
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 6, Number 2, pages 420–435, July 2016

Efficient Implementation of FDFM Approach for Euclidean Algorithms on the FPGA

Xin Zhou, Koji Nakano, Yasuaki Ito

Department of Information Engineering
Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima, 739-8527 JAPAN

Received: April 6, 2016
Revised: May 16, 2016
Accepted: June 1, 2016

Communicated by Jacir L. Bordim

Abstract

The FDFM (Few DSP slices and Few block Memories) approach is an efficient approach
which implements a processor core executing a particular algorithm using few DSP slices and
few block RAMs in a single FPGA. Since a processor core based on the FDFM approach uses
few hardware resources, hundreds of processor cores working in parallel can be implemented
in an FPGA. The main contribution of this paper is to develop a processor core that executes
Euclidean algorithm computing the GCD (Greatest Common Divisor) of two large numbers in
an FPGA. This processor core that we call GCD processor core uses only one DSP slice and
one block RAM, and 1280 GCD processors can be implemented in a Xilinx Virtex-7 family
FPGA XC7VX485T-2. The experimental results show that the performance of this FPGA
implementation using 1280 GCD processor cores is 0.0904µs per one GCD computation for two
1024-bit integers. Quite surprisingly, it is 3.8 times faster than the best GPU implementation
and 316 times faster than a sequential implementation on the Intel Xeon CPU.

Keywords: GCD, FPGA, DSP slice, block RAM, Euclidean

1 Introduction

The GCD (Greatest Common Divisor) computation is widely used in computer systems for cryptog-
raphy, data security and other important algorithms. Most of the time of these computer systems
is consumed for computing the GCDs of very large integers. Therefore, it is an important task of
accelerating the GCD computation. However, arithmetic operations on integers numbers exceeding
64 bits cannot be performed directly by a conventional 64-bit CPUs as its instruction set support
integers of at most 64-bit in length. It is an efficient way to implement the arithmetic operations on
large integers using hardware device such as FPGA, VLSI or GPU.

The FPGA (Field-Programmable Gate Array) is an integrated circuit designed to be configured
by a designer after manufacturing. It contains an array of programmable logic blocks called CLB
(Configurable Logic Block), and the reconfigurable interconnects allow the blocks to be inter-wired
in different configurations. Recent FPGAs have embedded DSP48E1 slices and block RAMs. The
Xilinx Virtex-7 series FPGAs have DSP slices equipped with a multiplier, adders, logic operators,
etc [1]. More specifically, the DSP slice has a two-input multiplier followed by multiplexers and
a three input adder/subtractor/accumulator. The DSP slice also has pipeline registers between
operators to reduce the propagation time. The block RAM is an embedded memory supporting

420



International Journal of Networking and Computing

synchronized read and write operations, and can be configured as a 36Kbit or two 18Kbit dual port
RAMs [2]. They are widely used in consumer and industrial products for accelerating processor
intensive algorithms [3, 4, 5, 6, 7, 8, 9]. Since the continuing decline in the ratio of FPGA price
to performance and its programmable features, FPGA is suitable for a hardware implementation of
general purpose computing. The main contribution of this paper is to present an efficient processor
core that executes the Euclidean algorithm computing the GCD of two large integers using an
FPGA. The proposed processor core is designed based on the FDFM (Few DSP slices and Few block
Memories) approach [10]. The key idea of the FDFM approach is to use few DSP slices and few
block RAMs for constituting a processor core. We must note that the FDFM approach has some
advantages. First, despite the main circuit occupies most of hardware resources of the FPGA, we
can also implement the necessary hardware algorithm in the FPGA using remaining few resources as
shown in Figure 1 (1). On the other hand, we can implement multiple FDFM processors working in
parallel if enough hardware resources are available as illustrated in Figure 1 (2). In this paper, we also
employ the FDFM approach to implement parallel GCD computation in the FPGA. For example,
in this paper, we propose a processor core for GCD computation of 1024-bit, 2048-bit, 4096-bit, and
8192-bit integers, that uses only one DSP slice and one block RAM. We implement one processor
core in the FPGA, and the frequency of the FPGA is over 380MHz, that is extremely high. If only
one proposed GCD processor core is implemented in the FPGA for computing one GCD of 1024-
bit, 2048-bit, 4096-bit, and 8192-bit integers, it takes 73.12µs, 253.35µs, 915.78µs, and 3614.91µs,
respectively. In other words, single GCD processor core has competitive performance. Since the
proposed GCD processor core uses very few resources of FPGA, we can implement more than one
thousand identical processor cores in an FPGA, that all processor core work are paralleled to execute
bulk GCD computation. The pairwise GCD computation that computes all pairs of integers in a
set, can be used to evaluate the performance of the implementation of thousand processor cores.

(1) Minimum implementation (2) Parallel implementation

block
RAM

DSP

main
circuit

block
RAM

DSP

block
RAM

DSP

block
RAM

DSP

block
RAM

DSP

Figure 1: Advantages of our FDFM approach

One of the applications for benchmarking pairwise GCD computation is breaking weak RSA
keys. RSA [11] is one of the most well-known public-key cryptosystems widely used for secure data
transfer. RSA cryptosystem has an encryption key open to the public. An encryption key includes
a modulus n called an RSA modulus such that n = pq for two distinct large prime numbers p and q.
If the values of p and q are available, the encrypted message can be easily converted to the original
message. Thus, the safety of RSA cryptosystem relies on the difficulty of factoring RSA modulus
n of two large prime numbers p and q. Suppose that we have a set of many RSA encryption keys
collected from the Web. If some of RSA moduli in encryption keys are generated by inappropriate
implementation of a random prime number generator, they may reuse the same prime number. We
call the keys sharing a prime number as weak RSA keys. If two RSA moduli share a prime number,
they can be decomposed by computing the GCD of these two moduli. It is well known that the
GCD can be computed very easily by Euclidean algorithms [12]. Hence, we can compute the GCDs
of all pairs of RSA moduli in the Web to find the RSA keys that shraing the same prime number. In
this paper, pairwise GCD computation for RSA moduli is used to measure the performance of the
proposed GCD processor core based on FDFM approach. We have succeeded in implementing 1792
GCD processor cores in a Xilinx Virtex-7 family FPGA XC7VX485T-2. However, when the circuit

421



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

of 1792 GCD processor cores is operated on the FPGA device, this circuit becomes unstable because
the number of used resources of FPGA is too close to the maximum available resourses. Finally,
we implement 1280 GCD processor cores in the FPGA, that compute the GCDs of all pairs of RSA
moduli that are stored in an off-chip DDR3 memory MT8JTF12864HZ-1G6G1. Our implementation
of 1280 GCD processor cores computes one GCD of two 1024-bit RSA moduli in expected 0.0904µs.

Several hardware implementations for computing the GCD on FPGAs have been presented [13,
14]. However, they just implemented Binary Euclidean algorithm to compute the GCD using pro-
grammable logic blocks as it is. Hence, they can support the GCD computation for numbers with
very few bits. On the other hand, several previously published papers have presented GPU imple-
mentations of Binary Euclidean algorithm in CUDA-enabled GPUs. Fujimoto [15] has implemented
Binary Euclidean algorithm using CUDA and evaluated the performance on GeForce GTX285 GPU.
The experimental results show that the GCDs for 131072 pairs of 1024-bit numbers can be computed
in 1.431932 seconds. Hence, his implementation runs 10.9µs per one 1024-bit GCD computation.
Scharfglass et al. [16] have presented a GPU implementation of Binary Euclidean algorithm. It per-
forms the GCD computation of all 199990000 pairs of 20000 RSA moduli with 1024 bits in 2005.09
seconds using GeForce GTX 480 GPU. Thus, their implementation performs each 1024-bit GCD
computation in 10.02µs. Later, White [17] has showed that the same computation can be per-
formed in 63.0 seconds on Tesla K20Xm. It follows that it computes each 1024-bit GCD in 3.15µs.
Quite recently, Fujita et al. have presented new Euclidean algorithm called Approximate Euclidean
algorithm and implemented it in the GPU [18]. Approximate Euclidean algorithm performs per-
form each 1024-bit GCD computation in 0.346µs on GeForce GTX 780Ti and 28.6µs on Intel Xeon
X7460 (2.66GHz) CPU. Our implementation of 1280 GCD processor cores in Xilinx VC707 evalu-
ation board [19] equipped with FPGA XC7VX485T-2 performs one 1024-bit GCD computation in
0.0904µs which is 3.8 times faster than the GPU and 316 times faster than the CPU.

This paper is organized as follows. We first review several Euclidean algorithms in Section 2.
Then, we show the implementation of GCD processor core in Section 3. Section 4 shows the archi-
tecture of parallel GCD computation using multiple GCD processor cores, that compute the GCD
of all pairs of RSA moduli stored in an off-chip DDR3 memory. We show the experimental results
in Section 5. Section 6 concludes our work.

2 Euclidean Algorithms for computing GCD

This section review classical Euclidean algorithm and Fast Binary Euclidean algorithm for computing
the GCD of two numbers X and Y . We then show Hardware Binary Euclidean algorithm by
modifying Fast Binary Euclidean algorithm, that is implemented in an FPGA.

Let GCD(X ,Y ) denote the GCD of X and Y . For any odd integer X and even integer Y ,
GCD(X,Y ) = GCD(X, Y2 ) holds. Also, for any even integers X and Y , GCD(X,Y ) = 2 · GCD(X2 ,

Y
2 )

holds, and so we can obtain a factor of 2 in the GCD of X and Y very easily.
For simplicity, we assume that both inputs X and Y are odd and X ≥ Y holds. Based on the

fact, it should have no difficulty to modify all GCD algorithms shown in this paper to handle even
input numbers. Let swap(X,Y ) denote a function to exchange the values of X and Y . We can write
a standard Euclidean algorithm for computing the GCD of X and Y as follows:

[Original Euclidean algorithm]
gcd(X ,Y ){

do {
X ← X mod Y ; //X < Y always holds
swap(X,Y ); //X > Y always holds

} while(Y 6= 0)
return(X);

}

Since X ≥ Y holds, modulo computation is performed and X will store the value of X mod Y ,
which is less than Y . After that, swap(X,Y ) is executed and X > Y always holds. The same

422



International Journal of Networking and Computing

operation is repeated until Y = 0 and X stores the GCD of input integers X and Y . However,
modulo computation used in Original Euclidean algorithm is costly. So, Binary Euclidean algorithm
which does not execute it, is often used to compute the GCD efficiently:

[Binary Euclidean algorithm]
gcd(X ,Y ){

do {
if(X is even) X ← X

2 ;
else if(Y is even) Y ← Y

2 ;
else X ← X−Y

2 ;
if(X < Y ) swap(X,Y );

} while(Y 6= 0)
return(X);

}

If X (or Y ) is even, then X (or Y ) is halved to remove the least significant bit of X (or Y ) which
is 0. If both X and Y are odd, X-Y is computed. Since result of subtraction of two odd numbers
is even, X−Y

2 is performed to remove the least significant bit of X − Y , then X will store the value
of X−Y

2 . If X < Y holds, swap(X,Y ) is performed, then X ≥ Y always holds. Note that the
Binary Euclidean algorithm removes one 0 bit from the least significant bit of X (or Y ) and X−Y

2
in each iteration of the do-while loop. We can reduce the number of iterations of the do-while loop
by removing consecutive 0 bits. Let rshift(X) be a function returning the number obtained by
removing consecutive 0 bits from the least significant bit of X . For example, if X = 11010100 in
binary system, then rshift(X) = 110101 in binary notation. Using swap and rshift functions, we
can write the Fast Binary Euclidean algorithm as follows:

[Fast Binary Euclidean algorithm]
gcd(X ,Y ){

do {
X ← rshift(X − Y );
if(X < Y ) swap(X,Y );

} while (Y 6= 0)
return(X);

}

In each iteration of the do-while loop, at least one 0 bit is removed from X (or Y ). Hence, for any
input numbers, the number of iteration of the do-while loop in Fast Binary Euclidean algorithm is
no larger than that in the Binary Euclidean algorithm. However, we need to read all bits of X and Y
to exchange them if we implement function swap as it is. Also, rshift function needs a large barrel
shifter. Hence, we should avoid direct implementations of these functions in the FPGA. Instead of
function rshift(X), we implement function rshiftk(X), which removes at most k consecutive 0
bits from the least significant bit of X . In other words, if X has at most k consecutive 0 bits from
the least significant bit, all of them can be removed in one iteration of do-while loop by executing
rshiftk(X). If X has more than k consecutive 0 bits, then k 0 bits from the least significant bit are
removed, and rshiftk(X) is repeated until X is odd. For example, rshift2(1101,1000)=11,0110
and rshift2(1101,1010)=110,1101 hold. Using rshiftk, we can describe the Hardware Euclidean-
based GCD algorithm as follows:

[Hardware Binary Euclidean algorithm]
gcd(X ,Y ){

do {
if(X is even) X ←rshiftk(X);
else if (Y is even) Y ←rshiftk(Y );
else if(X ≥ Y ) X ←rshiftk(X − Y );
else Y ←rshiftk(Y −X); // X < Y

} while(X 6= 0 and Y 6= 0)

423



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

if(X 6= 0) return(X);
else return(Y );

}

Note that operation rshiftk may return an even number. Hence, one of X or Y can be an even
number. If this is the case, either X ←rshiftk(X) or Y ←rshiftk(Y ) is executed until both of
them are odd. Hence, both X and Y are odd, whenever rshiftk(X − Y ) is executed. Thus, the
argument of rshiftk is always even and the least significant bit is 0 when it is executed.

Table 1 shows the average number of iterations of the do-while loop 1024-bit RSA moduli for each
values of k of rshiftk. Note that k = ∞ corresponds to Fast Binary Euclidean algorithm, which
performs rshift function that removes all consecutive 0 bits. Clearly, the number of iterations
is smaller for large k. In the preliminary version of this paper [20], we have implemented a barrel
shifter using CLBs (Configurable Logic Blocks) to compute rshiftk. To balance the computing time
and the used hardware resources, we have selected k = 4. Since the CLBs are costly to compute
rshiftk for larger k, we use a multiplier embedded in DSP slice to compute rshiftk for k = 17.
Hence, we can reduce the number of CLBs and implement more GCD processor cores in an FPGA.
Since the subtraction of two very large numbers X and Y returning a result which has more than 17
consecutive 0 bits from the least significant bit is a very rare case, rshift17 of our implementation
and ideal rshiftk(k =∞) of the Fast Binary Euclidean algorithm has almost the same number of
iterations as shown in the table. Also, the number of iterations of k = 17 is less than that of k = 4.

Table 1: The average number of iterations of the do-while loop for 1024-bit RSA moduli
Hardware Binary Euclidean Fast Binary

k 1 2 3 4 5 6 7 8 17 Euclidean
iterations 1445.8 964.3 827.0 772.0 747.1 735.3 729.7 726.8 724.0 723.9

3 A GCD processor core for large integers

This section shows a GCD processor core, which computes the GCD of two very large numbers
based on the Hardware Binary Euclidean algorithm. Our GCD processor uses only one 18k-bit
block RAM and one DSP slice in the FPGA. The 18k-bit block RAM is configured as a simple dual-
port memory [2] with ports A and B of width 36 bits and 18 bits, respectively. Figure 2 illustrate
the configuration of the 18k-bit block RAM used in our GCD processor core. Two large numbers
X and Y of Hardware Binary Euclidean algorithm are stored as 18-bit words. If each of them has
1024 bits, it is stored in ⌈ 102418 ⌉ = 57 words. Let X56X55 · · ·X0 denote 57 words representing X such

that X =
∑56

i=0 Xi · 2
18i holds. Similarly, let Y56Y55 · · ·Y0 denote the words representing Y . Since

the operations rshift17(X−Y ) and rshift17(Y −X) of Hardware Binary Euclidean algorithm are
executed for computing the GCD of X and Y , we want to read X and Y simultaneously. Hence,
port A of the block RAM is configured as read-only 36-bit mode. On the other hand, since the result
of operation rshift17(X − Y ) (or rshift17(Y −X)) is overwritten to one of X or Y , the port B is
configured as write-only 18-bit mode.

Reading: Since port A of the block RAM is configured as read-only 36-bit mode, the block RAM
is a 512×36-bit memory for port A. We can read 36-bit data XiYi(0 ≤ i ≤ 56) from address i using
port A for performing the operation rshift17(X − Y ) (or rshift17(Y −X)).

Writing: Since port B is configured as write-only 18-bit mode, the block RAM is a 1024×18-bit
memory for port B. We can write 18-bit dataXi in address 2i or and Yi in address 2i+1 (0 ≤ i ≤ 56)
using port B. In other words, the result of rshift17(X − Y ) (or rshift17(Y −X) ) can be over-
witten to X (or Y ).

424



International Journal of Networking and Computing

DOA

9

18

10

DIA

ADDRA

DIB

ADDRB

CLKA

WEB

CLKB

36

36

18k-bit block RAM

A

B

X0

X1

X2

X3

X4

0

1

2

3

4

Y0

Y1

Y2

Y3

Y4

36 bits

X0

Y0

X1

Y2

X3

0

1

2

3

4

18 bits

address of port A address of port B

Figure 2: A 18k-bit block RAM and the memory configuration

in

18k-bit block RAM

X

Y

B

Pre-adder

M

ALU

PATTERN

C

(X − Y ) ×B ± 1

P

P ′

out

B

PATTERNDETECT

DSP slice

CIN

∼ P [47]

P [47]

D

A
Multiplier

CARRYIN 1 or 0

217−n

0

−1

Figure 3: The architecture of a GCD processor

The DSP slice in our GCD processor core uses a pre-adder, a multiplier and a three input ALU
(Arithmetic Logic Unit) as illustrated in Figure 3. Suppose that X ≥ Y holds. We briefly show how
to use the DSP slice for executing the operation rshift17(X−Y ) of Hardware Binary Euclidean al-
gorithm. The 36-bit data XiYi(0 ≤ i ≤ 56) is read from the block RAM one by one, and is connected
to the pre-adder of DSP slice. The operationX−Y needs to be executed from the least significant bit
of large numbers X and Y . Thus, the pre-adder is used to compute Xi−Yi for each 36-bit data XiYi

one by one from X0Y0. Since Xi−Yi is computed one by one, if X0−Y0 < 0 holds, we need to borrow
from the higher bit which is in the next word X1−Y1. In other words, X1−Y1− 1 needs to be com-
puted for 36-bit data X1Y1, and we call −1 borrow. Let b0 denote the borrow from X0− Y0, and let
bi(1 ≤ i ≤ 55) denote the borrow from Xi−Yi−bi−1. We note that X0−Y0 needs to be computed for
X0Y0, and Xi−Yi− bi−1 needs to be computed for XiYi(1 ≤ i ≤ 56). However, we can not compute
the borrow using the pre-adder because it has only two input ports. Thus, we first perform the shift
operation to remove the consecutive 0 bits from the least significant bit using the multiplier. The
multiplier performs the operation (Xi − Yi)× 217−n for each Xi − Yi(0 ≤ i ≤ 56) one by one, where
n(1 ≤ n ≤ 17) is the number of consecutive 0 bits from the least significant bit of X − Y . If X − Y
has more than 17 consecutive 0 bits from the least significant bit, n has the value 17. For example,
if X0 − Y0 = (11, 0010, 1000, 0000, 0000), that is, X − Y has 11 consecutive 0 bits from the least
significant bit. The multiplier computes (X0 − Y0) × 217−11 = (1100, 1010, 0000, 0000, 0000, 0000).
We note that the 11 bits consecutive 0 bits are on the right of the 17-th bit of (X0 − Y0) × 26.
For other n(1 ≤ n ≤ 17), the n bits consecutive 0 bits are also on the right of the 17-th bit of
(X0 − Y0) × 217−n. We use this feature to remove the consecutive 0 bits in the following. Next,
since we suppose that X ≥ Y holds, ALU computes (Xi − Yi)× 217−n − bi−1. Otherwise, if X < Y
holds, ALU can also compute −(Xi − Yi) × 217−n − bi−1 = (Yi − Xi) × 217−n − bi−1. In other

425



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

words, the computation of (X − Y ) and (Y − X) can be switched dynamically by controlling the
behavior of ALU, and the borrow is computed after the shift operation using the ALU. For example,
suppose that X ≥ Y and X0 < Y0 hold, and X0 − Y0 = (11, 0010, 1000, 0000, 0000). The multiplier
computes (X0 − Y0)× 217−11 = (1100, 1010, 0000, 0000, 0000, 0000), where the 11 consecutive 0 bits
are all on the right of the 17-th bit of (X0 − Y0) × 26 as we shown above. Then, ALU outputs
(X0 − Y0)× 26 as it is. To remove 11 consecutive 0 bits from the least significant bit of X − Y , we
retain the higher 18 − 11 = 7 bits from the 17-th bit of (X0 − Y0) × 26, which is (110,0101). On
the other hand, suppose that X1 − Y1 = (01, 1011, 0100, 1011, 0100), the multiplier also computes
(X1 − Y1) × 26 = (0110, 1101, 0010, 1101, 0000, 0000). Since there is a borrow from X0 − Y0, ALU
computes (X1 − Y1) × 26 − 1 = (0110, 1101, 0010, 1100, 1111, 1111). We note that the higher 18
bits of (X1 − Y1) × 26 − 1 is equal to X1 − Y1 − 1. Since only 7 bits of X0 − Y0 are retained, we
need to pick up 11 bits from the least significant bit of X1 − Y1 − 1 to restructure the first 18-bit
word of rshift17(X − Y ). Hence, we pick up 11 consecutive bits on the right of the 17-th bit of
(X1 − Y1)× 26 − 1, which is (100,1011,0011). Then, we concatenate 11 bits data (100,1011,0011) of
X1−Y1− 1 with 7 bits data (110,0101) of X0−Y0 to restructure the first word of rshift17(X−Y ),
which is (10,0101,1001,1110,0101). Also, the other words of rshift17(X − Y ) can be obtained in
the same way. The configuration of DSP slice is described as follows:

Pre-adder: The pre-adder of DSP slice has 25-bit port D and 30-bit port A. The 36-bit output of
the block RAM are connected to the pre-adder via a pipeline register. X is given to port D, and Y
is given to port A. The remaining bits of the ports are padded with 0. The pre-adder of DSP slice
can compute D − A, A and D by controlling its behavior, in other words, the pre-adder outputs
X − Y , Y or X optionally. For example, to perform the operation X − Y , the subtraction Xi − Yi

is performed for each 36-bit data XiYi one by one, and the output of pre-adder is connected to the
multiplier.

Multiplier: The embedded multiplier has two input ports, where one accepts an 18-bit two’s
complement operand from port B via a pipeline register, the other one accepts an 25-bit two’s
complement operand from the pre-adder via a pipeline register. We use the multiplier to perform
the multiplication between the result of pre-adder and value of port B, where B has the value
2k(0 ≤ k ≤ 17) in our implementation. Thus, the operations (Xi− Yi)×B, Xi×B, and Yi ×B can
be executed using multiplier. In other words, shift operation can be executed for X − Y , X , and Y .
Hence, we do not need a barrel shifter which is used in the preliminary version of this paper [20].
The output of multiplier is connected to ALU(Arithmetic logic unit) via a pipeline register M as
shown in the Figure 3.

ALU: The ALU (Arithmetic Logic Unit) has three input ports, that are connected to register M ,
input port C of DSP slice, and port CIN , respectively. The most significant bit of register P , the
negation of the most significant bit of register P and port CARRY IN are connected to port CIN
of ALU. Port CIN can select one of the three values by controlling its behavior. The ALU can
performs several operations such as M +C+CIN and −M −C−CIN − 1. In our implementation,
C is configured as the value −1. Since M is connected to the output of multiplier, we can control
the behavior of the ALU dynamically for computing (Xi − Yi)×B +CIN − 1 if X ≥ Y holds, and
computing −(Xi − Yi)×B − CIN = (Yi −Xi)×B − CIN if X < Y holds, where CIN is used as
the borrow corresponding to the subtraction of previous 36-bit data Xi−1Yi−1. In the preliminary
verison of this paper [20], to dynamically compute X−Y and Y −X , we exploit two multiplexers by
configuring connecting both X and Y , where the multiplexers is implemented using logic resources
of FPGA. Hence, the used FPGA resources of GCD processor core proposed in this paper has de-
creased. The value computed by ALU is then connected to register P .

Pattern detector: The pattern detector can determine that the value of register P matches a
pattern or not, as qualified by a mask. The mask is used as enable signals for pattern detector.
More specifically, if a certain bit of mask is set to “0”, the corresponding bit of PATTERN and P
is compared. Otherwise, the comparison of the corresponding bits is not performed. The value of

426



International Journal of Networking and Computing

port PATTERN is configured as 0.

Using the block RAM and the functionality of DSP slice, we can perform Hardware Binary Eu-
clidean algorithm without fabric barrel shifter and multiplexers that are used in the preliminary
verison of this paper. We show how each operation in Hardware Binary Euclidean algorithm can be
performed. Let x1023x1022 · · ·x0 denote 1024 bits representing X such that x17x16 · · ·x0 represents
X0. Similarly, let y1023y1022 · · · y0 denote 1024 bits representing Y such that y17y16 · · · y0 represents
Y0.

X is even: The number X is write to the block RAM word by word. Thus, the condition can be
determined by reading the least significant bit of X0 when X is input into the block RAM.

X0

X56

Pre-adder Multiplier ALU

X1

X2

X

0 B = 217−n

Xi × B

Xi

MSB LSB

n consecutive

0 bits

Xi

P

17-th bit

DSP slice

X0

X1

X2

X55

P

Z1

Z1

Z0

X55
· · ·

Z55

X56

Z56

0

n consecutive

0 bits

are removed

18-bit

18-bit

Figure 4: The outline of rshift17(X)

X ← rshift17(X): If X is even, function rshift17(X) is executed to remove the consecutive 0
bits from the least significant bit of X . Suppose that we need to compute Z=rshift17(X). Let
Z56Z55 · · ·Z0 denote 57 words representing Z and show how rshift17(X) is computed as the flow
shown in Figure 4. All words of X are sequentially read from the block RAM beginning with X0 and
then processed one by one in a pipelined order. Xi(0 ≤ i ≤ 56) is given to the pre-adder of DSP slice.
The pre-adder outputs Xi as it is. Also, we must obtain the number of consecutive 0 bits from the
least significant bit of X0 to execute shift operation using the multiplier. Let δ = δ17δ16 · · · δ0 denote
the result of logic prefix-or operation of X0. The operation δi ← xi ∨ δi−1(1 ≤ i ≤ 17) is performed,
where δ0 = x0 = 0 since X is even. For example, suppose that X0 = (11, 0010, 1011, 1011, 0000),
where the number n of consecutive 0 bits of X is 4. We have δ = (11, 1111, 1111, 1111, 0000).
Note that except the consecutive 0 bits from the least significant bit, the other bits all have the
value 1. Let λ = λ17λ16 · · ·λ0 denote the result of exclusive-or operation of δ. The operation

427



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

λi ← δi ⊕ δi−1(1 ≤ i ≤ 17) is performed, where λ0 = δ0 = 0 holds. For the δ shown above,
λ = (00, 0000, 0000, 0001, 0000) holds. The only one bit that has the value 1 indicates that there are
4 consecutive 0 bits from the least significant bit of X0. Then, the inverse of λ which has the value
(00, 0010, 0000, 0000, 0000), is configured as the value of port B to perform shift operation using the
multiplier of DSP slice. We note that if X has n(0 < n ≤ 17) consecutive 0 bits, the value of B
will be 217−n. Otherwise, B = 20 holds. In the case of executing operation X ← rshift17(X),
pre-adder directly outputs X0 to the multiplier. The product of X0 × 217−n is then computed by
the multiplier. Similarly, for other words of X , Xi × 217−n(1 < i ≤ 56) are also computed one
by one in the same way. We note that the consecutive 0 bits of X0 are always on the right of
17-th bit from the least significant bit of X0 × 217−n. In the example above, since n = 4 holds,
X0 × 217−4 = (110, 0101, 0111, 0110, 0000, 0000, 0000, 0000), where the 4 consecutive 0 bits from the
least significant bit of X0 are all on the right of 17-th bit of X0×213. The resulting value of X0×213

is then transferred to ALU via register M . The ALU outputs M + C + CIN , where port C is
configured as a constant -1. CIN is used as borrow of subtraction of X −Y which is not needed for
executing rshift17(X), thus CIN is set to 1. Therefore, ALU outputs the resulting value X0× 213

to register P . We then retain higher 18−4 = 14 bits from 17-th bit of P , that is (11,0010,1011,1011).
In other words, the 4 consecutive 0 bits from the least significant bit of X0 are removed. Since 4
consecutive 0 bits are removed from X0, we must pick n bits from its next word X1 of X to restruc-
ture the new word Z0 of Z = rshift17(X). Suppose that X1 = (01, 1101, 0010, 0011, 1011), the
same operation is performed for X1, and X1× 217−4 = (011, 1010, 0100, 0111, 0110, 0000, 0000, 0000)
will be stored in register P in the next clock cycle since the architecture is pipelined. Similarly, 4
bits from the least significant bit of X1 are also on the right of 17-th bit of P . Thus, we can easily
pick 4 bits from the least significant bit of X1 that are store on the right of 17-th bit of P , and then
concatente with retained 14 bits of X0 to restruct the new word Z0 = (10, 1111, 0010, 1011, 1011) of
Z = rshift17(X). As shown in Figure 4, since X56X55 · · ·X0 are input one by one, Z56Z55 · · ·Z0

can be computed one by one and then transferred to the block RAM to overwrite the old X . We
say that X ← rshift17(X) is executed such that n consecutive 0 bits from the least significant bit
of X are removed. If input X has more than 17 consecutive 0 bits from the least significant bit, the
function rshift17(X) is repeated until X is odd. Also, if input Y is even, the same operation is
performed for Y .

X ≥ Y : The condition X ≥ Y can be determined by comparing X and Y from the most significant
bit. More specifically, X and Y are compared from the words X56 and Y56. The words X56Y56 are
read from the block RAM concurrently, then are connected to port D and A of DSP slice, respec-
tively. We always assume that X ≥ Y holds, thus, the pre-adder computes X56 − Y56 , and the
resulting value is input to multiplier. The port B is configured as 217 in this case. Thus, multiplier
computes (X56 − Y56)× 217. However, since B is 18-bit two’s complement, the most significant bit
of B is sign bit. Hence, if B = 217, the operation (X56 − Y56) × (−217) is computed by multiplier,
and the resulting value is then transferred to ALU. The ALU outputs the value to register P as
it is. Clearly, the value of X56 − Y56 is left shifted by 17 bits, and is stored in register P from
34-th bit to 17-th bit. If X56 > Y56 holds, the most significant bit of P have the value 1 since
(X56− Y56)× (−217) is computed by the multiplier. We determine the condition X ≥ Y if the most
significant bit P [47] of P has the value 0. However, the value X56−Y56 may be 0 if X56 = Y56 holds.
Thus, we use the pattern detector to determine that 18 bits in P [34:17] of register P are all 0 or
not. If X56 = Y56, P [34 : 17] = 0 holds and the detector outputs the value 1. We need to compare
the next words X55Y55 to determine the condition X ≥ Y . It takes 3 clock cycles to determine the
condition X56 = Y56 from the words X56Y56 are input to the DSP slice, because three-stage pipeline
registers are used as shown in Figure 3. And in most of cases, we can determine the condition X ≥ Y
by comparing the words X56Y56. Hence, we start to execute the operation rshift17(X − Y ) one
clock cycle after the words X56Y56 are input to DSP slice. More specifically, we start the execution
of rshift17(X − Y ) from words X0Y0 without waiting the determination of the condition X ≥ Y ,
which we will show in operation X ← rshift17(X − Y ). If X56 = Y56 is determined after 3 clock
cycles, we terminate the execution of rshift17(X − Y ), and restart to compare the next words
X55Y55 to determine the condition X ≥ Y .

428



International Journal of Networking and Computing

X0

X56

X1

X2

X

X55

18-bit

Y0

Y56

Y1

Y2

Y55

18-bit

Pre-adder Multiplier ALU

B = 217−n

(Xi − Yi) × B

Xi − Yi

MSB LSB

P

17-th bit

DSP slice

18-bitXi

Yi

Xi − Yi − bi−1

X0 − Y0 − 0

Z0

X1 − Y1 − b0

Z1

X2 − Y2 − b1

Z2

X55 − Y55 − b54

Z55

X56 − Y56 − b55

Z56

0

b0

b1

b2

b3

b56

bi

borrow

n consecutive
0 bits

are removed

Y

P

Figure 5: The outline of rshift17(X − Y )

X ←rshift17(X−Y ): Suppose that we need to compute Z = rshift17(X−Y ). Let Z56Z55 · · ·Z0

denote 57 words representing Z. As mentioned above, if we execute the function rshift17(X − Y )
after the condition X ≥ Y is determined which takes 3 clock cycles, that is, any operation can be
performed in 3 clock cycles for each iteration of do-while loop of the Hardware Binary Euclidean
algorithm. Fortunately, we do not need to wait for the determination of the condition X ≥ Y . In
our implementation, all words of X and Y are read from the block RAM one by one beginning
with X0Y0, one clock cycle after X56Y56 are read from the block RAM to determine the condi-
tion of X ≥ Y . Thus, X0 − Y0 is computed by pre-adder since we assume that X ≥ Y always
holds. The resulting value of X0 − Y0 is input to the multiplier, then (X0 − Y0)×2

17−n is com-
puted by the multiplier, where n is the number of consecutive 0 bits from the least significant bit
of X − Y . Since determination of the condition X ≥ Y is executed one clock cycle earlier than
function rshift17(X − Y ), we can dynamically control the behavior of the ALU depending on the
determination of the condition X ≥ Y . More specifically, the result of X56 − Y56 is obtained one
clock cycle earlier than (X0 − Y0) × 217−n is accepted by ALU. Hence, if X56 > Y56 holds, we
control the behavior of ALU to compute (X0 − Y0) × 217−n + CIN − 1. If X56 < Y56 is deter-
mined, −(X0 − Y0)× 217−n−CIN is computed by the ALU. The selection of CIN depends on the
borrow of subtraction of words XiYi(0 ≤ i ≤ 56), and we can also dynamically select the value of
CIN by controlling its behavior. For example, if X ≥ Y holds, we select CIN as 1 to compute
(X0 − Y0) × 217−n + 1 − 1 = (X0 − Y0) × 217−n. If X < Y holds, we select CIN as 0 to compute
−(X0 − Y0) × 217−n. Then, the result of the ALU is stored to register P . Hence, by checking
the most significant bit P [47] of register P , we can obtain the borrow of the subtraction X0 − Y0.
Suppose that X ≥ Y is determined. If X0 ≥ Y0, P [47] = 0 holds, otherwise, P [47] = 1 holds.

429



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

In the same way, (X1 − Y1) × 217−n + CIN − 1 is computed by ALU in the next clock cycle, We
select the value of CIN as the negation of P [47] as the borrow from X0 − Y0. Thus, if X0 ≥ Y0,
(X1−Y1)×217−n+1−1 = (X1−Y1)×2 is computed. Otherwise, (X1−Y1)×217−n−1 is computed.
Next, we briefly show how to obtain the word Z0 of Z = rshift17(X − Y ) is computed as shown
in Figure 5. Suppose that X0 ≥ Y0 holds. Since the result of X0 − Y0 is shifted by 17− n bits and
stored in P , the n consecutive 0 bits from the least significant bit of X0 − Y0 are on the right of
17-th bit of P . Hence, we retain 18 − n bits on the left of 17-th bit of P to store in a register. In
other words, the n consecutive 0 bits from the least significant bit of X0 − Y0 stored on the right of
17-th bit of P are removed. Also, X1 − Y1 is shifted by 17− n bits and stored in P . Similarly, the
n bits from the least significant bit of X1 − Y1 are stored on the right of 17-th bit of P . Then, we
can easily pick up n bits from the least significant bit of X1 − Y1 to concatente with higher 18− n
bits of X0 − Y0 to restruct the new word Z0 as shown in Figure 5. The same operation is executed
for all words XiYi(0 ≤ i ≤ 56) in a pipelined order. Hence, the words Z56Z55 · · ·Z0 can be obtained
one by one and are then written back to the block RAM to overwrite the old X .

X 6= 0: We use a register to store the current number of bits of X . If operation X ← rshift17(X)
or X ← rshift17(X − Y ) is executed, we rewrite the value of this register. We determine the
condition X 6= 0 if the number of bits of X is not 0.

Let us briefly confirm that the GCD processor core can execute Hardware Binary Euclidean
algorithm. By controlling the behavior of pre-adder, multiplier and ALU of DSP slice, we can
compute rshift17(X − Y ), rshift17(Y −X), rshift17(X) and rshift17(Y ) without multiplexers
and barrel shifter that use resources of FPGA. The resulting value can be written to the block RAM
to overwrite X or Y . The conditions “X is even” and “Y is even” can be determined when X0 and
Y0 are written in the block RAM. The condition “X ≥ Y ” can be determined by checking X and Y
from the MSB (Most Significant Bit). More specifically, if X56 > Y56 holds, “X ≥ Y ” is determined.
We execute the rshift17(X − Y ) without waiting the determination of the condition “X ≥ Y ”,
because the condition “X ≥ Y ” can be determined by comparing the words X56 and Y56 in most of
the cases. However, if X56 = Y56, we terminate the execution of rshift17(X − Y ), and then read
and compare X55 with Y55. During the computation of Hardware Binary Euclidean algorithm, the
number of bits of X and Y is decreased. For example, if X56 and Y56 both decrease to 0, the next
iteration of the do-while loop of Hardware Binary Euclidean algorithm is only performed for words
XiYi(0 ≤ i < 56). We use registers to store the current numbers of bits of X and Y . If the number
of bits is 0, we terminate the algorithm.

4 Implementation of Hierachical GCD cluster with DDR3

Memory

This section shows a hierarchical parallel architecture based on the hierarchical GCD cluster [20]
using an off-chip DDR3 memory equipped in Xilinx VC707 evaluation board [19]. The proposed
GCD processor core is compactly designed based on the FDFM approach. We use only one DSP slice,
one block RAM and a few CLBs to implement the processor core. Therefore, single proposed FDFM
GCD processor core is clocked at high frenquency and provides high performance that we show in
the next section. On the other hand, by employing multiple proposed FDFM GCD processors, the
computing time reduces considerably. Since the proposed GCD processor is designed based on the
FDFM approach and uses very few FPGA resources, we have succeeded in implementing more than
one thousand proposed GCD processor cores working in parallel in the FPGA, thus, it makes sense
to use multiple servers. Each server controls more than one hundred GCD processor cores. The
hierarchical GCD cluster consists of multiple GCD clusters, each of which involves multiple GCD
processor cores as illustrated in Figure 6. A single central server controls local servers, each of which
maintains GCD processor cores in the same GCD cluster.

We show how the hierarchical GCD cluster is used to execute pairwise GCD computation for
RSA moduli. The DDR3 memory consists of 8 banks. Each bank has a memory array that can

430



International Journal of Networking and Computing

be used to store lots of moduli. Suppose that we have a lot of moduli collected from the Web and
all moduli are divided into two sets. We store two sets of moduli to two different banks of DDR3
memory for simplifying the address/control circuit. Our goal is to compute all pairs of moduli using
the hierarchical GCD cluster in an FPGA. For this purpose, we partition all moduli of each set into
groups with m moduli each. FPGA picks one group from each set and sends them to the central
server, respectively. Let N = {n0, n1, . . . nm−1} and N ′ = {n′

0, n
′

1, . . . n
′

m−1} denote two groups of
m moduli each that the central server in the FPGA has received. The hierarchical GCD cluster
computes gcd(ni, n

′

j) for all pairs of i and j (0 ≤ i, j ≤ m− 1), and reports the GCDs larger than 1.
Next, we will show how the hierarchical GCD cluster computes the GCDs of N and N ′ using

GCD clusters. Each group of m moduli is partitioned into b blocks of k moduli each, where m = bk.
Let Ni = {nik, nik+1, . . . , n(i+1)k−1} and N ′

i = {n′

ik, n
′

ik+1, . . . , n
′

(i+1)k−1} (0 ≤ i ≤ b − 1) be two

sets of k moduli in the i-th groups of sets N and N ′, respectively. Each cluster is assigned a task
to compute the GCDs of all pairs X (∈ Ni) and Y (∈ N ′

j) for a pair i and j (0 ≤ i, j ≤ b − 1).
For this purpose, all moduli in Ni and in N ′

j are copied from the block RAM in the central server
to that in the local server of a GCD cluster. After the local server receives all moduli, the cluster
starts computing the GCDs of all pairs X (∈ Ni) and Y (∈ N ′

j). The local server then picks a
pair X and Y and copies them to the block RAM of a GCD processor. Upon completion of the
copy, the GCD processor starts computing the GCD of X and Y by the Hardware Binary Euclidean
algorithm. This procedure is repeated for all GCD processors. If a GCD processor terminates the
GCD computation, the local server sends a new pair to it. In this way, the GCDs of all pairs in Ni

and N ′

j are computed by a GCD cluster. When a GCD cluster completes the computation of all
GCDs of a given pair of two groups, the central server picks a new pair i and j and sends all moduli
in Ni and in N ′

j to the local server. The same operation is repeated until the GCDs of all pairs N
and N ′ are computed.

block

RAMs

block

RAM

GCD
processor

GCD cluster

cluster
server

central
server

off-chip DDR3 memory

FPGA

block

RAMs

block

RAM

block

RAM

GCD
processor

GCD
processor

GCD cluster GCD cluster GCD cluster

Figure 6: The architecture of the Hierarchical GCD cluster

5 Implementation results in the FPGA

We have implemented a GCD processor core for computing the GCD of 1024-bit, 2048-bit, 4096-bit,
and 8192-bit integers in Xilinx Virtex-7 XC7VX485T-2. Table 2 shows the implementation results.

431



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

Slice Registers and Slice LUTs (Look-Up-Tables) are hardware resources in CLB (Configurable
Logic Block) [21], which are used to implement sequential logics. The proposed GCD processor
is compactly designed based on FDFM approach. More specifically, we use only one DSP slice to
perform subtraction and shift operation for very large numbers and use one block RAM to store
the computed result instead of using lots of CLBs. Therefore, the proposed FDFM GCD processor
is clocked at over 380MHz and provides a high performance. Calculated simply, single proposed
FDFM GCD processor core computes one GCD of two 1024-bit, 2048-bit, 4096-bit and 8192-bit
moduli in expected 73.12µs, 253.35µs, 915.78µs and 3614.91µs.

Recall that we control the behavior of the embedded ALU of the DSP slice to perform X − Y
or Y −X dynamically instead of two multiplexers used in our previous work [20]. Also, we use the
embedded multiplier of the DSP slice to perform the shift operation instead of the barrel shifter
used in our previous work, where the barrel shifter uses a lot of FPGA logic resources. Since these
mechanisms simplify the circuit of the proposed processor, the frequency of the proposed FDFM
processor is over 380MHz that is higher than that of the implementation of our previous work.

Table 2: Implementation results of one GCD processor for 1024-bit, 2048-bit, 4096-bit, and 8192-bit
moduli

Slice Slice DSP 18k-bit block Clock cycles Clock
Registers LUTs slices RAMs for computing Frequency

Available 607200 303600 2800 2060 one GCD (MHz)
1024-bit 179 163 1 1 28006.1 383.00
2048-bit 185 174 1 1 98198.5 387.60
4096-bit 191 178 1 1 359131.4 392.16
8192-bit 197 188 1 1 1381328.5 382.12

First, the simulation of pairwise GCD computation for 1024-bit RSA moduli without DDR3
memory is performed. In our implementation, a GCD cluster with a local cluster with eight 18k-
bit block RAMs and 128 GCD processor cores are used. Since four 18k-bit block RAMs can store
⌊ 4·102457 ⌋ = 71 moduli with 1024 bits, each GCD cluster computes the GCDs of 71 × 71 = 5041
pairs of blocks stored in block RAMs. Hence, each GCD processor computes the GCDs for expected
5041
128 = 39.4 pairs of 1024-bit moduli. Also we arranged 64 block RAMs to the central server.
Since a block of moduli is stored in four block RAMs, we can think that the central server has
8× 8 = 64 pairs of blocks. Thus, each cluster computes the GCDs for moduli in expected 64

14 = 4.5
pairs of blocks since we have succeeded in implementing 14 clusters in an FPGA. Table 3 shows
the implementation results of clusters of our work. Since a cluster server uses eight 18k-bit block
RAMs, each GCD cluster with 128 GCD processors involves 128 + 8 = 136 block RAMs. In this
paper, the implementation of the hierarchical GCD cluster with 14 GCD clusters and the central
server, uses 14 · 128 = 1792 DSP slices and 14 · 136 + 64 = 1968 block RAMs. Due to the overhead
for the connection between the central server and GCD clusters, the clock frequency is decreased to
207.04MHz. The used block RAMs of the implementation with 14 clusters are close to the available
number. Since the proposed GCD processor core is compactly designed, the number of processor
cores in our implementation is more than that of the preliminary verison of this paper [20].

Table 3: Implementation results of the GCD cluster and the hierarchical GCD cluster for 1024-bit
moduli

Slice Slice DSP 18kb block Clock
Registers LUTs slices RAMs Frequency

Available 607200 303600 2800 2060 (MHz)
one cluster 23414 20598 128 136 327.87

hierarchical clusters 325987 272127 1792 1968 207.04

We have evaluated the number of clock cycles to compute all GCDs of 71 × 71 = 5041 pairs

432



International Journal of Networking and Computing

of 1024-bit moduli by one GCD cluster. For this purpose, we have used RSA moduli generated
by OpenSSL Toolkit. By performing the simulation, one cluster with 128 processors takes 1157789
clock cycles to compute the GCDs of 5041 pairs. If a GCD cluster is clocked at 207.04MHz as shown
in Table 3, the expected computing time is 1157789/207.04MHz = 5.592ms. Also, it takes about
71 × 2 × 57 = 8094 clock cycles to transfer a pair of two blocks involving 71 moduli each and this
overhead is negligible. Since up to 14 clusters can be implemented theoretically, we can expect that
the GCDs of 5041 × 14 = 70574 pairs can be computed in the same time. Therefore, we say that
one GCD can be computed in expected 5.592ms/70574 = 0.0792µs.

Table 4: Implementation results of hierarchical GCD clusters for 1024-bit, 2048-bit, 4096-bit, and
8192-bit moduli

Slice Slice DSP 18kb block Clock Average Number
Registers LUTs slices RAMs Frequency Time of

Available 607200 303600 2800 2060 (MHz) (µs) clusters
1024-bit 235486 206955 1280 1424 250.00 0.0904 10
2048-bit 220697 204460 1152 1424 250.00 0.3422 9
4096-bit 230636 213670 1152 1568 250.00 1.2537 9
8192-bit 244621 226521 1152 1568 250.00 4.7895 9

Next, for measuring the performance of GCD computation accurately, we implement the hierar-
chical GCD cluster to compute all pairs of moduli stored in an off-chip DDR3 memory MT8JTF12864HZ-
1G6G1 [22] equipped in VC707 evaluation board [19]. Unfortunately, if the used resources of FPGA
is close to the available number, the circuit of FPGA becomes unstable and can not compute the
results correctly when it is actually operated in the evaluation board. According to the experimental
results, 10 clusters can be implemented in the FPGA clocked at 250MHz for pairwise GCD com-
putation of 1024-bit RSA moduli. In other words, 1280 GCD processor cores can be implemented
in FPGA XC7VX485T-2 equipped in VC707 evaluation board, and works in parallel to compute
GCDs of all pairs of 1024-bit RSA moduli stored in the off-chip DDR3 memory.

We use the built-in CORE Generator software of Xilinx Vivado design suite 2015.1 to generate
a DDR3 memory interface core in the FPGA to control the write and read operations of the DDR3
memory. The DDR3 memory consists of 8 banks. Each bank has a 214 × 210 memory array, of
which each element has 64-bit. In other words, each bank of the DDR3 memory can store up
to (214 × 210 × 64bits)/1024bits = 1048576 1024-bit RSA moduli. The DDR3 memory runs in
500MHz that is 2 times faster than the FPGA. Moreover, the DDR3 memory offers high-speed data
transfers on the rising and falling edges of the clock of it. Hence, the DDR3 memory can perform
500MHz/250MHz× 2 = 4 times write or read operations in one clock cycle of the FPGA. Hence, we
can read 4 × 64bits = 256bits data from DDR3 memory in one clock cycle of the FPGA. Suppose
that we have a lot of 1024-bit RSA moduli collected from the Web, we divide all moduli into two
sets and store them to two different banks of the DDR3 memory. We partition all moduli of each
set into groups with 71 × 8 = 568 moduli each. FPGA picks one group from each set and sends
them to the central server, respectively. More specifically, we send read commands to the DDR3
memory interface core for reading a 1024-bit modulus. Then, the interface core performs the read
operation of the DDR3 memory and the modulus is transferred to FPGA after a few clock cycles.
The obtained 1024-bit modulus is then stored to the block RAMs of central server as 18-bit words
in 57 clock cycles, and we read the next 1024-bit modulus at the same time. The same operation is
repeated until two groups of 568 moduli are stored in the central server. Moreover, the interface core
processes a refresh operation to maintain the data of the DDR3 memory in refresh interval, and other
operations of DDR3 memory must wait for the refresh operation. By implementing the hierachical
GCD cluster with 1280 processor cores in the FPGA, we have that it takes 7294417 clock cycles
compute the GCDs of 568× 568 = 322624 pairs, where 71646 clock cycles for transferring 568 × 2
1024-bit moduli from DDR3 memory to the central server of the FPGA is included. Comparing with
the total clock cycles for computing the GCDs of 322624 pairs of 1024-bit moduli, the clock cycles for
transferring moduli from DDR3 memory to central server is negligible. Moreover, after all moduli of
central server are transferred to the clusters, we can read the next two groups with 568 moduli each

433



Efficient Implementation of FDFM Approach for Euclidean Algo rithms on the FPGA

from DDR3 memory while the GCD computation of the clusters is still being performed. In other
words, the operation of transferring moduli from DDR3 memory to central server can be overlapped.
Hence, we note that the transfer time is not significant. Since the hierachical GCD cluster runs in
250MHz, the computing time is 7294417/250MHz = 29.178ms. Therefore, we say that one GCD can
be computed in 29.178ms/322624 = 0.0904µs. For performing pairwise GCD computation of 2048-
bit, 4096-bit, and 8192-bit moduli, we have succeeded in implementing the hierachical GCD cluster
that has 9 clusters in the FPGA, where the frequency of FPGA is also 250MHz. The implementation
results of hierarchical clusters and computing time for one GCD of 1024-bit, 2048-bit, 4096-bit, and
8192-bit moduli is also shown in Table 4. The hierarchical GCD cluster is designed based on FDFM
GCD processors that are compact and use very few FPGA resources. One of the advantage of the
FDFM approach is that we can implement multiple FDFM processors working in parallel to reduce
the computing time if enough hardware resources are available. Comparing with single FDFM GCD
processor core, the computing time of the hierachical GCD cluster for one GCD reduces considerably
by employing more than one thousand FDFM GCD processor cores.

According to the implementation results as shown in Table 4, the hierachical GCD cluster com-
putes one GCD of two 8192-bit moduli in 4.7895µs, that is 52.98 times slower than the time for
computing one GCD of two 1024-bit moduli. We show the reason of the large difference. Since the
large input numbers are stored in the block RAM as 18-bit words and processed word by word, if
the width of the input numbers increases, the number of iterations of the do-while loop of the Hard-
ware Binary Euclidean algorithm will increase. Also, the clock cycles for performing each iteration
of the do-while loop will increase. Hence, the proposed GCD processor takes more clock cycles for
computing one GCD of larger numbers. For example, as shown in Table 2, single proposed processor
takes 1381328.5 clock cycles for computing one GCD of two 8192-bit moduli, that is 49.32 times
more than that for computing one GCD of two 1024-bit moduli. This is the main reason for the
large difference of the computing time for 1024-bit and 8192-bit moduli. Recall that each 1024-bit
and 8192-bit modulus is stored in the block RAM as 57 and 456 18-bit words, respectively. Hence,
the central server and cluster server take more time for transferring the 8192-bit moduli than that
for 1024-bit moduli. However, since the data transfer is overlapped with the GCD computation,
the transfer time does not significantly affect the large difference of the computing time for 1024-bit
and 8192-bit moduli. Moreover, the number of clusters for 8192-bit moduli is 9, that is less than
that for 1024-bit moduli. Based on the reasons above, one GCD of two 8192-bit moduli is computed
52.98 times slower than one GCD of two 1024-bit moduli in the implementation of hierarchical GCD
cluster.

6 Conclusions

We have presented an efficient processor core for computing GCDs of very large numbers. Since
the processor is designed based on the FDFM approach, each processor core uses only one DSP
slice and one 18k-bit block RAM. We implement the hierarchical GCD cluster with 1280 processor
cores in Xilinx FPGA XC7VX485T-2. The implementation with 1280 processor cores executes
pairwise GCD computation for 1024-bit RSA moduli stored in an off-chip DDR3 memory on Xilinx
VC707 evaluation board. The experimental results shows that our implementation of 1280 GCD
processor cores computes one GCD of two 1024-bit RSA moduli in 0.0904µs including the time of
data transferring from off-chip DDR3 memory to FPGA. It is 3.8 times faster than the best GPU
implementation and 316 times faster than a sequential implementation on the Intel Xeon CPU.

References

[1] Xilinx Inc., 7 Series DSP48E1 Slice User Guide, Nov. 2014.

[2] ——, 7 Series FPGAs Memory Resources User Guide, Nov. 2014.

[3] K. Nakano and E. Takamichi, “An image retrieval system using FPGAs,” IEICE Transactions
on Information and Systems, vol. E86-D, no. 5, pp. 811–818, May 2003.

434



International Journal of Networking and Computing

[4] K. Nakano and Y. Yamagishi, “Hardware n choose k counters with applications to the partial
exhaustive search,” IEICE Transactions on Information and Systems, vol. E88-D, no. 7, 2005.

[5] X. Zhou, Y. Ito, and K. Nakano, “An efficient implementation of the Hough transform using
DSP slices and block RAMs on the FPGA,” in Proc. of IEEE 7th International Symposium on
Embedded Multicore Socs, 2013, pp. 85–90.

[6] Y. Ago, K. Nakano, and Y. Ito, “A classification processor for a support vector machine with
embedded DSP slices and block RAMs in the FPGA,” in Proc. of IEEE 7th International
Symposium on Embedded Multicore Socs (MCSoC), 2013, pp. 91–96.

[7] X. Zhou, Y. Ito, and K. Nakano, “An efficient implementation of the gradient-based Hough
transform using DSP slices and block RAMs on the FPGA,” in Proc. of IEEE International
Parallel and Distributed Processing Symposium Workshops, 2014, pp. 762–770.

[8] K. Hashimoto, Y. Ito, and K. Nakano, “Template matching using DSP slices on the FPGA,”
in Proc. of International Symposium on Computing and Networking, 2013, pp. 338–344.

[9] X. Zhou, Y. Ito, and K. Nakano, “An efficient implementation of the one-dimensional Hough
transform algorithm for circle detection on the FPGA,” in Proc. of International Symposium
on Computing and Networking, 2014, pp. 447–452.

[10] Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation for neural networks with the fdfm
processor core approach,” International Journal of Parallel, Emergent and Distributed Systems,
vol. 28, no. 4, pp. 308–320, 2013.

[11] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120 – 126, 1978.

[12] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, 1997.

[13] R. Devi, J. Singh, and M. Singh, “VHDL implementation of GCD processor with built in self
test feature,” International Journal of Computer Applications, vol. 25, no. 2, pp. 50–54, July
2013.

[14] S. D. Kohale and R. W. Jasutkar, “Power optimization of GCD processor using low power Spar-
tan 6 FPGA family,” International Journal of Conceptions on Electronics and Communication
Engineering, vol. 2, no. 1, pp. 1–6, June 2014.

[15] N. Fujimoto, “High throughput multiple-precision GCD on the CUDA architecture,” in Inter-
national Symposium on Signal Processing and Information Technology, Dec 2009, pp. 507–512.

[16] K. Scharfglass, D. Weng, J. White, and C. Lupo, “Breaking weak 1024-bit RSA keys with
CUDA,” in Internatinal Conference of Breaking weak 1024-bit RSA keys with CUDA, Dec
2012, pp. 207 – 212.

[17] J. R. White, “PARIS: A PARALLEL RSA-PRIME INSPECTION TOOL,” Ph.D. dissertation,
California Polytechnic State University - San Luis Obispo, June 2013.

[18] T. Fujita, K. Nakano, and Y. Ito, “Bulk GCD computation using a GPU to break weak RSA
keys,” in International Parallel and Distributed Processing Symposium Workshops, May 2015.

[19] Xilinx Inc., VC707 Evaluation Board for the Virtex-7 FPGA, Sept. 2015.

[20] X. Zhou, Y. Ito, and K. Nakano, “A parallel FDFM approach for breaking weak RSA keys
using the FPGA,” in Proc. of International Conference on Parallel Processing and Applied
Mathematics, Sept. 2015.

[21] Xilinx Inc., 7 Series FPGAs Configurable Logic Block User Guide, Nov. 2014.

[22] Micron Inc., 1GB, 2GB, 4GB (x64, SR) 204-Pin DDR3 SODIMM, May 2015.

435


