
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 2, pages 309–327, July 2016

Portable Implementation of Lattice-based Cryptography using JavaScript

Ye Yuan

Graduate School of Mathematics, Kyushu University.

Chen-Mou Cheng

Institute of Mathematics for Industry, Kyushu University.
Department of Electrical Engineering, National Taiwan University.

Shinsaku Kiyomoto

KDDI Laboratories.

Yutaka Miyake

KDDI Laboratories.

Tsuyoshi Takagi

Institute of Mathematics for Industry, Kyushu University.
CREST, Japan Science and Technology Agency.

Received: February 11, 2016
Revised: May 2, 2016

Accepted: July 4
Communicated by Toru Nakanishi

Abstract

In recent years, lattice-based cryptography has attracted a high degree of attention in the
cryptologic research community. It is expected to be in wide use in the foreseeable future once
large quantum computers are in sight. On the other hand, JavaScript is a standard programming
language for Web applications. It is now supported on a wide variety of computing platforms
and devices with immense efficiency improvement in the past few years. In this paper, we
present the results of our JavaScript implementation of several lattice-based encryption schemes
and show the speed performance on four common Web browsers on PC. Furthermore, we show
performance results on two smaller computing platforms, namely, tablets running the Android
operating system, as well as Tessel, an embedded system equipped with an ARM Cortex M3
microcontroller. Our results demonstrate that some of today’s lattice-based cryptosystems can
already have efficient JavaScript implementations and hence are ready for use on a growing list
of computing platforms with JavaScript support.

Keywords: Lattice-based cryptography, JavaScript, Android, Tessel

309



Portable Implementation of Lattice-based Cryptography using JavaScript

Table 1: Summary of the implemented lattice-based encryption schemes
Scheme Key generation Encryption Decryption

NTRU [17] 1. Positive integers n, p, q, df , dg, dm, dr; gcd(p, q)
= 1;
2. Ring: Rq = Zq [x]/(xn − 1);
3. Two random polynomials f ∈ Ldf , g ∈ L(dg,dg−1);

4. fp·f≡ 1(mod p), fq·f≡ 1(mod q);
5. Secret key: (f, fp)
6. Public key: h ≡ pfq·g (mod q);

1. Plaintext m ∈ Ldm ;
2. r ∈ Ldr ;
3. c ≡r ·h + m (mod q);

1. a ≡ f · c (mod q);
2. Choose the coefficients of a
in the interval from [− q2 ,

q
2 );

3. Output: fp · a (mod p);

NTRU-IEEE07
[36]

1. Positive integers n, q, d1, d2, d3, dm; gcd(3, q)=1
(let p=3);
2. Ring: Rq = Zq [x]/(xn − 1);
3. Four random polynomials f1 ∈ Ld1 , f2 ∈ Ld2 , f3
∈ Ld3 and g ∈ L(n/3,(n/3)−1); let F = f1·f2 + f3,
then f = 1 + 3F;
4. fq·f≡ 1(mod q);
5. Secret key: f;
6. Public key: h ≡ 3fq·g (mod q);

1. Plaintext m ∈ Ldm ;
2. r = r1·r2 + r3 where r1 ∈ Ld1 ,
r2 ∈ Ld2 , r3 ∈ Ld3 ;
3. c ≡r ·h + m (mod q);

1. a ≡ f · c (mod q);
2. Choose the coefficients of a
in the interval from [− q2 ,

q
2 );

3. Output: a (mod 3);

Regev’s LWE
[26, 22]

1. Positive integers m, n, l, q, t, r (t� q and r � q)
and a real α > 0;
2. Matrix S∈Zn×l

q ; matrix A∈Zm×n
q ;

matrix E∈Zm×l
q where each elements of E is chosen

according to χα·q ;

3. Matrix B=AS+E (mod q) ∈Zm×l
q ;

4. Secret key: S∈Zn×l
q ;

5. Public key: (A,B) ∈Zm×n
q ×Zm×l

q ;

1. Plaintext m∈Zlt;
2. r∈{−r,−r + 1, ..., r − 1, r}m;

3. (c1,c2)=(AT r,BT r+encode(m))

∈ Znq×Z
l
q ;

1. Output: decode(c2 − ST c1)

∈ Zlt;

LPR10-LWE
[21]

1. Integers n, q > 0 and a real s > 0;
2. Ring: Rq = Zq [x]/(xn + 1);
3. Three random polynomials e ← χs, a ∈ Rq , and a
small s ∈ Rq ;
4. b = a ·s + e ∈ Rq ;
5. Secret key: s ∈ Rq ;
6. Public key: (a, b)∈ Rq×Rq ;

1. Plaintext m ∈ {0, 1}n;
2. Three random polynomials e1,
e2 ← χs and a small t ∈ Rq ;
3. (c1, c2) = (a ·t + e1, b ·t + e2
+ encode(m)) ∈Rq × Rq ;

1. Output: decode(c2 − c1·s)
∈ {0, 1}n;

LP10 ring-LWE
[19]

1. Integers n, q > 0 and a real s > 0;
2. Ring: Rq = Zq [x]/(xn + 1);
3. Three random polynomials r1,r2 ← χs, and a ∈
Rq ;
4. b = r1 − a·r2 ∈ Rq ;
5. Secret key: r2 ← χs;
6. Public key: (a, b)∈ Rq×Rq ;

1. Plaintext m ∈ {0, 1}n;
2. Three random polynomials e1,
e2, e3 ← χs;
3. (c1, c2) = (a ·e1 + e2, b ·e1 +
e3 + encode(m)) ∈Rq × Rq ;

1. Output: decode(c1·r2+c2)
∈ {0, 1}n.

LP11 [20] 1. Integers n, q > 0 and a real s > 0;
2. Matrices R1,R2 ← χn×n

s , matrix A∈ Zn×n
q ;

3. Matrix B=R1−AR2 ∈ Zn×n
q ;

4. Secret key: R2 ← χn×n
s ;

5. Public key: (A, B) ∈ Zn×n
q × Zn×n

q ;

1. Plaintext m ∈ {0, 1}n;

2. e1,e2,e3 ← χn×n
s ;

3.
[

ct1 ct2
]

=
[

et1 et2 et3+encode(m)t
]

·

 A B
I

I

 ∈ Z1×2n
q

1. Output: decode(ct1 · R2 +

ct2)t ∈ {0, 1}n;

Table 2: Summary of the selected parameters that provide about 128-bit security

Scheme Parameters
Key size (kB)

Bit-security
Public Private Plaintext

Cipher
text

NTRU
n p q df dg dm dr 0.532 0.075 0.032 0.534 128

439 3 2048 146 146 130 146

NTRU-IEEE07
n q d1 d2 d3 dg dm 0.535 0.051 0.032 0.534 128

439 2048 9 8 5 146 130

Regev’s LWE
m n l q α t r

10328.164 181.157 0.023 1.360 128
7616 438 192 383693 3.63× 10−4 2 2

LPR10-LWE
& LP10 Ring-LWE

n q s - - - -
1.424 0.185 0.039 0.994 126

320 590921 35.77 - - - -

LP11
n q s - - - -

176.019 12.596 0.031 0.687 ≥ 128
256 4093 8.35 - - - -

3072-bit RSA
log2p log2q e - - - -

0.377 0.750 0.375 0.375 128≈1536 ≈1536 65537 - - - -

ElGamal ECC
(NIST P-256)

a log2b log2p log2r log2Gx log2Gy -
0.063 0.031 0.063 0.125 128−3 ≈191 ≈256 ≈192 ≈189 ≈187 -

310



International Journal of Networking and Computing

1 Introduction

JavaScript is a cross-platform scripting language with safety features and reasonable performance. A
JavaScript program typically runs inside a Web browser and hence can execute properly regardless
of the operating environment outside the browser. Currently, almost all mainstream Web browsers
support JavaScript. Furthermore, there are a growing number of devices with internet capabilities
that support JavaScript. For example, Tessel is an embedded system designed for internet of things
(IoT) applications. It has an ARM Cortex M3 microcontroller and supports JavaScript to ease the
task of controlling a diverse set of IoT devices.

In the past few years, JavaScript’s performance has increased dramatically. For example, its
execution speed has increased more than a factor of 100 since 2001 [35]. Now it is the standard
programming language of HTML5, the latest markup language for structuring and presenting Web
contents. It allows the same applications to run smoothly across a wide variety of digital devices
that people use on a daily basis, including but not limited to smartphones, tablets, in addition to
portable and desktop computers. This greatly simplifies Web application developers’ job, as they no
longer need to manage the extra complexity of application development and maintenance due to a
rapidly growing number of internet devices. Therefore, we expect to see an even wider adoption of
JavaScript, thanks to the further-reaching spread of Web applications in the society, partly due to
the growing popularity of cloud computing and continual improvement of network infrastructures.

JavaScript’s popularity and pervasiveness also come with prices, especially when it comes to
security. For example, we have seen a wide variety of JavaScript-related Web browser vulnerabilities
in the recent years. It is also very difficult to perform secure computation in a browser because it
is a malleable and potentially hostile runtime environment. Furthermore, there lacks support for
secure key storage and cryptographic random-number generation in a browser. Last but not least,
performance can also be a showstopper for in-browser cryptography with JavaScript, especially back
in those days when JavaScript was slow.

Fortunately, the Web Cryptography API standardization effort is making progress toward solving
some of the aforementioned issues related to browser insecurity [34]. In this paper, we focus on the
last issue: performance. We would like to see whether modern computing platforms with JavaScript
support are ready for the computationally intensive public-key cryptography.

For this, we investigate lattice-based cryptography, an approach for post-quantum cryptography.
A lattice is the set of all integer linear combinations of its basis vectors in a Euclidean space.
Since first introduced by Ajtai, many lattice-based cryptosystems provide strong provable-security
guarantees based on the worst-case hardness of various lattice problems [1]. Thanks to the provably
close relationship between worst-case and average-case hardnesses of these lattice problems, there are
many efficient constructions that leverage average-case hardness of, e.g., the short integer solution
problem [1], the learning with errors (LWE) problem [27], etc. Last but not least, there is also the
NTRU encryption scheme [17], a lattice-based scheme well known for its efficiency, whose security
depends on certain hard problems in ideal lattices.

To the best of our knowledge, this work is the first attempt in the academic literature that
evaluates the performance of JavaScript implementations of lattice-based encryption schemes. Part
of our implementation is derived and adapted from publicly available Java implementations, e.g.,
discrete Gaussian sampling, as well as matrix and polynomial multiplications [14, 16, 7, 33]. We
will report the performance of our implementation on multiple computing platforms and devices,
including PC Web browsers, Android devices, as well as IoT embedded systems.

Specifically, we have chosen two schemes from the NTRU family, the original NTRU scheme [17]
and one of its derivatives [36, 6]; the latter we shall refer to as NTRU-IEEE07. We have also
selected a multi-bit version of Regev’s LWE-based scheme [27, 26, 22, 11], which we shall refer
to as Regev’s LWE. Finally, we have picked three more recent and efficient encryption schemes
with provable security, namely, LPR10-LWE [21], LP11 [20], and LP10 Ring-LWE [19]. We will
give a high-level overview of these schemes in the next section and summarize their operations
in Table 1. The parameters have been selected to provide about 128-bit security based on the
suggestions by Hirschhorn et al. [15], Tore Kasper Frederiksen [11], Ruckert and Schneider [28],
Lindner and Peikert [20], Cabarcas, Weiden, and Buchmann [9], as well as NIST Special Publication

311



Portable Implementation of Lattice-based Cryptography using JavaScript

800-57 Part 1 [4]. For ease of reference, they are summarized in Table 2. We have also included
implementations of 3072-bit RSA [3, 23] and ElGamal elliptic curve cryptosystem (ElGamal ECC)
over a NIST P-256 curve [31] for comparison against the prevailing public-key cryptosystems. Table 2
also shows the key sizes, as well as that of plaintext and ciphertext for each of the encryption schemes
considered in this paper.

The rest of this paper is organized as follows. We will explain our notation and give a brief
mathematical background in Section 2. We will then describe our implementation techniques in
Section 3 and introduce our computing platforms for performance experimentation in Section 4.
We will give detailed performance reports on Web browsers and small devices in Section 5 and 6,
respectively. Finally, we conclude this paper in Section 7.

2 Lattice-based cryptography

In this section, we present the relevant mathematical background for discrete Gaussian sampling,
the NTRU encryption schemes, the LWE problem, and the LWE-based encryption schemes.

Throughout this paper, we denote as Zq the set of integers {0, 1, . . . , q−1}, and Zq[x], polynomials
whose coefficients are in Zq. Let Rq=Zq[x]/f(x) be a quotient polynomial ring, where f(x) is a degree
n polynomial. Throughout this paper, polynomials are denoted by bold italic small letters such as
f, while vectors, bold small letters such as v and matrices, bold large letters such as A. L(i,j) will
denote the set of those polynomials in Rq that have i coefficients equal to 1, j coefficients equal to
−1, and other coefficients equal to 0. Li is defined as L(i,i), i.e., polynomials having i coefficients
that are either 1 or −1.

2.1 Discrete Gaussian sampling

For a positive real s ∈ R+, the discrete Gaussian distribution χs on an interval of integers [a, b]
is a discrete probability distribution that assigns to each element x in the interval a probability
proportional to exp(−(x − µ)2/2σ2), where, similar to the continuous Gaussian distribution, µ
denotes the mean, and σ > 0 is the standard deviation which is equal to s/

√
2π [13, 9]. In other

words, the discrete Gaussian distribution is obtained by limiting the domain of the probability
density function of a continuous Gaussian distribution to the integers, followed by proper scaling
so that the total probability equals 1. It is common that µ = 0, in which case x is sampled with
probability proportional to exp(−x2/2σ2).

There are efficient algorithms for sampling from a discrete Gaussian distribution, e.g., by Gentry,
Peikert, and Vaikuntanathan [13]. In our work, we use the algorithm described in Section 3.4 to
perform such a sampling.

2.2 Learning with errors

Let A = {a1, . . . ,an} be a set of linearly independent vectors. The lattice L generated by A is
the set of all integer linear combinations of vectors in A, i.e., L(A) = {

∑n
i=1 xiai | xi ∈ Z}. In

cryptography, it is common to consider a1, . . . ,an ∈ Zm, which are the lattice basis vectors put as
columns in the matrix A ∈ Zm×n. The shortest vector problem (SVP) is the problem of finding
a shortest nonzero vector v ∈ L(A) given a basis A of the lattice. A related problem, the closest
vector problem (CVP) is to find a closest vector v ∈ L(A) to a target vector t not in the lattice.
It is generally believed that no polynomial time algorithm can approximate these problems within
any polynomial factor.

The learning with errors (LWE) problem is to recover a secret s, chosen uniformly at random
from Znq , given several noisy observations b = As + e, where A ∈ Zm×nq is chosen uniformly at
random, with e ∈ Zmq sampled from a discrete Gaussian distribution. An efficient solution to the
LWE problem implies an efficient algorithm for solving SVP, and therefore the LWE problem has
been used to construct secure public-key cryptosystems assuming the hardness of SVP.

There is a natural bijection between Znq and the ring Zq[x]/(xn + 1). This way we can identify
vectors in a lattice as ring elements, and if our lattice happens to correspond to an ideal in the ring,

312



International Journal of Networking and Computing

then we call such lattice an ideal lattice. SVP on ideal lattices is connected with the hardness of the
Ring-LWE problem, which, similar to the LWE problem, asks to find a secret s, chosen uniformly
at random from Rq = Zq[x]/(xn + 1), given several noisy observations b = a · s + e, where a ∈ Rq
is chosen uniformly at random, with e ∈ Rq sampled from a discrete Gaussian distribution. It has
been shown that such a problem is also hard on average [21] and hence has been used in many
efficient constructions of lattice-based schemes.

2.3 NTRU encryption schemes

First proposed in 1998 [17], the NTRU family includes several variants such as the original NTRU
and NTRU-IEEE07. There have been several implementations on different platforms, but to the
best of our knowledge, ours is the first in JavaScript.

Polynomial operations in the original NTRU scheme [17] are carried out in the ring Rq =
Zq[x]/(xn − 1), where the dimension n is a prime, and q is a power of 2. Naturally, the poly-
nomials will have degree n − 1. Let p be an element of Rq with small coefficients; p is coprime
with q and will determine the plaintext space. A common choice is to take p = 3 for q a power of
2 [36, 15, 9]. The secret key is then a pair of polynomials (f, g) whose coefficients are chosen uni-
formly at random from {−1, 0, 1}. The polynomial f must have inverses modulo p (fp) and modulo
q (fq), so the public key is h ≡ pfq · g mod q.

The IEEE version of NTRU generates polynomial f from three polynomials f1, f2, and f3. To
encrypt a message polynomial m ∈ Rp, one chooses a random polynomial r ∈ Rq of small Euclidean
norm and then compute the ciphertext polynomial c ≡ r·h+m mod q. To decrypt, we first compute
polynomial a = f ·c and reduce the result modulo q, which gives pg ·r+ f ·m mod q. We then reduce
modulo p and arrive at f ·m mod p. Finally, we multiply a by fp to obtain the message. We note
that the IEEE version of NTRU does not need to compute fp · a.

Overall, the security of the NTRU encryption schemes is based on the hardness of the SVP and
CVP problems [24].

Differences between NTRU and NTRU-IEEE07. In key generation, NTRU requires the
random polynomial f to satisfy certain conditions. That is, we need f to have inverses modulo p
(denoted fp) as well as modulo q (denoted fq), and if it does not, we will need to resample f. In
practice, we have found that it is easy for randomly generated f to satisfy this condition. However,
it does take some time to compute the inverses, which occupies a significant portion of the key-
generation time. Another difference is that f, g, and the plaintext polynomial m used in NTRU are
ternary polynomials with coefficients from {−1, 0, 1}.

NTRU-IEEE07 use slightly different polynomials. In key generation, it needs to generate poly-
nomials f1, f2, and f3 whose coefficients are mostly 0 with a few exceptions (±1). In encryption, it
also generates three similar polynomials r1, r2, and r3.

In addition, NTRU-IEEE07 has the parameter p = 3, so f always has inverse fp modulo p.
We only need to check whether it has inverse fq modulo q, which has greatly reduced the running
time of key generation. Similarly in decryption, we no longer need to compute to fp, which partly
explains why NTRU-IEEE07 runs almost twice as fast as NTRU-IEEE07 under similar parameters.
Therefore NTRU-IEEE07 is a faster variant of NTRU.

2.4 LWE-based encryption schemes

In this paper, we will investigate four LWE-based schemes. The first one was the seminal scheme
proposed by Regev [27]. Secondly, Lyubashevsky, Peikert, and Regev constructed an LWE-based
cryptosystem over Rq = Zq/(xn + 1) [21]. Thirdly, Lindner and Peikert proposed another Ring-
LWE based cryptosystem [19]. Lastly, Lindner and Peikert presented an LWE-based scheme using
integer matrix [20]. We have summarized in Table 1 the detailed operations of these four LWE-based
schemes.

313



Portable Implementation of Lattice-based Cryptography using JavaScript

The construction of these four LWE-based schemes is quite similar, so here we only explain
Regev’s scheme [27]. Regev’s original LWE scheme was subsequently extended to a multi-bit ver-
sion [26, 22], which we refer to as Regev’s LWE in this paper.

The Regev’s LWE is parameterized by positive integers m,n, l, q, t, r, and a real number α > 0.
It also requires a pair of simple error-tolerant encoder and decoder, given by encode : Zlt → Zlq and

decode : Zlq → Zlt, where Zlt is the message alphabet, and the message length > 1. For example,

if Zlt = {0, 1}l, then we can define encode(m) = m̄, which means the element m of Zlt multiplied
by bq/2c, and decode(m̄) = 1 if m̄ is closer to bq/2c mod q and 0 otherwise. In key generation, we
choose a matrix S uniformly at random from Zn×lq and a matrix A uniformly at random from Zm×nq .
Let B ≡ AS + E mod q, where E is a matrix consisting of small errors with the error parameter α.
The secret key is then S, and the public key, the pair (A,B) ∈ Zm×nq × Zm×lq .

For each bit of the message vector m, we choose a vector r uniformly at random which contains
small integers and then let the encryption be (AT r,BT r + encode(m)) = (a,b) ∈ Znq × Zlq. The

decryption of the pair (a,b) is then carried out by computing decode(b− STa) ∈ Zlt.
The IND-CPA security of Regev’s LWE is based on the hardness of solving LWE problems for

distinguishing the distribution of B ≡ AS + E mod q from the uniform distribution.

Differences of the implemented LWE-based encryption schemes. Regev’s LWE [27, 26, 22]
requires relatively large parameters to achieve a certain bit security, which, not surprisingly, has an
advert impact on speed performance. In key generation, the secret key is S ∈ Zn×lq , while the public
key is A ∈ Zm×nq , so the computation of AS takes up most of the time when m, n, and l are large. In
fact, matrix multiplication is almost always the performance-critical step in determining the running
time of various steps in Regev’s LWE except in decryption, where more time is spent in transposing
the S than multiplying a smaller matrix with a vector. Therefore, it is possible to further improve
the performance by using more efficient matrix multiplication algorithms.

LP11 scheme [20] also using matrices, but LP11 has much smaller keys than Regev’s LWE. In
contrast to Regev’s LWE, LP11 has much smaller parameters to match roughly a same level of bit
security, so the key size becomes very small. The computation time is also significantly reduced
compared with Regev’s LWE. The space efficiency is also better, i.e., LP11 tends to have more bits
in the plaintext than Regev’s LWE for the same level of bit security. However, it is important to
note that the parameters given by Lindner and Peikert [20] are actually too small, resulting in a
very high error rate (about 1%) [9]. In order to have a negligible error rate, we would need to adjust
the parameters properly.

Both of LPR10-LWE [21] and LP10 Ring-LWE [19] are Ring-LWE based schemes. LP10 Ring-
LWE is a generalization of LP11, in which matrix computation is replaced by polynomial computa-
tion. The two schemes, LPR10-LWE and LP10 Ring-LWE, are quite similar and hence have similar
speed performance.

3 Implementation using JavaScript

In this section, we describe our implementation techniques for matrix multiplication, polynomial
multiplication, and discrete Gaussian sampling. For NTRU schemes, we have chosen to implement
the Karatsuba algorithm for polynomial multiplication. For that in the Ring-LWE schemes, we have
implemented the iterative forward number theoretic transform, which we will describe in more detail
later in this section.

Although there are many open-source JavaScript mathematics libraries, most of them are not
so optimized for carrying out our target cryptographic computation. Instead, we adapt some open-
source Java and JavaScript code to the mathematical objects of our own design. JavaScript is a
scripting language with weak typing, so we need ways to achieve certain desirable characteristics
of object-oriented programming such as encapsulation in our adaption. For example, to create a
polynomial object, our design of the polynomial structure is as below.

var Polynomial = function() {

314



International Journal of Networking and Computing

//member variables

var coeffs = []; //coefficients

//...

//private methods

function shuffle(args) {

//method body

}

//...

//public methods

var init_polynomial = function() {

//method body

};

//...

return {

coeffs : function() {return coeffs;},

//...

init_polynomial : init_polynomial,

//...

};

};

Consequently, we adapt existing open-source Java or JavaScript implementation of polynomial mul-
tiplication accordingly.

Another problem is related to our implementation platforms. Some browser-specific objects such
as the window.crypto object cannot be used on Tessel. Hence, we have to take into consideration
platform differences to make our implementation truly portable. For example, Tessel does not
support the long array, so we need to modify some of our data structures in a way that does not
sacrifice speed performance too much.

3.1 Random-number generation

In JavaScript, the Math.random() function returns a floating-point pseudo-random number in
the range [0, 1). However, it is not a cryptographically secure pseudo-random number generator
(CSPRNG). Therefore, we will not use this function except on Opera, where Math.random() is
actually based on a CSPRNG 1.

For other web browsers, we use window.crypto.getRandomValues() from the latest W3C Web
Cryptography API draft [34]. It generates cryptographically secure random numbers, which is also
used by the ElGamal ECC implementation that we compare against [31]. However, window.crypto
object is not available on some platforms such as Tessel. Instead, on Tessel we adapt the open-source
Alea PRNG for its speed [2].

Opera also has an implementation of the window.crypto.getRandomValues() function. How-
ever, when generating a floating-point random number uniformly in the range [0, 1), window.crypto.
getRandomValues() is more than 40 times slower than Math.random() in Opera. Therefore, in our
performance comparison we use Math.random() on Opera, window.crypto.getRandomValues() on
all Web browsers, and Alea on other Android devices and Tessel.

3.2 Matrix multiplication

JavaScript provides an array object designed to store data values indexed by an integer-valued key.
It can be used to create one-dimensional array objects. However, there are no two-dimensional array

1See also the email: https://lists.w3.org/Archives/Public/public-webcrypto/2013Jan/0063.html

315



Portable Implementation of Lattice-based Cryptography using JavaScript

objects in JavaScript. Therefore, we use nested arrays of array objects to represent matrices instead.
That is, if we want to build a matrix, we can build a one dimensional array consisting of some one
dimensional arrays, all having the same number of elements. For example, to construct a matrix
A ∈ Zx×y, we build an array object of length x containing one-dimensional arrays of length y, and
each element of the array is a row of A. Then we can use A[i][j] to obtain the element in row i,
column j.

For matrix multiplication, we have implemented the Strassen algorithm [32]. However, for the
selected parameters, the Strassen algorithm is not necessarily faster than the standard textbook ma-
trix multiplication algorithm. Therefore, we choose to optimize the standard matrix multiplication
algorithm as follows.

First, if we compute the matrix product C = AB, we need to multiply a row vector in matrix
A by a column vector in matrix B as shown in the pseudocode below.

for(var i=0; i<A.rows_length; i++) {

for(var j=0; j<B.columns_length; j++) {

var s = 0;

for(var k=0; k<A.columns_length; k++) {

s += A[i][k] * B[k][j];

}

C[i][j] = s;

}

}

Loading the elements of matrix B in this way can be slow in JavaScript, as it is stored in row-major
order. We can cache the columns of matrix B before the inner loop to speed up element loads as
follows.

var Bcolj = [];

for(var j=0; j<B.columns_length; j++) {

for(var k=0; k<A.columns_length; k++) {

Bcolj[k] = B[k][j]; // step 1

}

for(var i=0; i<A.rows_length; i++) {

var Arowi = A[i]; // step 2

var s = 0;

for(var k=0; k<A.columns_length; k++) {

s += Arowi[k] * Bcolj[k];

}

C[i][j] = s;

}

}

Similarly, when computing vector-matrix multiplication such as C = rA, we can also change the
order of element multiplications as follows.

for(var i=0; i<A.columns_length; i++) {

C[i] = 0;

}

for(var i=0; i<A.rows_length; i++) {

var Arowi = A[i];

for(var j=0; j<A.columns_length; j++) {

C[j] += Arowi[j] * r[i];

}

}

Although the number of arithmetic operations is the same, the computation can be significantly
sped up due to faster memory loads.

316



International Journal of Networking and Computing

3.3 Karatsuba and Fast Fourier Transform (FFT)

We use an array [f0, . . . , fn−1] to represent a polynomial f =
∑n−1
i=0 fix

i ∈ Rq. In other words, we
simply create an array object to store the coefficients to represent a polynomial. In our case, the
coefficients are stored in an ascending order. The array object provides all coefficients from the
lowest to the highest degree such that the position of each coefficient corresponds to the degree of
the term to which it belongs.

To multiply two polynomials, we can use the standard schoolbook polynomial multiplication.
Other approaches include the Karatsuba algorithm and Fast Fourier Transforms (FFT). Considering
the parameters of NTRU encryption schemes from Table 2, we have experimented with the Karatsuba
algorithm in our implementations, which we have adapted from an open-source implementation [25].
Algorithm 1 shows the Karatsuba algorithm for polynomial multiplication that we have implemented
for NTRU encryption schemes.

Input: Polynomials a and b
Output: c = a · b

1 Let n = max(degree(a), degree(b)) + 1;
2 If n == 1, then return a · b;

3 Let a = a1(x) + a2(x)xdn/2c;

4 Let b = b1(x) + b2(x)xdn/2c;
5 c1(x) = KaratsubaAlgorithm(a1(x), b1(x));
6 c2(x) = KaratsubaAlgorithm(a2(x), b2(x));
7 c3(x) = KaratsubaAlgorithm(a1(x) + a2(x), b1(x) + b2(x));

8 return c1(x) + c2(x)xn + (c3(x)− c2(x)− c1(x))xdn/2c

Algorithm 1: Karatsuba algorithm

FFT has lower asymptotic complexity O(n log n) for multiplying polynomials with larger degrees.
In this paper, we follow the state of the art and use the number theoretic transform (NTT) [29, 8].
NTT is a generalization of FFT by replacing complex numbers with an n-th primitive root of unity
in a finite ring Zq, the integers modulo a prime q. Thus, there is no need for any floating-point
arithmetic, and all operations are additions and multiplications modulo q.

Algorithm 2 shows the iterative forward number theoretic transform algorithm for polynomial
multiplication that we have implemented for Ring-LWE encryption schemes. BitReverse at line 1 is
a permutation of a sequence of n items so that the new index of each element is the reverse of the
bit string of its old index, where n is a power of 2.

Here the trick is to perform polynomial operations in the ring Rq = Zq[x]/(xn + 1), where n
is a power of 2. Considering the parameters of the target Ring-LWE encryption schemes, we need
to pad zeros to obtain an equivalent polynomial with 2n coefficients, as well as to reduce the final
product modulo (xn + 1). In order to multiply two polynomials a and b ∈ Rq, it is required to
compute the product c = NTT−1(NTT(a) ⊗ NTT(b)), where ⊗ is entry-wise multiplication [6].
It is generally believed that FFT is faster than the standard schoolbook polynomial multiplication
when the polynomials have high-enough degrees [14].

3.4 Discrete Gaussian sampling

There are several methods to sample values from a discrete Gaussian distribution. Rejection sam-
pling [13, 10] is one of these available approaches. In this approach, a sample value is chosen
uniformly from [−τσ, ..., τσ], where τ is a the tail-cut factor that determines where to drop the
negligible probability of far samples. The selected integer is then accepted with probability propor-
tional to exp(−x2/2σ2), or otherwise rejected. In the latter case, one simply resamples a new integer
and then repeats this process until success. By choosing a suitable tail-cut factor τ , the resulting
distribution can have negligible difference from the ideal distribution [5].

Algorithm 3 shows the basic rejection sampling method for discrete Gaussian distribution [10].
RandomInt in line 2 is a random, uniformly distributed integer in the range [a, b], where a and b

317



Portable Implementation of Lattice-based Cryptography using JavaScript

Input: Polynomial a ∈ Zq[x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A = NTT(a)

1 Let A = BitReverse(a);
2 for m = 2 to n by m = 2m do

3 ωm = ω
n/m
n , ω = 1;

4 for j = 0 to m/2− 1 do
5 for k = 0 to n− 1 by m do
6 t = ω · A[k + j +m/2] mod q;
7 u = A[k + j];
8 A[k + j] = u+ t mod q;
9 A[k + j +m/2] = u− t mod q;

10 ω = ω · ωm;
11 return A

Algorithm 2: Iterative forward number theoretic transform (NTT)

∈ Z. RandomFloat in line 4 is a random, uniformly distributed floating-point number in the range
(0, 1].

Input: Floating-point numbers c, r and τ
Output: A sample value x ∈ Z

1 Let h = −π/r2; xmin = bc− τrc ∈ Z, xmax = dc+ τre ∈ Z;
2 Let x = RandomInt(xmin, xmax);
3 Let p = exp(h · (x− c)2);
4 Let r = RandomFloat();
5 If r < p then return x; else goto step 2

Algorithm 3: Rejection sampling on Z

When it comes to actual implementation, rejection sampling only needs to store a few param-
eters and hence enjoys a small memory footprint. However, it requires a lot of computation and
easily becomes a bottleneck in runtime. In this paper, we have adopted a time-memory trade-off
strategy by implementing the inverse-transform sampling to reduce runtime computation. That is,
we precompute all possible values of exp(−x2/2σ2) via rejection sampling as shown in Algorithm 3.
We then add up the individual probabilities for these values and store them in a table. This way we
only need to generate a uniform random number and then perform a table lookup at runtime to get
a sample from the target discrete Gaussian distribution.

4 Implementation platforms

In this section, we introduce our implementation platforms including PC2 Web browsers (Google
Chrome, Firefox, Opera, and Internet Explorer), Android devices (ASUS MeMO Pad7 and Nexus7),
and Tessel.

2The test PC has the following specifications:
CPU: Intel(R) Core(TM) i7-4710MQ @ 2.5GHz;
Memory: 8GB DDR3 RAM;
Hard disk: 1TB 5400rpm;
OS: Windows 8.1 build 6.3.9600 Pro x64;
Java(JDK) version: jdk1.7.0 67;
Tomcat version: apache-tomcat-7.0.55;
JavaScript version: 1.3;
Web browser: Google Chrome 41.0.2272.101 m; Firefox 36.0.4; Opera 28.0.1750.48; Internet Explorer 11.0.9600.17690.

318



International Journal of Networking and Computing

4.1 PC Web browsers

Most mainstream Web browsers nowadays have very good support for JavaScript. JavaScript allows
multiple tasks to execute only in the browser client without networking and servers support. It
achieves so without needing to load any virtual machines and thus is ideal for distributed computing
and processing. In this implementation, we have chosen four desktop PC browsers as our benchmark
platforms, namely, Google Chrome, Firefox, Opera and Internet Explorer. Interestingly, we have
found that the efficiency of running our same JavaScript program is quite different across these four
browsers, which will be described in more detail in the next section. In our implementations we
choose Opera to be the main test platform because its CSPRNG has the best performance.

4.2 Android

On the Android operating system, there are also a variety of Web browsers. In addition, the Android
SDK has a built-in, high-performance browser component called WebView. WebView can be used to
display Web pages in a non-browser application, making it easy to open hyperlinks without bringing
up a full-blown Web browser. It also supports JavaScript, so we have chosen WebView for Android
4.4.2 to benchmark our implementation. We have run our experiments on two Android tablets:
ASUS MeMO Pad7 ME572C3 and Nexus74.

4.3 Tessel

Tessel is an embedded system designed for IoT applications. It runs JavaScript
for controlling a wide variety IoT devices on top of a 180 MHz ARM Cortex M3
(LPC1830) microcontroller with 32 MB of SDRAM and 32 MB of Flash memory.
Tessel supports “Node-compatible” JavaScript, which usually runs on the server
side and is slightly different from that runs on the client side, as it does not need

to deal with user interfaces. Tessel allows to execute JavaScript programs directly, but due to the
hardware limitation, the efficiency is not so good.

5 Performance on Web browsers

In this section, we report the performance results of running our target lattice-based encryption
schemes on several PC Web browsers. We will also compare the results with that of 3072-bit RSA
and ElGamal ECC on Opera. We do not claim any optimality of our implementation when it
comes to, e.g., cache/memory usage. In contrast, we mostly focus on algorithmic improvement and
portability across different platforms.

5.1 Performance results on Opera

Table 3 shows the performance results of various schemes executed on the Opera browser. At a first
glance, encryption is fast and typically takes less than 10 ms except Regev’s LWE and 3072-bit RSA.
As we have expected, Regev’s LWE is the slowest in key generation and encryption because of the
large matrix size. Decryption is also fast, and even the slowest NTRU takes less than 6 ms. Overall,

3

ASUS MeMO Pad7 ME572C:
Android version: 4.4.2;
CPU: Intel(R) Atom(TM) Z3560, 1.83 GHz(Quad-Core), 64bit;
Internal Flash memory: 16GB;
RAM: 2GB.

4

Nexus7:
Android version: 4.4.2;
CPU: Nvidia Tegra 3 / 1.3 GHz (Quad-core);
Internal Flash memory: 8GB;
RAM: 1GB.

319



Portable Implementation of Lattice-based Cryptography using JavaScript

Table 3: Performance results on Opera

Scheme
Average running time (ms)

Bit-security
Key generation Encryption Decryption

NTRU 165.382 8.180 5.848 128
NTRU-IEEE07 119.774 7.241 3.114 128
Regev’s LWE 2162.051 79.752 3.475 128
LPR10-LWE 1.642 3.247 1.612 126

LP10 Ring-LWE 1.636 3.244 1.623 126
LP11 49.192 2.256 1.034 ≥ 128

3072-bit RSA (Baird) [3] 15950.10 7.75 229.65 128
3072-bit RSA (MSR) [23] N/A1 10.73 378.88 128

ElGamal ECC (NIST P-256) [31] 17.82 38.24 20.92 128
1 We have to import RSA key pairs from outside because otherwise it would take too

much time.

lattice-based schemes seem reasonably fast. Similar results have also been reported in the literature
that Ring-LWE based schemes are more efficient than the original LWE-based schemes [12].

Furthermore, the decomposition of computation time is shown in Table 4. In key generation,
computation of polynomial inverses modulo p and q is the most time consuming operation, which
accounts for close to 80% of the total time. Excluding those in the inverse calculation, the other
polynomial multiplications account for less than 10% of the total time. In LPR10-LWE and LP10
Ring-LWE, polynomial multiplication using Algorithm 2 (NTT) is the single bottleneck computation,
accounting for at least 90%. We have also tried Algorithm 1 (Karatsuba), which is about 3% slower.
Discrete Gaussian sampling takes less than 10%, while the other time is spent on addition and
modulus calculation.

In contrast to some other schemes in the literature, discrete Gaussian sampling costs very little. In
Regev’s LWE, most time is spent in matrix multiplication (accounting for close to 80%), which is also
the case for LP11 (70%). For encryption and decryption, the time is almost spent in multiplication
and accounts for more than 70% of the total time.

Compared with matrix-based schemes such as LP11, ring-based schemes such as LP10 Ring-LWE
is more space efficient. LP11 also takes more time than LP10 Ring-LWE in key generation. However,
in encryption and decryption, LP11 is faster.

Compared with NTRU and NTRU-IEEE07, although LP10 Ring-LWE has large moduli and
polynomial coefficients, the key size is actually smaller, c.f. Table 2. Furthermore, for LP10 Ring-
LWE we no longer need to compute polynomial inverses. It can be seen that the running time of key
generation of LP10 Ring-LWE is less than NTRU because computing polynomial inverses can take
up a considerable amount of time. Nevertheless, the cost for encryption and decryption is similar,
which is evident from the fact that the speeds are all very close.

Finally, we note that the state-of-the-art implementations of lattice-based schemes often use
native libraries for efficiency consideration, e.g., Cabarcas, Weiden, and Buchmann [9] using the
Number Theory Library (NTL) [30] to implement LPR10-LWE. In contrast, we use JavaScript
for portability consideration. Compared with the native implementation by Cabarcas, Weiden,
and Buchmann [9], our JavaScript implementation is no more than twice slower under the same
parameter setting, indicating that today’s JavaScript engines are already quite efficient for carrying
out intensive PKC computation.

5.2 Comparison against prevailing public-key cryptosystems

We have chosen 3072-bit RSA and ElGamal ECC for comparison with the lattice-based schemes at
the 128-bit security level. In our RSA implementation, we use Baird’s library [3] and the Microsoft

320



International Journal of Networking and Computing

Table 4: Decomposition of computation time (ms) on Opera

28.511 30.011

84.532 86.917

49.688

0

2.651

2.846

0

50

100

150

200

NTRU NTRU-IEEE07

Polynomial multiplication
(Karatsuba algorithm)

Inverse modulo p (in 
NTRU’s step 4, Table 1)

Inverse modulo q (in 
NTRU/NTRU-IEEE07’s 
step 4, Table 1)
Other

Other, 

28.511

Other, 

30.011

84.532 86.917

49.688

Karatsuba 

algorithm, 
2.651

Karatsuba 
algorithm, 

2.846

0

50

100

150

200

NTRU NTRU-IEEE07

Key Generation

Other, 

0.134
Other, 

0.438

8.046 6.803

0

2

4

6

8

10

NTRU NTRU-IEEE07

Encryption

Other, 

0.241
Other, 

0.092

5.607

3.022

0

1

2

3

4

5

6

7

NTRU NTRU-IEEE07

Decryption

3.854 0.103

0.146

0

0

0.113

7.5752

2.04

0

2

4

6

8

10

12

14

Regev’s LWE LP11

Matrix multiplication

Gaussian sampling

Matrix transposition

Other

Other, 

216.857 Other, 

6.919

Gaussian 
sampling, 

163.87

Gaussian 
sampling, 

5.819

Matrix 
multiplication, 

1781.324

Matrix 
multiplication, 

36.454

0

500

1000

1500

2000

2500

Regev’s LWE LP11

Key Generation

Other, 

0.523 Other, 

0.074

Matrix 

transposition,

0.349

Matrix 

multiplication,

2.603

Matrix 

multiplication,

0.96

0

1

2

3

4

Regev’s LWE LP11

Decryption

Other, 

3.854
Other, 

0.103

Matrix 
transposition, 

0.146

Gaussian 
sampling, 

0.113

Matrix 
multiplication, 

75.752

Matrix 

multiplication,

2.04

0

20

40

60

80

100

Regev’s LWE LP11

Encryption

Other, 0.044

Other, 

0.06

Gaussian sampling, 

0.04

Gaussian sampling,

0.038

1.558 1.538

0

0.5

1

1.5

2 Polynomial multiplication
(NTT)

Gaussian sampling

Other
Other, 

0.044

Other, 

0.06

Gaussian 
sampling, 

0.04

Gaussian 

sampling,

0.038
1.558 1.538

0

0.5

1

1.5

2

LPR10-LWE LP10 Ring-LWE

Key Generation

Other, 

0.109
Other, 

0.114

Gaussian 
sampling, 

0.057

Gaussian 
sampling, 

0.05
3.081 3.08

0

0.5

1

1.5

2

2.5

3

3.5

LPR10-LWE LP10 Ring-LWE

Encryption

Other, 

0.073
Other, 

0.035

1.539 1.588

0

0.5

1

1.5

2

LPR10-LWE LP10 Ring-LWE

Decryption

Research JavaScript Cryptography Library [23] for multi-precision integer arithmetic; in the rest of
this paper, we shall refer to the former as RSA (Baird) and the latter as RSA (MSR). We also use
the well-known method based on Chinese Remainder Theorem (CRT) to accelerate RSA decryption.
For ElGamal ECC, we use the Stanford Javascript Crypto Library (SJCL) [31].

The maximum numeric value representable in JavaScript is approximately 1.79× 10308, or 21024.
This is not enough for carrying out the computation in 3072-bit RSA encryption and decryption.
In RSA (Baird), most time is spent on generating p and q in key generation, as they exceed the
limit of what JavaScript number object can represent. Take the performance results on Opera as
an example: it takes 15950.10 ms to generate a 3072-bit RSA key, while the generation of p and q
alone takes 15917.78 ms. Overall, key generation of 3072-bit RSA is more than 9000 times slower
than that of Ring-LWE schemes; encryption is more than 2 times slower, and decryption, more than
140 times slower. Even without considering key-generation time, Ring-LWE schemes are still much
more efficient than RSA (Baird).

Recently Microsoft Research released the latest version of the MSR JavaScript cryptography
library [23], which supports RSA encryption and decryption. This library provides a cryptography
object called window.msrCrypto. It is, however, different from window.msCrypto used in Internet
Explorer 11. In addition, newer non-Microsoft browsers seem to be using window.crypto. RSA
(MSR) supports the JSON Web Key (JWK) format [18] for storing key pairs and parameters.
However, window.msrCrypto could not be used to generate the RSA key pairs because it would
spend so much time. Instead, we need to import the key pairs from outside. According to our
experimental results, the speed of 3072-bit RSA (MSR) is slower than that of RSA (Baird) in that
encryption and decryption are about 1.5 times slower. However, as Web Worker is a feature of
HTML5, some platforms such as Tessel and several web browsers do not yet have the support for
it, so this library is not portable at this point.

We have also tried the ElGamal public key encryption scheme over the NIST P-256 curve, which
offers 128-bit security. SJCL supports elliptic curve cryptography, based on which we have imple-

321



Portable Implementation of Lattice-based Cryptography using JavaScript

Table 5: Performance comparison across Web browsers on PC

0 5 10 15 20 25 30 35 40

Key Generation

Encryption

Decryption

Key Generation Encryption Decryption

Chrome 3.685 6.278 1.921

Firefox 2.841 5.052 1.851

Opera 3.375 5.598 1.628

IE 17.307 35.251 15.462

LPR10-LWE

15.462

35.251

17.307

1.628

5.598

3.375

1.851

5.052

2.841

1.921

6.278

3.685

0 5 10 15 20 25 30 35 40

Decryption

Encryption

Key Generation

LPR10-LWE

Chrome Firefox Opera IE

Time (ms)

mented the ElGamal public key encryption scheme. In key generation, encryption, and decryption,
ElGamal ECC is more than 10 times slower than LPR10-LWE.

These prevailing public-key cryptosystems such as RSA and ElGamal ECC cannot resist attacks
from large quantum computers. Moreover, some of them are actually slower than the fast lattice-
based encryption schemes. Therefore, we are confident that lattice-based cryptography will soon
find applications in practice, perhaps starting from replacing some of the existing cryptosystems.

5.3 Performance on other web browsers

We have also tested our JavaScript implementation on several other Web browsers on PC. Take
LPR10-LWE as an example: Table 5 shows the running time on these browsers. Notice that
window.crypto.getRandomValues() function is invoked to generate random numbers. For Internet
Explorer, it is replaced by window.msCrypto, as window.crypto is undefined there.

It appears that Google Chrome has similar performance with Opera, both of which are based
on Blink. The performance of Internet Explorer is more than 5 times slower than Opera. Overall,
Firefox delivers the best performance.

6 Performance on small devices

In this section, we report the performance results and compare them with 3072-bit RSA and ElGamal
ECC. We use Baagøe’s implementation of PRNG [2] on Android tablets and Tessel. 3072-bit RSA
(MSR) and ElGamal ECC are only tested on Android tablets because window object cannot run
on Tessel. As we have seen in Section 5, we are mainly interested in algorithmic aspects and the
portability of the implementation.

6.1 Performance on Android devices

WebView and Android Web browsers are different from those on PC. As Android mostly run on
devices with a touchscreen, the event trigger mechanisms are different. Also, typical Android devices
have a configuration of less computational power than PC, so the speed performance on Android
is not as good as that on PC browsers. However, the decomposition of running time for each of

322



International Journal of Networking and Computing

Table 6: Performance results on Android

Scheme
Average running time (ms)

Key generation Encryption Decryption
MeMO Pad7 Nexus7 MeMO Pad7 Nexus7 MeMO Pad7 Nexus7

NTRU 458.91 851.39 17.24 37.59 15.35 35.05
NTRU-IEEE07 355.80 669.60 18.09 40.57 8.03 18.79
Regev’s LWE 9653.30 21437.05 382.45 871.15 12.60 26.85
LPR10-LWE 5.03 9.59 9.11 19.39 4.31 8.79

LP10 Ring-LWE 5.09 10.19 9.13 18.77 4.26 8.92
LP11 212.88 492.46 15.92 31.30 7.69 18.18

3072-bit RSA (Baird) [3] 40959.3 101316.6 30.5 72.2 794.0 2082.7
3072-bit RSA (MSR) [23] N/A N/A 97.1 169.6 2192.2 4400.3

ElGamal ECC (NIST P-256) [31] 74.37 137.60 154.41 283.34 77.37 142.54

Table 7: Performance comparison of LP11 across Android browsers

Android browser
Average running time (ms)

Key generation Encryption Decryption
MeMO Pad7 Nexus7 MeMO Pad7 Nexus7 MeMO Pad7 Nexus7

Google Chrome 197.83 476.33 8.38 17.52 3.04 6.77
Firefox 187.86 489.06 1.63 5.26 0.81 2.12
Opera 195.64 499.17 8.34 17.47 2.99 6.86

WebView 212.88 492.46 15.92 31.30 7.69 18.18

the schemes is almost the same as on PC browsers. From Table 6, we see that the ASUS MeMO
Pad7 delivers better performance than the Nexus7, while the performance on either device is quite
acceptable.

As can be seen from the results in Table 6, Ring-LWE schemes provide the best performance
results on WebView, around twice as fast as LP11 in both encryption and decryption. We have also
tested our implementations on other Android web browsers like Google Chrome 50.0.2661.89, Firefox
46.0, and Opera 36.2.2126.102826. For Ring-LWE schemes, the performance of these browsers is very
similar to that of their PC counterparts. However, we have found that some test data of WebView
activity are significantly different from that of Android web browsers. For example, Table 7 shows
the running time of LP11 on ASUS MeMO Pad7 and Nexus7. The difference depends both on
the JavaScript runtime architecture and platform used in experiments, and WebView can deliver
different performance for lattice-based encryption schemes from other Android web browsers.

6.2 Performance on Tessel

Tessel can run JavaScript programs directly. However, on Tessel a JavaScript program does not
run inside any browser but directly supported by the system. We have successfully tested all our
implementation on Tessel except Regev’s LWE, which fails to run due to insufficient memory.

Table 8 shows the running time of our implementations on Tessel. Note that the execution time is
in seconds. In general, the performance achieved on Tessel is several orders of magnitude slower. For
example, key generation of NTRU on Tessel is more than 5000 times slower than that on Opera, as
well as more than 1000 times slower than that on ASUS MeMO Pad7. Key generation, encryption,
and decryption of LPR10-LWE are more than 12000 times slower than that of on Opera.

We note that on Tessel, it would take more than a few days to generate large integers p and q for
3072-bit RSA (Baird). Therefore, it is excluded from the results shown in Table 8. We conclude that

323



Portable Implementation of Lattice-based Cryptography using JavaScript

Table 8: Performance results on Tessel

Scheme
Average running time (s)

Bit-security
Key generation Encryption Decryption

NTRU 886.635 28.767 53.540 128
NTRU-IEEE07 752.350 29.283 26.769 128
Regev’s LWE Insufficient memory 128
LPR10-LWE 21.324 41.816 19.880 126

LP10 Ring-LWE 21.369 41.690 19.702 126
LP11 1259.900 12.229 4.457 ≥ 128

3072-bit RSA (Baird) [3] 2952.8742 456.647 18459.746 128
2 This is the running time of key generation on Tessel without generating big inte-

gers p and q, as it would take a very long time to generate p and q on Tessel.

it is not practical to run 3072-bit RSA (Baird) on such a small device like Tessel using JavaScript.

Such a huge performance gap between running JavaScript on PC vs. on Tessel cannot simply
be explained by the difference of CPU. A typical PC’s CPU runs at a few GHz, which can perhaps
explain a factor of 10 to 20 in performance difference. Besides, PC’s CPU usually has several
arithmetic units and complicated out-of-order execution engines, as well as larger on-die cache
memory, all of which can help harvest instruction-level parallelism and data locality. Together,
they can perhaps explain another factor of 10 to 20. However, this still leaves us a factor of 100 in
performance difference, which we need other explanation such as the one below. In JavaScript, there
is only one numerical type, the IEEE double-precision floating-point numbers. Unfortunately, the
ARM Cortex M3 microcontroller generally does not have hardware support for such floating-point
arithmetic. Therefore, all arithmetic is emulated using the (already slow) 32-bit integer arithmetic
on Cortex M3. Our preliminary experiment shows that the Cortex M3 microcontroller on Tessel can
execute about 36000 multiplications per second with a deeply unrolled JavaScript program. The
same JavaScript program can run more than 15000 times faster on a PC, which more or less agrees
with the performance gap we have observed.

6.3 Detailed running time on Tessel

The speed performance of our implementation is relatively fast on PC browsers and the Android
device but slow on Tessel. In Table 9, we see that in key generation of the NTRU family of
algorithms, computation of polynomial inverse accounts for about 80% of the time, while polynomial
multiplication accounts less than 10% of the time. In LPR10-LWE and LP10 Ring-LWE, polynomial
multiplication almost occupies more than 90% of the key generation time, while Gaussian sampling
takes very little time. It appears that polynomial multiplication is indeed the bottleneck operation
for encryption and decryption as well.

For LP11, matrix multiplication takes up around 70% of the running time. The reason why
LP11 can run on Tessel is mainly because the key size is much smaller than Regev’s LWE. In
addition, discrete Gaussian sampling takes a certain proportion of the running time, especially in
key generation. For example, nearly 20% of the key generation time is spent on discrete Gaussian
sampling for the LWE-based schemes. Overall, ring-based LWE schemes, LPR10-LWE and LP10
Ring-LWE are the most efficient in terms of total amount of time spent in key generation, encryption,
and decryption on Tessel, as they use polynomial operations and have smaller key sizes. In addition,
when the key size is small enough, matrix-based schemes such as LP11 can run successfully on Tessel.

324



International Journal of Networking and Computing

Table 9: Decomposition of computation time (s) on Tessel

Other, 0.968

Gaussian 
sampling, 

1.805
9.456

0

2

4

6

8

10

12

14

LP11

Matrix multiplication

Gaussian sampling

Other

28.511 30.011

84.532 86.917

49.688

0

2.651

2.846

0

50

100

150

200

NTRU NTRU-IEEE07

Polynomial multiplication
(Karatsuba algorithm)

Inverse modulo p (in 
NTRU’s step 4, Table 1)

Inverse modulo q (in 
NTRU/NTRU-IEEE07’s 
step 4, Table 1)

Other

Other, 

101.615

Other, 

101.042

626.972 625.268

131.309

Karatsuba 

algorithm, 
26.739

Karatsuba 
algorithm, 

26.04

0

200

400

600

800

1000

NTRU NTRU-IEEE07

Key Generation

Other, 

2.46

Other, 

3.276

26.307 26.007

0

5

10

15

20

25

30

35

NTRU NTRU-IEEE07

Encryption

Other, 

0.891

Other, 

0.715

52.649

26.054

0

10

20

30

40

50

60

NTRU NTRU-IEEE07

Decryption

Other, 

110.38

Gaussian 
sampling, 

324.933

Matrix 
multiplication, 

824.587

0

200

400

600

800

1000

1200

1400

LP11

Key Generation

Other, 

0.265

Matrix 

multiplication,

4.192

0

1

2

3

4

5

LP11

Decryption

Other, 

0.968

Gaussian 
sampling, 

1.805

Matrix 

multiplication,

9.456

0

2

4

6

8

10

12

14

LP11

Encryption

Other, 0.044

Other, 

0.06

Gaussian sampling, 

0.04

Gaussian sampling,

0.038

1.558 1.538

0

0.5

1

1.5

2

LPR10-LWE LP10 Ring-LWE

Key Generation
Polynomial
multiplication (NTT)

Gaussian sampling

Other

Other, 

0.706

Other, 

0.823

Gaussian 
sampling, 

1.622

Gaussian 

sampling,

1.604

18.996 18.942

0

5

10

15

20

25

LPR10-LWE LP10 Ring-LWE

Key Generation

Other, 

1.237
Other, 

1.213

Gaussian 
sampling, 

2.445

Gaussian 
sampling, 

2.472

38.134 38.005

0

10

20

30

40

50

LPR10-LWE LP10 Ring-LWE

Encryption

Other, 

0.549
Other, 

0.443

19.331 19.259

0

5

10

15

20

25

LPR10-LWE LP10 Ring-LWE

Decryption

7 Conclusions

We have implemented several lattice-based encryption schemes using JavaScript and tested their per-
formance on multiple computing platforms. Overall, we have found that Ring-LWE-based schemes
are the most efficient, as polynomial multiplication is generally much faster than matrix operations.
In addition to Web browsers on PC and Android, small embedded systems like Tessel can also ex-
ecute our JavaScript implementations directly, and we expect more and more such small devices to
have JavaScript support in the future.

References

[1] Miklos Ajtai. “Generating hard instances of lattice problems.” In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing, pp. 99–108, 1996.

[2] Johannes Baagøe. “Better random numbers for Javascript.” https://github.com/nquinlan/

better-random-numbers-for-javascript-mirror, 2013.

[3] Leemon Baird. http://www.leemon.com/crypto/BigInt.html, 2013.

[4] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. “Recommenda-
tions for key management — Part 1: General (Revision 3).” NIST Special Publication 800-57
Part 1 Revision 3, 2012.

[5] Ahmad Boorghany and Rasool Jalili. “Implementation and comparison of lattice-based iden-
tification protocols on smart cards and microcontrollers.” Cryptology ePrint Archive, Report
2014/078, 2014.

325



Portable Implementation of Lattice-based Cryptography using JavaScript

[6] Ahmad Boorghany, Siavash Bayat Sarmadi, and Rasool Jalili. “On constrained implementa-
tion of lattice-based cryptographic primitives and schemes on smart cards.” Cryptology ePrint
Archive, Report 2014/514, 2014.

[7] Tim Buktu. “NTRU: Quantum-resistant cryptography.” https://github.com/tbuktu/ntru,
2013.

[8] Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. “Effi-
cient software implementation of Ring-LWE encryption.” Cryptology ePrint Archive, Report
2014/725, 2014.

[9] Daniel Cabarcas, Patrick Weiden, and Johannes Buchmann. “On the efficiency of provably
secure NTRU.” In Proceedings of PQCrypto 2014, pp. 22–39, 2014.

[10] Leo Ducas and Phong Q. Nguyen. “Faster Gaussian lattice sampling using lazy floating-point
arithmetic.” In Proceedings of ASIACRYPT 2012, pp. 415–432, 2012.

[11] Tore Kasper Frederiksen. “A practical implementation of Regev’s LWE-based cryptosystem.”
Technical report, 2010. http://daimi.au.dk/~jot2re/lwe/

[12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and Sorin Huss.
“On the design of hardware building blocks for modern lattice-based encryption schemes.” In
Proceedings of CHES 2012, pp. 512–529, 2012.

[13] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard lattices and new
cryptographic constructions.” In Proceedings of STOC 2008, pp. 197–206, 2008.

[14] Michael T. Goodrich and Roberto Tamassia. “Algorithm design: Foundations, analysis, and
internet examples.” Wiley 2001.

[15] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William Whyte. “Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches.” In
Proceedings of ACNS 2009, pp. 437–455, 2009.

[16] Joe Hicklin, Cleve Moler, Peter Webb, Ronald F. Boisvert, Bruce Miller, Roldan Pozo, and
Karin Remington. “JAMA: A Java matrix package.” http://math.nist.gov/javanumerics/

jama/, 2012.

[17] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A ring-based public key cryp-
tosystem.” In Proceedings of ANTS 1998, pp. 267–288, 1998.

[18] https://github.com/mitreid-connect/mkjwk.org, 2014.

[19] Richard Lindner and Chris Peikert. “Better key sizes (and attacks) for LWE-based encryption.”
Cryptology ePrint Archive, Report 2010/613, 2010.

[20] Richard Lindner and Chris Peikert. “Better key sizes (and attacks) for LWE-based encryption.”
In Proceedings of CT-RSA 2011, pp. 319–339, 2011.

[21] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and learning with
errors over rings.” In Proceedings of EUROCRYPT 2010, pp. 1–23, 2010.

[22] Daniele Micciancio and Oded Regev. “Lattice-based cryptography.” In Post-Quantum Cryptog-
raphy, pp. 147–191. Springer, 2008.

[23] MSR JavaScript Cryptography Library, version 1.4. http://research.microsoft.com/en-us/
downloads/29f9385d-da4c-479a-b2ea-2a7bb335d727/, 2015.

[24] Phong Q. Nguyen and Jacques Stern. “The two faces of lattices in cryptology.” In Proceedings
of Cryptography and Lattices Conference (CaLC 2001), pp. 146–180, 2001.

326



International Journal of Networking and Computing

[25] https://code.google.com/p/pts-mini-gpl/source/browse/trunk/

javascript-multiplication/karaperf.js, 2009.

[26] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A framework for efficient and com-
posable oblivious transfer.” In Proceedings of CRYPTO 2008, pp. 554–571, 2008.

[27] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptography.” Jour-
nal of the ACM, 56(6):34, pp. 1–40, 2009.

[28] Markus Ruckert and Michael Schneider. “Estimating the security of lattice-based cryptosys-
tems.” Cryptology ePrint Archive, Report 2010/137, 2010.

[29] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid
Verbauwhede. “Compact Ring-LWE cryptoprocessor.” In Proceedings of CHES 2014, pp. 371–
391, 2014.

[30] Victor Shoup. “NTL: A Library for doing Number Theory.” http://www.shoup.net/ntl/,
2016.

[31] Stanford Javascript Crypto Library (SJCL). https://github.com/bitwiseshiftleft/sjcl,
2015.

[32] Volker Strassen. “Gaussian elimination is not optimal.” Numerische Mathematik, vol. 13, issue 4,
pp. 354–356, 1969.

[33] Robert Sedgewick and Kevin Wayne. http://introcs.cs.princeton.edu/java/stdlib/

StdRandom.java.html, 2014.

[34] “Web Cryptography API.” http://www.w3.org/TR/WebCryptoAPI/, 2014.

[35] “The JavaScript world domination.” https://medium.com/@slsoftworks/

javascript-world-domination-af9ca2ee5070, 2015.

[36] William Whyte (editor), Nick Howgrave-Graham, Jeff Hoffstein, Jill Pipher, Joseph H. Silver-
man, and Phil Hirschhorn. “IEEE P1363.1 Draft 10: Draft standard for public-key crypto-
graphic techniques based on hard problems over lattices.” Cryptology ePrint Archive, Report
2008/361, 2008.

327


