] Daniel J. Quinlan, Markus Schordan, Bobby Philip, and Markus Kowarschik. The specification
of source-to-source transformations for the compile-time optimization of parallel object-oriented
scientific applications. In Proc. LCPC 2001, pages 383–394, 2003.

[13] Georges-Andre Sibler and Alain Darte. The Nestor Library: A tool for implementing Fortran
source to source transformations. In Proc. 7th Int. Conf. High-Performance Computing and
Networking (HPCN Europe 1999), pages 653–662, 1999.

[14] Takashi Soga, Akihiro Musa, Youichi Shimomura, Kenichi Itakura, Koki Okabe, Ryusuke
Egawa, Hiroyuki Takizawa, and Hiroaki Kobayashi. Performance evaluation of NEC SX-9 us-
ing real science and engineering applications. In International Conference on High Performance
Computing, Networking, Storage and Analysis (SC09), pages 1–12, 2009.

[15] Reiji Suda, Luo Cheng, and Takahiro Katagiri. A mathematical method for online autotuning of
power and energy consumption with corrected temperature effects. Procedia Computer Science,
18:1302–1311, 2013.

[16] Hiroyuki Takizawa, Shoichi Hirasawa, Yasuharu Hayashi, Ryusuke Egawa, and Hiroaki
Kobayashi. Xevolver: An XML-based code translation framework for supporting HPC ap-
plication migration. In Proc. IEEE International Conference on High Performance Computing
(HiPC’14), pages 1–11, December 2014.

[17] Daniel Weise and Roger Crew. Programmable syntax macros. In Proc. PLDI ’93, pages 156–165,
1993.

[18] Songqing Yue and Jeff Gray. SPOT: A DSL for extending Fortran programs with metapro-
gramming. Advances in Software Engineering, 2014:23, December 2014.

284



International Journal of Networking and Computing

1 !$xev tgen list(l, l1, l2) stmt

2 !$xev tgen var(v) stmt

3 !$xev tgen var(i, i0, i1, i2) exp

4

5 !$xev tgen src begin

6 !$xev loop split

7 DO i = i0, i1, i2

8 !$xev tgen stmt(l)

9 END DO

10 !$xev tgen src end

11 !$xev tgen dst begin

12 !$xev loop split begin

13 DO i = i0, i1, i2

14 END DO

15 DO i = i0, i1, i2

16 !$xev tgen stmt(l)

17 END DO

18 !$xev loop split end

19 !$xev tgen dst end

20

21 !$xev tgen src begin

22 !$xev loop split begin

23 DO i = i0, i1, i2

24 !$xev tgen stmt(l1)

25 END DO

26 DO i = i0, i1, i2

27 !$xev split point

28 !$xev tgen stmt(l2)

29 END DO

30 !$xev loop split end

31 !$xev tgen src end

32 !$xev tgen dst begin

33 DO i = i0, i1, i2

34 !$xev tgen stmt(l1)

35 END DO

36 DO i = i0, i1, i2

37 !$xev tgen stmt(l2)

38 END DO

39 !$xev tgen dst end

40

41 !$xev tgen src begin

42 !$xev loop split begin

43 DO i = i0, i1, i2

44 !$xev tgen stmt(l1)

45 END DO

46 DO i = i0, i1, i2

47 !$xev tgen stmt(v)

48 !$xev tgen stmt(l2)

49 END DO

50 !$xev loop split end

51 !$xev tgen src end

52 !$xev tgen dst begin

53 !$xev loop split begin

54 DO i = i0, i1, i2

55 !$xev tgen stmt(l1)

56 !$xev tgen stmt(v)

57 END DO

58 DO i = i0, i1, i2

59 !$xev tgen stmt(l2)

60 END DO

61 !$xev loop split end

62 !$xev tgen dst end

Figure 1: Transformation for loop split
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specializing rule -

source code

?

temporary rule -

dummy infile

6

specialized infile

6
- destination file

Figure 2: A triplet transformation
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Figure 3: Loop nests of Numerical Turbine.
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program nt_opt

!$xev tgen var(i1,i2,i3,i4,i5,i6,if) stmt

!$xev tgen list(body) stmt

!$xev tgen var(lstart,lend,II2,IIF) exp

!$xev tgen condef(has_doi) contains stmt begin

DO I=II2,IIF

!$xev tgen stmt(if)

!$xev tgen stmt(body)

END DO

!$xev tgen end

!$xev tgen list(stmt_with_doi) stmt cond(has_doi)

!$xev tgen src begin

DO L=lstart,lend

!$xev tgen stmt(stmt_with_doi)

END DO

!$xev end tgen src

!$xev tgen dst begin

DO I=1,inum

DO L = lstart, lend

IF (I .GE. IS(L) .AND. I .LE. IT(L)) THEN

EXIT

END IF

END DO

!$xev tgen stmt(if)

!$xev tgen stmt(body)

END DO

!$xev end tgen dst

end program nt_opt

Figure 4: A dummy Fortran code for optimizing Numerical Turbine.
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Figure 5: Numerical Turbine performance evaluation results.
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<xev pragma>

<xev clause list>

<xev clause name="xev"/>

<xev clause name="tgen"/>

<xev clause name="var">

<xev literal name="a"/>

</xev clause>

<xev clause name="exp"/>

</xev clause list>

</xev pragma>

<xev pragma>

<xev clause list>

<xev clause name="xev"/>

<xev clause name="tgen"/>

<xev clause name="trans"/>

<xev clause name="exp"/>

<xev clause name="src">

<xevparse code exp>

<SgFunctionCallExp>

<SgFunctionRefExp name="sqrt"/>

<SgExprListExp>

<SgVarRefExp name="a"/>

</SgExprListExp>

</SgFunctionCallExp>

</xevparse code exp>

</xev clause>

<xev clause name="dst">

<xevparse code exp>

<SgMultiplyOp paren="0">

<SgVarRefExp name="a"/>

<SgVarRefExp name="a"/>

</SgMultiplyOp>

</xevparse code exp>

</xev clause>

</xev clause list>

</xev pragma>

Figure 6: Converted XML document from sqrt example by xevparse (Only the pragma parts are
shown)

288



International Journal of Networking and Computing

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="*">

<xsl:param name="xevtgencontext" select="’f’"/>

<xsl:param name="xevtgensibling" select="0"/>

<xsl:param name="xevtgenvar0" select="/.."/>

<xsl:choose>

<xsl:when test="count(self::*[self::SgFunctionCallExp][count(@*)=0]

[count(*)=2][*[1]/self::SgFunctionRefExp][*[1]/@name=&quot;sqrt&quot;]

[count(*[1]/@*)=1][count(*[1]/*)=0][*[2]/self::SgExprListExp]

[count(*[2]/@*)=0][count(*[2]/*)=1])>0">

<xsl:element name="SgMultiplyOp">

<xsl:attribute name="paren">0</xsl:attribute>

<xsl:apply-templates select="*[2]/*[1]/self::*">

<xsl:with-param name="xevtgencontext" select="’t’"/>

<xsl:with-param name="xevtgensibling" select="1"/>

<xsl:with-param name="xevtgenvar0" select="*[2]/*[1]/self::*"/>

</xsl:apply-templates>

<xsl:apply-templates select="*[2]/*[1]/self::*">

<xsl:with-param name="xevtgencontext" select="’t’"/>

<xsl:with-param name="xevtgensibling" select="1"/>

<xsl:with-param name="xevtgenvar0" select="*[2]/*[1]/self::*"/>

</xsl:apply-templates>

</xsl:element>

</xsl:when>

<xsl:otherwise>

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates>

<xsl:with-param name="xevtgencontext" select="$xevtgencontext"/>

<xsl:with-param name="xevtgenvar0" select="$xevtgenvar0"/>

</xsl:apply-templates>

</xsl:copy>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>

Figure 7: Generated XSLT template from sqrt example by xevtgen
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