
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 7, Number 1, pages 69–85, January 2017

GPU-accelerated Exhaustive Verification of the Collatz Conjecture1

Takumi Honda, Yasuaki Ito, and Koji Nakano

Department of Information Engineering, Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima, 739-8527 JAPAN

Received: April 6, 2016
Revised: June 15, 2016
Accepted: July 4, 2016

Communicated by Jacir L. Bordim

Abstract

The main contribution of this paper is to present an implementation that performs the
exhaustive search to verify the Collatz conjecture using a GPU. Consider the following operation
on an arbitrary positive number: if the number is even, divide it by two, and if the number
is odd, triple it and add one. The Collatz conjecture asserts that, starting from any positive
number m, repeated iteration of the operations eventually produces the value 1. We have
implemented it on NVIDIA GeForce GTX TITAN X and evaluated the performance. The
experimental results show that, our GPU implementation can verify 1.31× 1012 64-bit numbers
per second. While the sequential CPU implementation on Intel Core i7-4790 can verify 5.25×109

64-bit numbers per second. Thus, our implementation on the GPU attains a speed-up factor of
249 over the sequential CPU implementation. Additionally, we accelerated the computation of
counting the number of the above operations until a number reaches 1, called delay that is one
of the mathematical interests for the Collatz conjecture by the GPU. Using a similar idea, we
achieved a speed-up factor of 73.

Keywords: Collatz conjecture, GPGPU, Parallel processing, Exhaustive verification, Coalesced
access, Bank conflict

1 Introduction

The Collatz conjecture is a well-known unsolved conjecture in mathematics [9, 15, 17, 20]. Consider
the following operation on an arbitrary positive number;

even operation: if the number is even, divide it by two, and

odd operation: if the number is odd, triple it and add one.

The Collatz conjecture asserts that, starting from any positive number, repeated iteration of the
operations eventually produces the value 1. For example, starting from 3, we have the following
sequence to produce 1;

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1.

The exhaustive verification of the Collatz conjecture is to perform the repeated operations for num-
bers from 1 to the infinite, as follows:

1The preliminary version of this paper has been presented at the 14th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2014) [4].

69

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

for m← 1 to ∞ do
begin

n← m
while(n > 1) do

if n is even then n← n
2

else n← 3n + 1
end

Clearly, if the Collatz conjecture is not true, then the while-loop in the program above never termi-
nates for a counter example m. Working projects for the Collatz conjecture are currently checking
61-bit numbers [15] and 72-bit numbers [1]. The project in [1] shows the number of odd/even oper-
ations until the 72-bit number reaches 1. On the other hand, regarding the mathematical interest
for the Collatz conjecture, not only whether numbers converge to 1, called convergence, but also
the number of the odd/even operations until a number reaches 1, called delay, interests the working
project in [15]. Let D(n) denote a delay of a positive integer n. For example, starting from 3, 1 is
produced by 2 odd operations and 5 even operations, that is, D(3) = 2 + 5 = 7. In [15], delay is
used to compute a delay record. A delay record is defined such that a positive integer n is a delay
record if for all positive integers m (m < n) we have D(m) < D(n). For example, 3 is a delay record
since D(1) = 0, D(2) = 1 and D(3) = 7.

The main contribution of this paper is to further accelerate the exhaustive verification for the
Collatz conjecture using a GPU (Graphics Processing Unit). Recent GPUs can be utilized for general
purpose parallel computation. We can use many processing units connected with an off-chip global
memory in GPUs. CUDA (Compute Unified Device Architecture) [12] is an architecture for general
purpose parallel computation on GPUs. Using CUDA, we can develop parallel processing programs
to be implemented in GPUs. Therefore, many studies have been devoted to implement parallel
algorithms using CUDA [3, 8, 10, 16, 18, 19]. The ideas of our GPU implementation are

• a GPU-CPU cooperative approach,

• efficient memory access for the global memory and the shared memory, and

• optimization of the code for arithmetic with larger integers.

By effective use of a GPU and the above ideas, our new GPU implementation can verify 1.31× 1012

and 1.01× 109 64-bit numbers per second for the convergence and the delay, respectively.
This paper is organized as follows. Section 2 provides an overview of related work. Section 3

presents several techniques for accelerating the verification of the Collatz conjecture. In Section 4,
we show the GPU and CUDA architectures to understand our idea. Section 5 proposes our new
ideas to implement the verification of the Collatz conjecture on the GPU. The experimental results
are shown in Section 6. Finally, Section 7 offers concluding remarks.

2 Related work

There are several researches for accelerating the exhaustive verification of the Collatz conjecture.
It is known [2, 5, 6, 7] that series of even and odd operations for n can be done in one step by
computing n← B[nL] · nH +C[nL] for appropriate tables B and C, where the concatenation of nH

and nL corresponds to n.
In [2, 5, 6, 7], FPGA implementations have been proposed to repeat the operations of the Collatz

conjecture. These implementations perform the even and odd operations for some fixed size of bits
of interim numbers. However, in [2], the implementation ignores the overflow. Hence, if there exists
a counter example number m for the Collatz conjecture such that, infinitely large numbers are
generated by the operations from m, their implementation may fail to detect it. On the other hand,
in [5], the implementation can verify the conjecture for up to 23-bit numbers. This is not sufficient
because a working project for the Collatz conjecture is currently checking 61-bit numbers [15].

In [6], a software-hardware cooperative approach to verify the Collatz conjectures for 64-bit
numbers n has been shown. This approach supports almost infinitely large interim numbers m. The

70

International Journal of Networking and Computing

idea is to perform the while-loop for interim values with up to 78 bits using a coprocessor embedded
in an FPGA. If an interim value m has more than 78 bits, the original value n is reported to the host
PC. The host PC performs the verification for such n using a quite large number of bits by software.
This software-hardware cooperative approach makes sense, because the hardware implementation
on the FPGA is fast and low power consumption, but the number of bits for the operation is fixed,
and the software implementation on the PC is relatively slow and high power consumption, but the
number of bits for the operation is quite large. Additionally, in [7], an efficient implementation of
a coprocessor that performs the exhaustive search to verify the Collatz conjecture using embedded
DSP slices on a Xilinx FPGA has been proposed. By effective use of embedded DSP slices instead
of multipliers used in [6], the coprocessor can perform the exhaustive verification faster than the
above FPGA implementations.

In our conference version of this paper [4], we have shown that the verification for the Collatz
conjecture runs 1.80 × 109 64-bit numbers per second. Note that, this implementation of the con-
ference version is slower than this journal version paper, because in this work we used a different
GPU that is a state-of-the-art architecture of NVIDIA GPUs and optimized implementations for
the GPU. Additionally, we added a GPU acceleration of computation for the delay.

3 Accelerating the verification of the Collatz conjecture

The main purpose of this section is to introduce algorithms for accelerating the verification for the
convergence and the delay of the Collatz conjecture. The basic ideas of acceleration are shown
in [9, 20] and the details of them are shown, as follows.

3.1 Verification algorithm for the convergence

In the verification of the convergence, we use the following techniques. The first technique is to
terminate the operations before the iteration produces 1. Suppose that we have already verified that
the Collatz conjecture is true for numbers less than n, and we are now in position to verify it for
number n. Clearly, if we repeatedly execute the operations for n until the value is 1, then we can
confirm that the conjecture is true for n. Instead, if the value becomes n′ for some n′ less than n,
then we can guarantee that the conjecture is true for n because it has been proved to be true for
n′. Thus, it is not necessary to repeat this operation until the value is 1, and we can terminate the
iteration when, for the first time, the value is less than n.

The second technique is to perform several operations in one step. Consider that we want to
perform the operations for n and let nL and nH be the least significant two bits and the remaining
bits of n. In other words, n = 4nH + nL holds. Clearly, the value of nL is either (00)2, (01)2, (10)2,
or (11)2. We can perform the several operations for n based on nL as follows:

nL = (00)2: Since two even operations are applied, the resulting number is nH .

nL = (01)2: First, odd operation is applied and the resulting number is (4nH +1) ·3+1 = 12nH +4.
After that, two even operations are applied, and we have 3nH + 1.

nL = (10)2: First, even operation is performed and we have 2nH + 1. Second, odd operation is
applied and we have (2nH + 1) · 3 + 1 = 6nH + 4. Finally, by even operation, the value is
3nH + 2.

nL = (11)2: First, odd operation is applied and we have (4nH + 3) · 3 + 1 = 12nH + 10. Second,
by even operation, the value is 6nH + 5. Again, odd operation is performed and we have
(6nH + 5) · 3 + 1 = 18nH + 16. Finally, by even operation, we have 9nH + 8.

For example, if nL = (11)2 then we can obtain 9nH + 8 by applying 4 operations, odd, even, odd,
and even operations in turn. Let B and C be tables as follows:

71

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

B C
(00)2 1 0
(01)2 3 1
(10)2 3 2
(11)2 9 8

Using these tables, we can perform the following table operation, which emulates several odd and
even operations:

table operation For least significant two bits nL and the remaining most significant bits nH of
the value, the new value is B[nL] · nH + C[nL].

Let us extend the table operation for least significant two bits to d bits. For an integer n ≥ 2d, let
nL and nH be the least significant d bits and the remaining bits, respectively. Namely, n = 2dnH+nL.
We call d is the base bits. Suppose that, the even or odd operations are repeatedly performed on
n = 2dnH + nL. We use two integers b and c such that n = b · nH + c to denote the current value of
n. Initially, b = 2d and c = nL. We repeatedly perform the following rules for b and c;

even rule: If both b and c are even, then divide them by two, and

odd rule: If c is odd, then triple b, and triple c and add one.

These two rules are applied until no more rules can be applied, that is, until b is odd. It should
be clear that, even and odd rules correspond to even and odd operations of the Collatz conjecture.
If i even rules and j odd rules applied, then the value of b is 2d−i3j . Thus, exactly d even rules
are applied until the termination. After the termination, we can determine the value of elements in
tables B and C such that B[nL] = b and C[nL] = c. Using tables B and C, we can perform the table
operation for d bits nL, which involves d even operations and zero or more odd operations. In this
way, we can accelerate the operation of the Collatz conjecture. In this paper, we have implemented
for various numbers of bits of nL.

The third technique to accelerate the verification of the Collatz conjecture is to skip numbers n
such that we can guarantee that the resulting number is less than n after the table operation. For
example, suppose we are using two bit table and nH > 0. If nL = (00)2 then the resulting value
is nH , which is less than n. Thus, we can skip the table operation for n if nL = (00)2. If nL =
(01)2 then the resulting value is 3nH + 1, which is always less than n = 4nH + 1, and we can skip
the table operation. Similarly, if nL = (10)2 then we can skip the table operation. On the other
hand nL = (11)2 then the resulting value is 9nH + 8, which is always larger than n. Therefore,
the Collatz conjecture is guaranteed to be true whenever nL 6= (11)2, because it has been verified
true for numbers less than n. Consequently, we need to execute the table operation for number n
such that nL = (11)2. We can extend this idea for general case. For least significant d bits nL,
we say that nL is not mandatory if the value of b is less than 2d at some moment while even and
odd rules are repeatedly applied. We can skip the verification for non-mandatory nL. The reason
is as follows: Consider that for number n, we are applying even and odd rules. Initially, b = 2d

and c ≤ 2d − 1 hold. Thus, while even and odd rules are applied, b > c always hold. Suppose
that b ≤ 2d − 1 holds at some moment while the rules are applied. Then, the current value of n is
bnH + c < bnH + b ≤ (2d − 1)nH + b < 2dnH ≤ n. It follows that, the value is less than n when
the corresponding even and odd operations are applied. Therefore, we can omit the verification
for numbers that have no mandatory least significant bits. We note that this technique cannot be
applied to the computation for the delay because every number has its own value of the delay and
cannot be skipped.

For least significant d bit number, we use table S to store the mandatory least significant bits.
Let sd be the number of such mandatory least significant bits. Using these tables, we can write a
verification algorithm in Algorithm 1. For the benefit of readers, we show tables B, C, and S for 4
base bits in Table 1. From s4 = 3, we have 3 mandatory least significant bits out of 16.

For the reader’s benefit, Table 2 shows the necessary word size for each of tables B and C for
each base bit. It also shows the expected number of odd/even operations included in one step
operation n ← B[nL] · nH + C[nL]. Table 3 shows the size of table S. It further shows the ratio

72

International Journal of Networking and Computing

Algorithm 1 Verification algorithm for convergence of Collatz conjecture

1: for mH ← 1 to +∞ do
2: for i← 1 to sd − 1 do
3: mL ← S[i]
4: n← m← 2dmH + mL

5: while n ≥ m do
6: Let nL be the least significant d bits and nH be the remaining bits.
7: n← B[nL] · nH + C[nL]
8: end while
9: end for

10: end for

Table 1: Tables B, C, and S for least significant 4 bits.
B C S

(0000)2 1 0 (0111)2
(0001)2 9 1 (1011)2
(0010)2 9 2 (1111)2
(0011)2 9 2 -
(0100)2 3 1 -
(0101)2 3 1 -
(0110)2 9 4 -
(0111)2 27 13 -
(1000)2 3 2 -
(1001)2 27 17 -
(1010)2 3 2 -
(1011)2 27 20 -
(1100)2 9 8 -
(1101)2 9 8 -
(1110)2 27 26 -
(1111)2 81 80 -

73

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

Table 2: The size of tables B and C

base bit words operation
4 16 6.0
5 32 7.5
6 64 9.0
7 128 10.5
8 256 12.0
9 512 13.5

10 1k 15.0
11 2k 16.5
12 4k 18.0
13 8k 19.5
14 16k 21.0
15 32k 22.5
16 64k 24.0
17 128k 25.5
18 256k 27.0

of the mandatory numbers over all numbers. Later, we set base bit 18 for tables B and C, and
base bit 37 for table S in our proposed GPU implementation. Thus, in our implementation, one
operation n← B[nL] ·nH +C[nL] corresponds to expected 27.0 odd/even operations. Also, we skip
approximately 99.3% of non-mandatory numbers.

3.2 Verification algorithm for the delay

In the following, we show an algorithm of counting delay of Collatz conjecture. In the computation
of delay, the above idea for convergence that several odd/even operations are skipped by tables B
and C can be used. It is necessary to count the number of odd/even operations skipped by applying
a table operation. For example, when table operation uses tables B and C for least significant 2
bits, if nL = (11)2 then 4 operations, odd, even, odd, and even operations are applied in turn. Let
J be a table as follows:

J
(00)2 2
(01)2 3
(10)2 3
(11)2 4

On the other hand, the idea for the convergence that if the value becomes n′ for some n′ less than
n by applying table operations, then we can guarantee that the conjecture is true for n cannot be
applied to the computation of the delay because the number of operations needs to be counted until
the value is 1. Therefore, in the computation of the delay, we introduce table A that stores the delays
which have been pre-computed for all numbers less than t. Each element of table A[i] (0 ≤ i ≤ t−1)
stores the delay of i. Namely, if the value becomes n′ for some n′ less than t, then we can obtain
the delay of n′ to refer A[n′]. After that, we add A[n′] to the number of operations necessary to
produce n′ and the delay of n is obtained. In our GPU implementation, we use table A for t = 212.
Algorithm 2 shows an algorithm to count delay of Collatz conjecture using the above ideas.

4 GPU and CUDA architectures

Figure 1 illustrates the CUDA hardware architecture. CUDA uses three types of memories in the
NVIDIA GPUs: the global memory, the shared memory, and the registers [14]. The global memory

74

International Journal of Networking and Computing

Table 3: The size of table S

base bit words ratio base bit words ratio
3 2 0.2500 21 46611 0.0222
4 3 0.1875 22 93222 0.0222
5 4 0.1250 23 168807 0.0201
6 8 0.1250 24 286581 0.0171
7 13 0.1016 25 573162 0.0171
8 19 0.0742 26 1037374 0.0155
9 38 0.0742 27 1762293 0.0131

10 64 0.0625 28 3524586 0.0131
11 128 0.0625 29 6385637 0.0119
12 226 0.0552 30 12771274 0.0119
13 367 0.0448 31 23642078 0.0110
14 734 0.0448 32 41347483 0.0096
15 1295 0.0395 33 82694966 0.0096
16 2114 0.0323 34 151917639 0.0088
17 4228 0.0323 35 263841377 0.0077
18 7495 0.0286 36 527682754 0.0077
19 14990 0.0286 37 967378591 0.0070
20 27328 0.0261

Algorithm 2 Count algorithm for delay of Collatz conjecture

1: for n← t to +∞ do
2: n′ ← n
3: D(n)← 0
4: while n′ ≥ t do
5: Let n′L be the least significant d bits and n′H be the remaining bits.
6: n′ ← B[n′L] · n′H + C[n′L]
7: D(n)← D(n) + J [n′L]
8: end while
9: D(n)← D(n) + A[n′]

10: end for

is implemented as an off-chip DRAM of the GPU, and has large capacity, say, 1.5-12 Gbytes, but
its access latency is very long. The shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-96 Kbytes. The registers in CUDA are placed on each core in the streaming
multiprocessor and the fastest memory, that is, no latency is necessary. However, the size of the
registers is the smallest during them. The efficient usage of the global memory and the shared
memory is a key for CUDA developers to accelerate applications using GPUs. In particular, we need
to consider the coalescing of the global memory access and the bank conflict of the shared memory
access [11]. To maximize the bandwidth between the GPU and the DRAM chips, the consecutive
addresses of the global memory must be accessed in the same time. Thus, threads should perform
coalesced access when they access to the global memory. Also, CUDA supports broadcast access to
the shared memory without the bank conflict [14]. The broadcast access is a shared memory request
such that two or more threads refer the same address. Thus, in our GPU implementation, to make
memory access efficient, we perform the coalescing and the broadcast access for the reference to
tables B and C stored in the global memory and the shared memory as possible, respectively.

CUDA parallel programming model has a hierarchy of thread groups called grid, block and
thread. A single grid is organized by multiple blocks, each of which has equal number of threads.
The blocks are allocated to streaming multiprocessors such that all threads in a block are executed
by the same streaming multiprocessor in parallel. All threads can access to the global memory.

75

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

Streaming

Multiprocessor

Core

Core

Core

Core

Core

Core

Core

Core

Shared Memory

Streaming

Multiprocessor

Shared Memory

Streaming

Multiprocessor

Shared Memory

…

Global Memory

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Figure 1: CUDA hardware architecture

However, as we can see in Figure 1, threads in a block can access to the shared memory of the
streaming multiprocessor to which the block is allocated. Since blocks are arranged to multiple
streaming multiprocessors, threads in different blocks cannot share data in shared memories. Also,
the registers are only accessible by a thread, that is, the registers cannot be shared by multiple
threads.

CUDA C extends C language by allowing the programmer to define C functions, called kernels.
By invoking a kernel, all blocks in the grid are allocated in streaming multiprocessors, and threads
in each block are executed by processor cores in a single streaming multiprocessor. In the execution,
threads in a block are split into groups of threads called warps. Each of these warps contains the
same number of threads and is executed independently. When a warp is selected for execution,
all threads execute the same instruction. When one warp is paused or stalled, other warps can be
executed to hide latencies and keep the hardware busy.

There is a metric, called occupancy, related to the number of active warps on a streaming multi-
processor. The occupancy is the ratio of the number of active warps per streaming multiprocessor
to the maximum number of possible active warps. It is important in determining how effectively the
hardware is kept busy. The occupancy depends on the number of registers, the numbers of threads
and blocks, and the size of shared memory used in a block. Namely, utilizing too many resources
per thread or block may limit the occupancy. To obtain good performance with the GPUs, the
occupancy should be considered.

As we have mentioned, the coalesced access to the global memory is a key issue to accelerate the
computation. As illustrated in Figure 2, when threads access to continuous locations in a row of
a two-dimensional array (horizontal access), the continuous locations in address space of the global
memory are accessed in the same time (coalesced access). However, if threads access to continuous
locations in a column (vertical access), the distant locations are accessed in the same time (stride
access). From the structure of the global memory, the coalesced access maximizes the bandwidth of
memory access. On the other hand, the stride access needs a lot of clock cycles. Thus, we should
avoid the stride access (or the vertical access) and perform the coalesced access (or the horizontal
access) whenever possible. In addition, when all threads in a warp read a word from the same
address, the memory access, that is broadcast access, is performed as the coalescing. In our GPU
implementation, broadcast access to the global memory is used as possible.

Just as the global memory is divided into several partitions, shared memory is also divided into
32 equally-sized modules of 32-(or 64-)bit width, called banks (Figure 3). In the shared memory, the
successive 32-(or 64-)bit words are assigned to successive banks. To achieve maximum throughput,

76

International Journal of Networking and Computing

t0

t7

2-dimensional array

horizontal access

vertical access

coalesced access

stride access

t0 t7 t0 t7

t0 t7

Figure 2: Coalesced and stride access

������ ������ ������ �����	 �����
 ������ ������ ����� �����	�

�����	� �����		 �����	
 �����	� �����	� �����	 �����	� �����	� ������	

������ ������ ������ �����	 �����
 ������ ������ ����� �����	�

Figure 3: The structure of the shared memory

either concurrent threads of a thread block should access different banks or when all threads access
the same address, the value is only read once and broadcasted to all threads, otherwise, bank conflicts
will occur. In practice, the shared memory can be used as a cache to hide the access latency of the
global memory. Therefore, for the shared memory access in our GPU implementation, the broadcast
access is used as possible.

5 GPU implementation

The main purpose of this section is to show a GPU implementation of verifying the Collatz conjec-
ture. The ideas of our GPU implementation are

(i) a GPU-CPU cooperative approach,

(ii) efficient memory access for the global memory and the shared memory, and

(iii) optimization of the code for arithmetic with larger integers.

In this section, we explain the details of our GPU implementation of the verification for the conver-
gence using these ideas first. After that, our GPU implementation of the computation for the delay
which is an extension of it is provided.

5.1 A GPU-CPU cooperative approach

In the following, we show a GPU-CPU cooperative approach that is similar to the idea of a hardware-
software cooperative approach in [6]. In this paper, we assume that 64-bit numbers are verified. This

77

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

assumption is sufficient because a working project for the Collatz conjecture is currently checking 61-
bit numbers [15]. We note that the verified numbers can be extended easily since the interim numbers
in the verification can be larger than 64-bit numbers. In the verification of the Collatz conjecture,
therefore, arithmetic with larger integers having more than 64 bits is necessary to compute B[nL] ·
nH + C[nL]. Depending on an initial value, the size of the interim value may become very large
during the verification. If larger interim value is allowed in the computation on the GPU, the values
cannot be stored on the registers, that is, they have to be stored on the global memory whose access
latency is very long. In our implementation, the maximum size of interim values is limited to 96
bits, which consists of three 32-bit integers, to perform the computation only on the registers. By
limiting the maximum size, the computation can be performed as fixed length computation without
overhead caused by arbitrary length computation. Suppose that a thread finds that the interim value
is overflow for the initial value m. The thread reports m through the global memory if the overflow
is detected. After all the threads finish the verification, the host program checks whether there are
overflows or not. If overflows are found, the host verifies the Collatz conjecture for the values using
a quite large number of bits by software on the CPU. The number of bits for the verification on
the host is only limited by the memory size of the host. Recent PCs have several GBytes memory.
Therefore, we can verify a number even if the interim value becomes several thousands bits. The
number of bits supported by our implementation on the host is 960 bits. Also, there was no 64-bit
number that the maximum size of the interim value was larger than 960 bits in our experiment.

The reader may think that if the number of overflows is larger, the verification time is longer.
However, the number of overflows is small enough for the limitation of 96 bits [7]. Therefore, it
is reasonable to perform the verification for overflow numbers on the host. In Section 6, we will
evaluate the number of overflows and the verification time for them.

5.2 Efficient memory access for the GPU memory

To make memory access for the GPU memory efficient, we perform the broadcast access as possible
using the following technique. In our GPU implementation, we arrange initial values verified by
threads in a block such that the least significant bits of them are identical. More specifically, the
data format of initial values is shown in Figure 4. In the figure, thread ID denotes a thread index
within a block, block ID denotes a block index within a kernel, and M is a constant. In each block,
S[block ID] and M are common values for threads and each thread in a block verifies the Collatz
conjecture for 28(= 256) initial values. Namely, threads in a block concurrently verify the conjecture
for values that are identical except thread ID . Using this arrangement, until the bits depending on
the thread ID are included into nL, threads in a block can refer the identical address of tables B
and C at the same time. For each iteration of the while-loop in Algorithms 1 and 2 in Section 3, the
interim value is divided into the least significant d bits and the remaining bits, that is, the value is
d-bit-right-shifted. Therefore, using the data format in Figure 4, threads can refer the same address

b 8+(45−b)+b
d c = b 53d c times for each verification. For example, when d = 11, threads can refer the

same address at least 4 times for each initial value.
Since compared with the global memory, the access time of the shared memory is faster, but the

size of the shared memory is much smaller, it is important to find the optimal size of base bits for
tables B and C and the optimal location in which these tables are stored in the global memory or
the shared memory. Therefore, we evaluate the computing time for various cases to find the optimal
ones beforehand. On the other hand, since a value in table S is read only once for each 256 numbers
to be verified, compared with the total time of the computation, the access time of table S is small
enough to be ignored.

5.3 Optimization of the code for arithmetic with larger integers

As mentioned in the above, arithmetic with larger integers having more than 64 bits is necessary to
compute B[nL]·nH+C[nL]. In C language, however, there is no efficient way of doing such arithmetic
because C language does not support operations with the carry flag bit. In a common way to perform
the arithmetic with larger integers, 32-bit operations are performed on 64-bit operations by extending

78

International Journal of Networking and Computing

�1�� thread_ID �00000000�� M S[block_ID]

10 bits 8 bits b bits45-b bits

�1�� thread_ID �11111111�� M S[block_ID]

256

�

�1�� thread_ID �00000001�� M S[block_ID]

1 bit

Figure 4: The data format of 64-bit numbers verified by each thread in a block, where thread ID
denotes a thread index within a block, block ID denotes a block index within a kernel, and M is a
constant.

the bit-length. However, the overhead of type conversion for the extension of the bit-length cannot
be ignored. To optimize the arithmetic with larger integers, therefore, a part of the code is written
in PTX [13] that is an assembly language for NVIDIA GPUs and can be used as inline assembler in
CUDA C language. PTX supports arithmetic operations with the carry flag bit. Concretely, we use
mad and madc that are 32-bit arithmetic operations in PTX to compute B[nL] ·nH +C[nL]. These
operations multiply two 32-bit integers and add one 32-bit integer excluding and including the carry
flag bit, respectively. Applying the optimization of the code, in the preliminary experiment, the
result shows that the optimized implementation can verify the Collatz conjecture approximately 1.8
times faster than the non-optimized implementation.

5.4 GPU implementation of the computation for the delay

Our GPU implementation of the computation for the delay that counts the number of odd/even
operations for a number, is very similar to that for the convergence described in the above. The
delay computation shown in Algorithm 2 additionally uses table J and table A is used instead of
table S. Also, since the condition of the while-loop is difference, compared with the verification of
the convergence, there is an increase on the number of iterations of the while-loop. In the GPU
implementation for the delay, it is also important to find the optimal size of base bits for tables B,
C, and J and the optimal location in which these tables are stored in the global memory or the
shared memory. In addition, the size of table A is also an important factor since the size determines
the number of iterations of the while-loop in Algorithm 2. Besides, a value in table A is read once
for each number to be verified though a value of table S for the convergence computation is referred
once for each 256 numbers. Thus, we evaluate the computing time for various cases to find the
optimal parameters of the tables beforehand.

6 Performance Evaluation

We have implemented two GPU implementations of verifying the Collatz conjecture. One is for the
convergence and the other is for the delay. We use CUDA C with NVIDIA GeForce GTX TITAN X
with 3072 processing cores (24 streaming multiprocessors which have 128 processing cores each)
running in 1075 MHz and 12 GB memory. For the purpose of estimating the speed up of our GPU
implementation, we have also implemented a sequential implementation of verifying the Collatz
conjecture using GNU C. In the sequential implementation, we can apply the idea of accelerating
the verification described in Section 3. For example, in the CPU implementation, the maximum size
of interim values is limited to 96 bits, which consists of three 32-bit integers, to avoid the overhead
caused by arbitrary length computation just as the GPU implementation. Suppose that when an
interim value is overflow for the initial value m, m is stored to the memory as an overflowed value.
After all the computation is finished, the program checks whether there are overflows or not. If
overflows are found, the verification is performed for the values using a quite large number of bits.

79

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

Table 4: The number of verified 64-bit numbers (×109) per second for various size of base bit of
tables B and C for the convergence

size of bits 10 11 12 13 14 15 16 17 18 19 20

GPU(shared memory) 677 697 763 — — — — — — — —
GPU(global memory) 566 583 611 698 739 747 872 931 983 371 160

CPU 3.70 3.92 4.29 4.02 3.75 3.03 3.08 2.85 3.07 3.12 2.05

We have used in Intel Core i7-4790 running in 3.66GHz and 32GB memory to run the sequential
CPU implementation.

For the computation of the convergence and the delay, we have evaluated the computing time
of the GPU implementation by verifying the Collatz conjecture for the 64-bit numbers whose data
format is shown in Figure 4. For this purpose, we have randomly generated integers as a constant
M .

Regarding the size of verified numbers, our GPU implementation computes interim values using
96 bits. On the other hand, the verification on the host also supports 960-bit numbers. This
is sufficient at the present time because working projects for the Collatz conjecture are currently
checking 61-bit numbers [15] and 72-bit numbers [1].

6.1 Performance for the verification of the convergence

To find the optimal size of bits for tables B and C, we evaluated the computing time of the verifi-
cation for the convergence in the GPU and CPU implementations for 250 and 235 64-bit numbers,
respectively. Table 4 shows the number of verified 64-bit numbers per second for various size of base
bit of tables B and C when the size of base bit of table S is 32. Note that tables B and C of base
bit more than 12 cannot be stored in the shared memory due to the size limitation. According to
the table, in the GPU implementation, we can find that the optimal size of bits is 18 when they are
stored in the global memory. Also, in the CPU implementation, the optimal size of bits is 12. In
the following, we use these parameters in the GPU and CPU implementation.

Next, we find the optimal size of bits for table S. Figures 5 and 6 show the number of verified
numbers per second for various base bit of table S in the GPU and CPU implementations, respec-
tively. According to the both graphs, when the base bit is larger, the number is larger because the
number of non-mandatory numbers is larger for larger base bit as shown in Table 3. Due to the size
limitation, more than 37 bits for table S cannot be stored in the global memory in the GPU and
the main memory in the CPU, respectively. For table S with base bit 37, our GPU implementation
can verify the convergence for 1.31 × 1012 numbers per second. On the other hand, in the CPU
implementation, when the base bit is larger, the verified number per second is also larger. For table
S with base bit 37, the CPU implementation can verify the convergence for 5.25× 109 numbers per
second.

We note that in the GPU implementation, the computing time of the verification for overflow
numbers by the CPU is included as described in Section 5. For example, when the convergence
for table S with base bit 37 is verified, 22932 overflow numbers were found, that is, the size of
interim values for 22932 numbers became more than 96 bits. After that, the host program verified
the conjecture for these numbers using a quite large number of bits by software. The verification
time in the CPU was 100 ms including the time of data transfer between the GPU and CPU. Since
the total computing time was 853881 ms, the verification time for overflow numbers by the CPU is
much shorter. Thus, our GPU implementation for the verification of the convergence of the Collatz
conjecture attains speed-up factors of 249 over the CPU implementations.

There are several researches for accelerating the exhaustive verification of the convergence of
Collatz conjecture using FPGAs [2, 5, 6, 7]. All of them are implementations and the basic idea of
them are using table operation as same as that of our implementations. However, their implemen-
tations verify the Collatz conjecture only for the convergence. Also, as far as we know, the FPGA

80

International Journal of Networking and Computing

0

2.0 × 1011

4.0 × 1011

6.0 × 1011

8.0 × 1011

1.0 × 1012

1.2 × 1012

1.4 × 1012

5 10 15 20 25 30 35

size of table S

Figure 5: The number of verified 64-bit numbers per second for various size of base bit of table S in
the GPU implementation for the convergence of the Collatz conjecture

Table 5: The number of verified 64-bit numbers (×106) per second for various size of base bit of
tables B, C and J for the delay

size of bits 8 9 10 11 12 13 14 15 16 17 18 19 20
GPU (shared memory) 939 951 946 936 922 — — — — — — — —
GPU (global memory) 924 933 870 851 407 360 383 375 397 413 393 218 134

CPU 9.26 11.2 11.2 12.6 12.4 11.5 12.3 9.05 8.09 7.97 7.85 6.08 2.97

implementation in [7] has been the fastest implementation. However, our GPU implementation can
verify the convergence of the Collatz conjecture 7.89 times faster than the FPGA implementation.

6.2 Performance for the verification of the delay

For the delay of the Collatz conjecture, we also find the optimal size of bits for tables B, C and
J by evaluating the computing time of the GPU and CPU implementations for 230 and 227 64-bit
numbers, respectively. Table 5 shows the number of verified 64-bit numbers per second for various
size of tables B, C and J when the size of base bit of table A is 25. We note that tables B, C and J
of base bit more than 12 cannot be stored in the shared memory due to the size limitation. In the
GPU implementation, the optimal size of bits is 9 when they are stored in the shared memory. On
the other hand, the optimal size of bits is 11 in the CPU implementation.

Next, we find the optimal size of bits for table A. Figures 7 and 8 show the number of verified
numbers per second for various size of table A in the GPU and CPU implementations for 230 and
227 64-bit numbers, respectively. Unlike the table S in the convergence, when the size of table A is
larger, the verified numbers is not larger. This is because the memory access time to the table cannot
be ignored since the number of access for the delay is 256 times more than that for the convergence
as described in Section 5. Therefore, in the delay computation, the size of table A affects a trade-off
between the hit ratio of the cache memory and the number of iterations of the while-loop. When
the size of table A is larger, the hit ratio of the cache memory is lower and the number of iterations

81

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

0

1.0× 109

2.0× 109

3.0× 109

4.0× 109

5.0× 109

6.0× 109

5 10 15 20 25 30 35

base bit of table S

Figure 6: The number of verified 64-bit numbers per second for various size of base bit of table S in
the CPU implementation for the convergence

of the while-loop is less. On the other hand, when the size of the table is smaller, the hit ratio of
the cache memory is higher and the number of iterations of the while-loop is more. This trade-off
also exists in the CPU implementation. According to the graph, we can find a peak and it shows a
well-balanced trade-off point between them. Thus, we can find that the optimal size of table A in
the GPU and CPU implementations is 212 and 223, respectively.

Using the above optimal parameters, we evaluated the computing time of the GPU and CPU im-
plementations for 230 64-bit numbers. The results show that our GPU implementation can compute
the delay for 1.01× 109 numbers per second. It includes the computing time of the verification for
overflow numbers by the CPU. On the other hand, in the CPU implementation, the CPU implemen-
tation can compute the delay for 1.39 × 107 numbers per second. Thus, our GPU implementation
for the computation of the delay of the Collatz conjecture attains speed-up factors of 73 over the
CPU implementations.

7 Conclusions

We have presented GPU implementations that perform the exhaustive search to verify the Collatz
conjecture for the convergence and the delay. In our GPU implementation, we have considered
programming issues of the GPU architecture such as the coalescing of the global memory, the shared
memory bank conflict, and the occupancy of the multicore processors. We have implemented them
on NVIDIA GeForce GTX TITAN X. The experimental results show that they can verify 1.31×1012

and 1.01 × 109 64-bit numbers per second for the convergence and the delay, respectively. On the
other hand, the sequential CPU implementations verify 5.25 × 109 and 1.39 × 107 64-bit numbers
per second for the convergence and the delay, respectively. Thus, our GPU implementations attain
a speed-up factor of at most 249.

82

International Journal of Networking and Computing

9.20× 108

9.40× 108

9.60× 108

9.80× 108

1.00× 109

1.20× 109

210 215 220 225 230

size of table A

Figure 7: The number of verified 64-bit numbers per second for various size of base bit of table A
in the GPU implementation for the delay

9.50 × 106

1.00 × 107

1.05 × 107

1.10 × 107

1.15 × 107

1.20 × 107

1.25 × 107

1.30 × 107

1.35 × 107

size of table A

215 220 225 230

Figure 8: The number of verified 64-bit numbers per second for various size of base bit of table A
in the CPU implementation for the delay

83

GPU-accelerated Exhaustive Verification of the Collatz Conjecture

References

[1] BOINC Collatz project. http://boinc.thesonntags.com/collatz/.

[2] FengWei An and Koji Nakano. An architecture for verifying Collatz conjecture using an FPGA.
In Proc. of the International Conference on Applications and Principles of Information Science,
pages 375–378, 2009.

[3] Javier Diaz, Camelia Muñoz-Caro, and Alfonso Niño. A survey of parallel programming models
and tools in the multi and many-core era. IEEE Transactions on Parallel and Distributed
Systems, 23(8):1369–1386, August 2012.

[4] Takumi Honda, Yasuaki Ito, and Koji Nakano. GPU-accelerated verification of the Collatz
conjecture. In Proc. of International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP, LNCS 8630), pages 483–496, 2014.

[5] Shuichi Ichikawa and Naohiro Kobayashi. Preliminary study of custom computing hardware
for the 3x+1 problem. In Proc. of IEEE TENCON 2004, pages 387–390, 2004.

[6] Yasuaki Ito and Koji Nakano. A hardware-software cooperative approach for the exhaustive
verification of the Collatz conjecture. In Proc. of International Symposium on Parallel and
Distributed Processing with Applications, pages 63–70, 2009.

[7] Yasuaki Ito and Koji Nakano. Efficient exhaustive verification of the Collatz conjecture using
DSP blocks of Xilinx FPGAs. International Journal of Networking and Computing, 1(1):49–62,
2011.

[8] Yasuaki Ito and Koji Nakano. A GPU implementation of dynamic programming for the optimal
polygon triangulation. IEICE Transactions on Information and Systems, E96-D(12):2596–2603,
2013.

[9] Jeffrey C. Lagarias. The 3x+1 problem and its generalizations. The American Mathematical
Monthly, 92(1):3–23, 1985.

[10] Duhu Man, Kenji Uda, Yasuaki Ito, and Koji Nakano. Accelerating computation of Euclidean
distance map using the GPU with efficient memory access. International Journal of Parallel,
Emergent and Distributed Systems, 28(5):383–406, 2013.

[11] Duhu Man, Kenji Uda, Hironobu Ueyama, Yasuaki Ito, and Koji Nakano. Implementations of
a parallel algorithm for computing Euclidean distance map in multicore processors and GPUs.
International Journal of Networking and Computing, 1(2):260–276, July 2011.

[12] NVIDIA Corp. CUDA ZONE. https://developer.nvidia.com/cuda-zone.

[13] NVIDIA Corp. Parallel Thread Execution ISA Version 3.2, 2013.

[14] NVIDIA Corp. CUDA C Programming Guide Version 7.0, 2015.

[15] Eric Roosendaal. On the 3x + 1 problem. http://www.ericr.nl/wondrous/index.html.

[16] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,
and Wen mei W. Hwu. Optimization principles and application performance evaluation of
a multithreaded GPU using CUDA. In Proc. of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 73–82, 2008.

[17] Tomás Oliveira e Silva. Maximum excursion and stopping time record-holders for the 3x + 1
problem: Computational results. Mathematics of Computation, 68(225):371–384, 1999.

[18] Yuji Takeuchi, Daisuke Takafuji, Yasuaki Ito, and Koji Nakano. ASCII art generation using
the local exhaustive search on the GPU. In Proc. of International Symposium on Computing
and Networking, pages 194–200, 2013.

84

International Journal of Networking and Computing

[19] Akihiro Uchida, Yasuaki Ito, and Koji Nakano. Accelerating ant colony optimisation for the
travelling salesman problem on the GPU. International Journal of Parallel, Emergent and
Distributed Systems, 29(4):401–420, 2014.

[20] Eric W. Weisstein. Collatz problem. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/CollatzProblem.html.

85

