
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 7, Number 1, pages 29–49, January 2017

State space reduction techniques for model checking of MANET protocols

Hideharu Kojima, Yuta Nagashima, Tatsuhiro Tsuchiya

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, 565-0871, Japan

Received: July 25, 2016
Revised: November 28, 2016
Accepted: December 21, 2016

Communicated by Akihiro Fujiwara

Abstract

A Mobile Ad hoc Network (MANET) is a network that consists of mobile nodes and is
autonomously managed without infrastructure base stations such as access points. MANETs
have started being used as part of safety critical applications. A Vehicular Ad hoc Network
(VANET) used in automated driving systems is such an example. In such applications, defects
in the network protocol may cause serious social problems. Model checking, a state search-based
verification technique, has proven to be effective in finding faults in complex system designs,
such as communication protocols. However it is challenging to apply this technique to MANET
protocols, because a MANET can have a number of different network topologies, thus resulting
in the state explosion problem very easily. In this paper we propose a modeling technique to
mitigate this problem using the AODV protocol as a running example. MANET protocols, such
as AODV, typically enforce a source node that wishes to establish a route to the destination
to retry the route establishing process some fixed number of times in face of failures. We show
that to model check the protocol’s behavior in these retries it suffices to consider only the last
trial. The results of experiments using the SPIN model checker show that using the proposed
technique significantly reduced the time and memory usage compared to standard full state
exploration and allowed us to model check the protocol with up to five nodes.

Keywords: MANETs, model checking, state space reduction;

1 Introduction

A Mobile ad hoc network (MANET) is a network that consists of mobile nodes. A collection of
these mobile nodes autonomously manages the MANET without infrastructure base stations, such
as access points. These nodes can move and go away from the communication range of each other;
thus the topology of a MANET varies dynamically. Examples of MANETs include vehicular ad hoc
networks (VANETs). In a VANET an automobile serves as a node. Automated driving systems
are an example of an application of VANETs. As MANETs serve as social infrastructures, their
failures can cause serious social problems. Aiming to prevent failures resulted from design defects
of MANET communication protocols, we focus on the verification of these protocols.

Many MANET routing protocols have been developed so far [7][4]. These protocols are classified
into three groups according to the type of route maintenance. The first group consists of reactive

0This paper is an extended version of [28].

29

State space reduction techniques for model checking of MANET protocols

protocols including AODV [33] and DSR [26]. In a reactive protocol a communication route is
established on demand: The source node, which wishes to send data to another node, tries to
establish a route to the destination node before the data transfer. After the source node finishes
sending the data, the route will be discarded. The second group consists of proactive protocols,
such as OLSR [11] and TBRPF [32], where all nodes keep tracks of routes to other nodes in the
network, while the third groups consists of hybrid protocols which have features of both groups. In
this work we limit our interest to reactive protocols, since the protocols of this type have received
most attention among the three groups.

Model checking is a common method for verifying communication protocols. Mature model
checking tools, such as SPIN [25] and UPPAAL [29], are readily available. These tools can me-
chanically verify whether a given property holds or not by searching all possible states of a target
protocol design. This comprehensiveness is especially useful in the verification of MANET protocols,
because the topology of a MANET can be various and dynamically change. Unlike model checking,
simulations or real device experiments can check only a fraction of the state space.

However, it is challenging applying model checking to MANET protocols as it results in state
space explosion very easily. In this paper we propose a modeling technique to mitigate this problem
in the model checking of reactive MANET protocols. A reactive protocol enforces a source node
which wishes to establish a route to the destination to retry the route establishing process some
fixed number of times in face of failures. We show that to model check the protocol’s behavior in
these retries it suffices to consider only the last trial. This is based on the observations that when
initiating the last trial, the state of a node is of either one of a few possible patterns and that these
patterns subsume those that occur at the previous trials. To show the usefulness of the proposed
technique, we will later show the results of experiments using the SPIN model checker [25].

In this paper we explain our technique for a particular MANET protocol, namely, the AODV
protocol, which is one of the best known reactive protocols. Although applying the technique to
other protocols is left as future work, we believe that this is not difficult because AODV shares
substantial traits with other reactive protocols.

2 Routing Protocol AODV

In this section, we explain AODV on which we focus in this paper. Nodes in a MANET behave as
follows. When a source node communicates with another node, the source node needs to establish
a route to that destination node. To this end, the source node broadcasts a request packet rreq. A
node that received rreq compares its own ID with the destination ID specified by rreq. If the node’s
ID is the destination ID, then the node will send a reply packet rrep to the source node. If not, the
node forwards rreq to its neighbor nodes by broadcasting it.

2.1 Packets

In addition to data packets, AODV uses three types of control packets, namely rreq, rrep, and rrer.
Here we explain rreq and rrep because they are used in establishing a route from a source node
to its destination node. The third kind of packets, rerr, is used to, for example, notify that an
already established route has become unavailable. As the focus of our paper is on verification of
route establishing processes, we do not consider rerr hereafter.
rreq: Route REQuest packet

An rreq is a six-tuple rreq = (src, sndr, dest, seqS , seqD, hops) where:

src : The ID of the source node that is establishing a route to the destination node.

sndr : The ID of the sender node that has sent the packet.

dest : The ID of the destination.

seqS : The sequence number.

30

International Journal of Networking and Computing

seqD : The sequence number stored in an entry of the routing table of the source node if the source
node has already established a route. If not, this value is 0.

hops : The number of hops from src.

A source node establishes a route to its destination node as follows. First, the source node
broadcasts an rreq to its neighbors. When a node that is not the destination receives the rreq, the
node will forward it by broadcast or simply discard it, depending on its routing table. In the case of
forwarding, the node modifies rreq by replacing the sndr element with its own ID and then forwards
the new packet.

rrep: Route REPly packet

When the destination node receives rreq, it will generate a reply packet rrep then send rrep to
one neighbor by unicast. An rrep travels back from the destination node to the source node on the
route. An rrep is a six-tuple rrep = (dest, seqD, src, sndr, next, hops). rrep is a reply packet for
rreq. These elements of an rreq are determined as follows:

dest : The ID of the destination node (same as rreq.src)

seqD : The sequence number (same as rreq.seqS)

src : The ID of the source node (same as rreq.dest)

sndr : The ID of the sender node

next : The ID of the node that should receive this packet

hops : The number of hops from src

2.2 Routing Table

A node has one routing table which holds entries. Each entry indicates a pair of a destination node
and the next hop node to which the node should forward a packet for the destination node. When
a node receives a packet, the node will look for an entry that matches the destination node of the
received packet. If such an entry is found, then the node will forward the packet to the next hop
node specified by the entry. An entry e is a four-tuple e = (dest, next, seq, hops) where

dest : The ID of the destination node.

next : The ID of the next hop node to which a packet to dest is forwarded.

seq : The sequence number.

hops : The hop count from dest.

Upon receiving a packet, the node performs either one of the three operations: adding an entry,
updating an entry, or discarding the packet. Which of these operations is performed depends on the
entries of the routing table and the incoming packet, as described below. We let rt denote the routing
table and assume that no two entries have the same dest, i.e., ∀e1, e2(6= e1) ∈ rt : e1.dest 6= e2.dest.
The sequence number seq is used to determine whether or not a received packet is newer than its
corresponding entry. If the packet’s sequence number is greater than that of the entry, then the
entry is updated because the packet is newer. In the rest of this subsection, we describe in detail
when a new entry is added and when an existing entry is updated. We denote by id the ID of the
node that has received the packet. In practice, an IP address is used as an ID; but for simplicity of
presentation, we often use small integers as concrete examples of IDs. The hops entry represents the
hop count from the destination node, that is, the number of hops needed to reach the destination.

31

State space reduction techniques for model checking of MANET protocols

2.2.1 Adding an entry

The node that received a packet adds a new entry to the routing table if the following condition
holds. If the packet received is an rreq, then the condition is:

∀e ∈ rt : e.dest 6= rreq.src ∧ rreq.dest 6= id (1)

or

∀e ∈ rt : e.dest 6= rreq.src ∧ rreq.dest = id (2)

The node generates a new entry e, which is defined by (3), and adds it to its own routing table when
either eq.(1) or eq.(2) is true. Eq.(1) holds when the node is a forwarding node, whereas eq.(2) holds
when the node is the destination node.

e = (dest, next, seq, hops) = (rreq.src, rreq.sndr, rreq.seqS , rreq.hops) (3)

If the packet received is an rrep, then the condition is:

∃e1 ∈ rt : (e1.dest = rrep.dest ∧ ∀e2 ∈ rt\{e1} : e2.dest 6= rrep.src) ∧ rrep.next = id (4)

The node generates a new entry e, which is defined by (5), and adds e to its own routing table
when eq.(4) is true.

e = (dest, next, seq, hops) = (rrep.src, rrep.sndr, rrep.seqD, rrep.hops) (5)

2.2.2 Updating an entry

Upon receiving a packet rreq or rrep, the node updates an entry e such that e.dest = rreq.src or
e.dest = rrep.src if the following condition holds.

For an rreq:

∃e ∈ rt : (e.dest = rreq.src ∧ e.seq < rreq.seqS) ∧ rreq.dest 6= id (6)

or

∃e ∈ rt : (e.dest = rreq.src ∧ e.seq < rreq.seqS) ∧ rreq.dest = id (7)

The node updates e as defined by (8) when either eq.(6) or eq.(7) is true. Eq.(6) applies when the
node is a forwarding node, whereas eq.(7) holds when the node is the destination node.

e = (dest, next, seq, hops) = (dest, rreq.sndr, rreq.sepS , rreq.hops) (8)

For an rrep:

∃e1 ∈ rt : (e1.dest = rrep.dest ∧
∃e2 ∈ rt\{e1} : (e2.dest = rrep.src ∧ e2.seq < rrep.seqD)) ∧ rrep.next = id (9)

When eq.(9) is true, the node updates e2 as follows.

e2 = (dest, next, seq, hops) = (dest, rrep.sndr, rrep.seqS , rrep.hops) (10)

2.2.3 Discarding a received packet

Even if an entry that corresponds to the received packet exists, the packet is simply discarded if
the entry has already been updated. This occurs if none of the conditions shown in 2.2.1 and 2.2.2
holds.

32

International Journal of Networking and Computing

AODV behavior of a node
1: Constant X: set of ID
2: var RT : array X of Routing Table
3: var CH : array X of Channel
4: var e1, e2 : entries of a Routing Table
5: var pkt : pkt∈ {rreqlm, rreplm}(l ∈ {1, 2, 3},m ∈ X)a received packet
6: node k: X
7: begin
8: while(true) begin
9: CH[k]?pkt;

10: e1:=exist(pkt.src);e2:=exist(pkt.dest);
11: pkt.type=req∧pkt.dest6= k ∧ e1=null→ broadcast(pkt),insert(pkt)
12: []pkt.type=req∧pkt.dest6= k ∧ e1 6=null∧e1.seq<pkt.seq→broadcast(pkt),update(e1,pkt)
13: []pkt.type=req∧pkt.dest=k ∧ e1=null→insert(pkt),reply(pkt)
14: []pkt.type=req∧pkt.dest=k ∧ e1 6=null∧e1.seq<pkt.seqS →update(e1,pkt),reply(pkt)
15: []pkt.type=rep∧pkt.dest6=k∧pkt.next=k∧e1=null∧e26=null→unicast(e2,pkt),insert(pkt)
16: []pkt.type=rep∧pkt.dest6=k∧pkt.next=k∧e1 6=null∧e26=null∧e1.seq<pkt.seqD

→unicast(pkt),update(e2,pkt)
17: []else→skip;
18: end while
19: end

Figure 1: Program for forwarding node and destination node

2.3 Program Description

The program in Fig. 1 represents the behavior of the destination node and forwarding node in
AODV. The program consists of a set of objects and a set of actions. An action may have a guard,
in which case it is described as guard → statement. The guard is a boolean expression over the
states of objects in the program. When the guard is true, the statement can be executed. If some
actions are described as

guard1→ statement1[]guard2→ statement2[]guard3→ statement3

then, one of the actions whose guard is true is executed. If two or more guards become true
at the same time, one action is nondeterministically selected to execute.

The objects in the program in Fig. 1 include:

• RT [k]: the routing table of node k(∈ X), which is a set of entries, i.e., RT [k] = {e1, e2, . . .}.

• pkt: the packet received through incoming channel CH[k]

X is a set of node IDs in the network. CH[k] is the incoming channel for node k(∈ X). CH[k]?pkt
in line 9 represents an action that receives a packet and stores it in pkt when a packet exists in
CH[k]. The type of pkt is either rreq or rrep.

The functions used in the program are described below.

• exist(id)(id ∈ X): returns an entry e such that e.dest=id from RT [k]. Returns null if no such
entry exists.

• insert(pkt): creates an entry e from pkt and adds it to RT [k]. If the packet type of pkt is
rreq, this function creates an entry e as specified by (3). If pkt is rrep, this function creates
e as specified by (5).

33

State space reduction techniques for model checking of MANET protocols

• update(e,pkt): updates e based on pkt. If pkt is rreq, e is updated as defined as (8). If pkt is
rrep, e is updated as defined as (10).

• broadcast(pkt): replaces pkt.sndr with k and puts pkt into CH[l] for all l ∈ X ′ where X ′ is
the set of neighbor nodes that can communicate with k at the time of the broadcast. X ′ can
be any subset of X\{k}, i.e., X ′ ⊆ X\{k}.

• unicast(e,pkt): replaces pkt.sndr with k and pkt.next with e.next and puts pkt into CH[e.next].

• reply(pkt): obtains an entry e by executing exist(pkt.src), generates rrep = (dest, seqD, src,
sndr, next, hops) = (e.dest, e.seq, k, k, e.next, 0) and puts it into CH[e.next].

As shown in Fig. 1, the program consists of a big while loop which is executed in response to the
reception of a new packet. Table 1 explains each action in the while loop.

Table 1: Actions of the program in Fig. 1

Line Guard Statement
No. (Condition in Sec. 2.2)
9 none picking up a packet from channel CH[k]
10 none finding entries e1 and e2 from RT [k] by using

exist(id)
11 Eq.(1) When node k is not the destination node of the

received packet pkt, node k adds an entry e gener-
ated from the received pkt by using insert(pkt) and
broadcasts the new packet.

12 Eq.(6) When node k is not the destination node of the
received packet pkt, node k updates the entry e1
by using updates(e1,pkt) and broadcasts the new
packet.

13 Eq.(2) When node k is the destination node of the re-
ceived packet pkt, node k adds an entry e generated
from the received packet pkt by using insert(pkt)
and generates a new rrep and sends it by using re-
ply(pkt).

14 Eq.(7) When node k is the destination node of the received
packet pkt, node k updates the entry e2 and sends
a packet by unicast(pkt).

15 Eq.(4) When the type of the received packet is rrep,
node k generates an entry e and adds it by using
insert(pkt). Then, node k sends it by unicast(pkt).

16 Eq.(9) When the type of the received packet is rrep, node k
updates the entry e2 by using update(e2,pkt).
Then node k sends rrep by unicast(pkt).

17 none Node k discards the received packet.

2.4 Illustrative Example

We illustrate the route establishment process in AODV using Fig. 2. The example network consists
of one source node S, one destination node D and two forwarding nodes 1 and 2. Hence X, the set

34

International Journal of Networking and Computing

of the node IDs, is {S,D, 1, 2}. Fig. 2(a) represents the situation where D receives an rreq originally
initiated by S. Fig. 2(b) shows that S receives an rrep from D.

These tables are initially empty. The sequence numbers seqS and seqD in the rreq sent by S
are 0.

(a)-(1): S broadcasts rreq = (S, S,D, 0, 0, 0), then both node 1 and node 2 receive it. As
the routing tables of node 1 and node 2 were empty, a new entry is added to these routing tables.
{e1(req,S)} in the third column is a symbolic representation of the routing table which will be explained
in Section 4.

Routing tables
RT s (dest, next, seq, hops)
RT [S] ∅
RT [1] (S, S, 0, 1) e1(req,S)

RT [2] (S, S, 0, 1) e1(req,S)

RT [D] ∅

(a)-(2): Node 1 broadcasts an rreq = (S, 1, D, 0, 0, 1) to forward it. On receiving the rreq D
adds an entry (S, 1, 0, 2) to its own routing table RT [D].

Routing tables
RT s (dest, next, seq, hops)
RT [S] ∅
RT [1] (S, S, 0, 1) e1(req,S)

RT [2] (S, S, 0, 1) e1(req,S)

RT [D] (S, 1, 0, 2) e1(req,1)

(a)-(3): Node 2 behaves similarly to node 1. Node 2 broadcasts rreq = (S, 2, D, 0, 0, 1) to
forward it. Although node 1 receives the rreq from node 2, node 1 discards it.

Routing tables
RT s (dest, next, seq, hops)
RT [S] ∅
RT [1] (S, S, 0, 1) e1(req,S)

RT [2] (S, S, 0, 1) e1(req,S)

RT [D] (S, 1, 0, 2) e1(req,1)

(b)-(4): D generates an rrep = (S, 0, D,D, 1) from entry e = (S, 1, 0, 2) and sends it by unicast
to node 1 which is the next node of e. Receiving the rrep from D, node 1 adds entry (D,D, 0, 1) to
RT [1].

Routing tables
RT s (dest, next, seq, hops)
RT [S] ∅
RT [1] (S, S, 0, 1) e1(req,S)

(D,D, 0, 1) e1(rep,D)

RT [2] (S, S, 0, 1) e1(req,S)

RT [D] (S, 1, 0, 2) e1(req,1)

(b)-(5): Node 1 sends an rrep = (S, 0, D, 1, 2) to node S which is the next node of entry
(S, S, 0, 1). Node S adds an entry for D after receiving the rrep from node 1. As a result, the route
between S and D has established.

35

State space reduction techniques for model checking of MANET protocols

(1)

(1)

(2)

(3)

S D1

2

(5) (4)
S D1

2

(a)

(b)

Figure 2: Route establishment process

Routing tables
RT s (dest, next, seq, hops)
RT [S] (D, 1, 0, 2) e1(rep,1)
RT [1] (S, S, 0, 1) e1(req,S)

(D,D, 0, 1) e1(rep,D)

RT [2] (S, S, 0, 1) e1(req,S)

RT [D] (S, 1, 0, 2) e1(req,1)

3 SPIN Model

In this section, we show how to represent a MANET protocol using Promela, the input language of
the SPIN model checker. Promela has a C-like language syntax. In a Promela program, the system
under verification is modeled as a set of concurrent processes. We model a MANET with n nodes
using n processes. A process pid has id which is a positive integer value.

3.1 Channel

A process pid has channel CH[id] defined as follows.

typedef packet{byte type,sndr,next,src,dest, hops; int seq};
chan CH[NODES] = [BUFF] of {packet};

BUFF indicates a buffer size of the channel. We set the value of BUFF to one. The channel is used
to store an incoming message sent by a neighbor node.

3.2 Routing Table

A process pid has a routing table RT[id] that is defined below. RT LENGTH represents the maxi-
mum number of entries in RT[id].

typedef entry{byte seq,dest,next,hops};
typedef routing table{entry entries[RT LENGTH]};
routing table table RT[NODES];

36

International Journal of Networking and Computing

Table 2: Combinations of selected channels
selected channels selected channels

cs1: {CH[2], CH[3]} cs7: {CH[3]}
cs2: {CH[2], CH[4]} cs8: {CH[4], CH[5]}
cs3: {CH[2], CH[5]} cs9: {CH[4]}
cs4: {CH[2]} cs10: {CH[5]}
cs5: {CH[3], CH[4]} cs11: {}
cs6: {CH[3], CH[5]}

3.3 Broadcasting and Mobility

We have to represent node movements and broadcast of packets. Nodes that receive packets broad-
casted by a sender node must be in sender node’s communication range. Fig. 3 shows a Promela
code that represents broadcasting and node movements simultaneously. Here the number of nodes
in the MANET is assumed to be five. This code uses the nondeterministic do construct of Promela
to nondeterministically select some receiver nodes. The message broadcasted is replicated and put
into the incoming channels of these receiver nodes.

This receiver node selection is performed as follows. Array sent[], where all entries are initially 0,
is used to represent the receiver nodes already selected. Line 1 is used to prevent from choosing the
sender process pid as a receiver node. Line 4 to line 9 are used to nondeterministically select a node
(lines 4 to 8) or decide not to select a node (line 9). Line 12 to line 19 are used to send a packet.
If the channel of a receiver node, denoted as pindex, is full, then the older packet in the channel is
removed and then the new broadcasted packet is put into the channel. In this case pindex will never
receive the discarded old packet.

Parameter AROUND specifies the maximum number of receiver nodes selected when a message
is broadcasted. A small AROUND value restricts possible topologies and possible dynamic topology
changes but reduces the state space and in turn time and memory used by model checking.

In more detail, by enforcing the process to nondeterministically select channels of up to AROUND
receiver nodes, the Promela code in Fig. 3 represents all possible topologies with every node having
at most AROUND neighbors. When AROUND is two, the channels are selected at most twice and
thus the possible combinations of channels that process p1 can select become as listed in Table 2. For
example, if line 5 and line 6 are nondeterministically selected to execute during the two iterations of
the do-loop, then the selected channels will be CH[2] and CH[3] (cs1 in Table 2), in which case p1
will put a broadcast packet into both CH[2] and CH[3]. This models the case where there are two
neighbor nodes (node 2 and node 3) in the propagation range of p1. Combinations cs4, cs7, cs9 and
cs10 occur if line 9 is executed in one iteration and one of line 5 to line 8 is executed in the other
iteration. These combinations mean that the number of neighbor nodes of p1 is one. There can be
no neighbor node around p1 and this will happen when line 9 is selected twice (cs11). Note that
all these possibilities summarized in Table 2 are examined when model checking is performed and
that dynamic changes in topology due to node mobility can be represented as long as the number
of neighbor nodes does not exceed AROUND .

4 Proposed Technique

We consider the problem of model checking the whole process of route establishment initiated by a
single source node. In this section we present our technique to reduce the state space of the model
checking problem. In AODV, in face of failures the source node repeats the route establishment
process at most three times. As we will show later, the whole series of these trials induces a very
large state space and makes the amount of memory and time required prohibitively large. In this
section we propose a modeling technique to mitigate state space explosion by reducing the state
space.

37

State space reduction techniques for model checking of MANET protocols

1: sent[id]=1;
2: cnt=0;

3: do::(cnt < AROUND)→
4: if::(sent[1]==0)→index=1;

5: ::(sent[2]==0)→index=2;

6: ::(sent[3]==0)→index=3;

7: ::(sent[4]==0)→index=4;

8: ::(sent[5]==0)→index=5;

9: ::index=255;

10: fi;

11: cnt++;

12: if::(index==255)→skip;

13: ::else→sent[index]=1;

14: if::(len(CH[index])==BUFF)→
15: CH[index]?tmp;

16: ::else→skip;

17: fi;

18: CH[index]!pkt;

19: fi;

20: ::else→break;

21: od;

Figure 3: Promela code for modeling broadcast and node mobility

Our proposed method focuses on the third trial of route establishment. Let rreqnS represents the
rreq that the source node broadcasts at the nth round.

Fig. 4 schematically shows how states in the state space are reached as the trials proceed. In
Fig. 4, Sn(n = 1, 2, 3) is a set of states at the beginning of the n-th trial. In the following of the
section, we show S3 subsumes S1 and S2 and therefore model checking of the third trial, starting
with S3, can detects that can manifest themselves during the third trial as well as those for the first
and second trials.

We make the following assumptions.

• No entry in a routing table is discarded because of time out.

• There is exactly one source-destination pair that attempts route establishment.

sending sending sending

state space

rreq1
S

rreq2
S

rreq3
S

Figure 4: Schematic of state space

38

International Journal of Networking and Computing

Table 3: Routing table entries and received packets
received packet generated entry
rreqni en(req,i)
(S, i,D, seqS , seqD, hops) (S, i, seqS , hops)
rrepnj en(rep,j)
(D, j, S, seqD, hops) (D, j, seqD, hops)

• Routing tables initially has no entries relevant to the route establishment.

We show that state that can occur in the first and second trials also occur in the third trial. Our
argument is as follows. In any round, a node executes an action only when a packet is received (line 9
of Fig. 1). The number of the current trial, which is reflected in the seq field of the packet, may
enable the actions of lines 12, 14, and 16 if the trail number is greater than that of the corresponding
table entry (e1.seq < pkt.seq in line 12, for example). On the other hand, if the trail number is
smaller than or equal to that of the entry, then it never disables any actions. This means that
packets with a lower trail number than the current trail number cannot produce new states of the
routing table if the current entries of the routing table are the same. In the following subsections,
we show that the set of initial states of the third trial S3 contains the states in S1 and S2; thus
checking the third trial suffices to produce possible states.

4.1 Classification of the State of a Routing Table

As we assume that there is a single pair of source and destination nodes, there are at most two
entries that are relevant to the model checking problem, more specifically, the entries whose dest
(the first element) is the source or destination node. Table 3 shows symbolic representation of these
two entries. Note that an entry is generated or updated in response to receipt of a packet. The left
column shows the packets that yield the entries on the right column. Here n represents the trial
number whose range is n ∈ {1, 2, 3}. i and j represent the sender node.

In the rest of the section we show that the entry set of a routing table at states in S3 can be
classified into six patterns as shown below.

rt1:∅ rt2:{e1(req,i)} rt3:{e1(req,i), e
1
(rep,j)}

rt4:{e2(req,i)} rt5:{e2(req,i), e
1
(rep,j)} rt6:{e2(req,i), e

2
(rep,j)}

rt1 : ∅
The case rt1 means that no packet relevant to the source-destination pair of interest has been
received until the beginning of the third trial. The entries in the routing table rt satisfy:

∀e ∈ rt : e.dest 6= rreqnS .src (11)

rt2 : {e1(req,i)}
This case rt2 means that the node received rreq1i at least once but no rrep until the beginning of
the third trial. In this case the routing table rt satisfies:

∃e ∈ rt : e.seq = rreq1i .seqS ∧ e.dest = rreq1i .src (12)

rt3 : {e1(req,i), e
1
(rep,j)}

This case occurs when the node received rreq1i and rrep1j at least once. The routing table rt satisfies:

∃ek, el(6= ek) ∈ rt :

ek.seq = rreq1i .seqS ∧ ek.dest = rreq1i .src ∧
el.seq = rrep1j .seqD ∧ el.dest = rrep1j .src (13)

39

State space reduction techniques for model checking of MANET protocols

rt4 : {e2(req,i)}
The case rt4 occurs when the node received rreq2i at least once and no rrep until the beginning of
the third trial. In this case the routing table rt satisfies:

∃e ∈ rt : e.seq = rreq2i .seqS ∧ e.dest = rreq2i .src (14)

rt5 : {e2(req,i), e
1
(rep,j)}

This case occurs when the routing table of the node had been in pattern rt3 and then the node
received rreq2i at least once. The routing table satisfies:

∃ek, el(6= ek) ∈ rt :

ek.seq = rreq2i .seqS ∧ ek.dest = rreq2i .src ∧
el.seq = rrep1j .seqD ∧ el.dest = rrep1j .src (15)

rt6 : {e2(req,i), e
2
(rep,j)}

The case rt6 occurs when the routing table of the node had been in pattern rt4 and then the node
received rrep2j at least once. The routing table satisfies:

∃ek, el(6= ek) ∈ rt :

ek.seq = rreq2i .seqS ∧ ek.dest = rreq2i .src ∧
el.seq = rrep2j .seqD ∧ el.dest = rrep2j .src (16)

Note that these patterns subsume those that can occur at the beginning of the first or second
trials. For example, the initial state of a routing table in the second trial is of either of rt1, rt2 or
rt3.

Below we elaborate a more detailed argument about how these patterns occur. First we consider
forwarding nodes. Table 4 shows how the routing table of a forwarding node changes during the first
round. The column rts shows the entries in the routing table at the beginning of the first round.
Initially, there is no entry in the routing table (denoted by rt1). The column packet represents the
received packet during the first round. When the node receives rreq1i , the action at line 11 in Fig. 1
is executed. As a result, the routing table becomes rt2. After being updated to rt2, if the node
receives rrep1j , then the action at line 15 in Fig. 1 is executed, resulting in rt3 of the routing table.

Table 5 shows how the routing table is updated in the second round. At the beginning of the
second round, the state of the routing stable is either of rt1, rt2 or rt3, as indicated in the rts
column of Table 5. Note that rt1 occurs when no packet is received in the first round. In the second
round, if the node receives rreq2i , then rt1, rt2 and rt3 become rt4, rt4 and rt5, respectively. When
the node receives rrep2j after having received rreq2i , rt4 and rt5 both transit to rt6. If the node
receives no packet during the second round, its routing table stays the same, meaning that the state
is either rt1, rt2 or rt3.

Table 6 shows the updates in the third round. The column rts in Table 6 shows the possible six
states at the beginning of the third round. Note that the set of these states subsumes the set of the
initial states of the first round (Table 4) and that of the second round (Table 5).

Similarly, we summarize the changes of the routing table of the destination node in Table 7,
Table 8 and Table 9. As can be seen in these tables, the routing table of the destination node is
either rt1, rt2 or rt4 at the beginning of the third round.

4.2 Effects of In-Transit Packets

Although the routing table at the beginning of the third trial is of either one of the six patterns
as shown above, there can be in-transit packets, such as rreq1i , rreq2i , rrep1j and rrep2j , and if a
node receives such a packet, the state of the routing table can be changed. Here we show that the
presence of these in-transit packets does not affect our argument that the state of a routing table is
of either one of these six patterns.

40

International Journal of Networking and Computing

Table 4: Updates of forwarding node’s routing table in the first round
rts packet action entry packet action entry
rt1(∅) rreq1i Line 11 rt2({e1(req,i)}) rrep1j Line 15 rt3({e1(req,i), e

1
(rep,j)})

Table 5: Updates of forwarding node’s routing table in the second round
rts packet action entry packet action entry
rt1(∅) rreq2i Line 11 rt4({e2(req,i)}) rrep2j Line 15 rt6({e2(req,i), e

2
(rep,j)})

rt2({e1(req,i)}) rreq2i Line 12 rt4({e2(req,i)}) rrep2j Line 15 rt6({e2(req,i), e
2
(rep,j)})

rt3({e1(req,i), e
1
(rep,j)}) rreq2i Line 12 rt5({e2(req,i), e

1
(rep,j)}) rrep2j Line 16 rt6({e2(req,i), e

2
(rep,j)})

Table 6: Updates of forwarding node’s routing table in the third round
rts packet action entry packet action entry
rt1(∅) rreq3i Line 11 {e3(req,i)} rrep3j Line 15 {e3(req,i), e

3
(rep,j)}

rt2({e1(req,i)}) rreq3i Line 12 {e3(req,i)} rrep3j Line 15 {e3(req,i), e
3
(rep,j)}

rt3({e1(req,i), e
1
(rep,j)}) rreq3i Line 12 {e3(req,i), e

1
(rep,j)} rrep3j Line 16 {e3(req,i), e

3
(rep,j)}

rt4({e2(req,i)}) rreq3i Line 12 {e3(req,i)} rrep3j Line 15 {e3(req,i), e
3
(rep,j)}

rt5({e2(req,i), e
1
(rep,j)}) rreq3i Line 11 {e3(req,i), e

1
(rep,j)} rrep3j Line 16 {e3(req,i), e

3
(rep,j)}

rt6({e2(req,i), e
2
(rep,j)}) rreq3i Line 11 {e3(req,i), e

2
(rep,j)} rrep3j Line 16 {e3(req,i), e

3
(rep,j)}

Table 10 summarizes the effects of receipt of an in-transit packet on the routing table. In this
table the left column shows the classified type of the routing table before receiving the packet. The
middle column shows received packets sent in the first or second trial. The right column shows
the pattern of the routing tables after receiving the packet. As can be seen in the table, even if a
node receives a packet sent in the previous trials, the routing table is still of one of the six patterns.
Therefore we can ignore in-transit packets and can assume that the channels are empty when the
third trial starts.

4.3 Generating SPIN Models with Different Initial States

To model check all different initial states of the third trial using the SPIN model checker, we create
instances of a SPIN model each with a different initial state. As there is a total of six possible
patterns for a routing table, there are 6m initial states where m is the number of nodes in the
MANET.

Table 7: Updates of destination node’s routing table in the first round
rts packet action entry
rt1(∅) rreq1i Line 13 {e1(req,i)}

Table 8: Updates of destination node’s routing table in the second round
rts packet action entry
rt1(∅) rreq2i Line 13 {e2(req,i)}
rt2({e1(req,i)}) rreq2i Line 14 {e2(req,i)}

Table 9: Updates of destination node’s routing table in the third round
rts packet action entry
rt1(∅) rreq3i Line 13 {e3(req,i)}
rt2({e1(req,i)}) rreq3i Line 14 {e3(req,i)}
rt4({e2(req,i)}) rreq3i Line 14 {e3(req,i)}

41

State space reduction techniques for model checking of MANET protocols

Table 10: Routing table patterns before and after receiving a packet

entries before received entries after
receiving packets packet receiving packets
rt1 : ∅ rreq1i rt2 : {e1(req,i)}

rrep1j rt1 : ∅
rreq2i rt4 : {e2(req,i)}
rrep2j rt1 : ∅

rt2 : {e1(req,i)} rreq1i rt2 : {e1(req,i)}
rrep1j rt3 : {e1(req,i), e

1
(rep,j)}

rreq2i rt4 : {e2(req,i)}
rrep2j rt3 : {e1(req,i), e

1
(rep,j)}

rt3 : {e1(req,i), e
1
(rep,j)} rreq1i rt3 : {e1(req,i), e

1
(rep,j)}

rrep1j rt3 : {e1(req,i), e
1
(rep,j)}

rreq2i rt4 : {e2(req,i), e
1
(rep,j)}

rrep2j rt3 : {e1(req,i), e
1
(rep,j)}

rt4 : {e2(req,i)} rreq1i rt4 : {e2(req,i)}
rrep1j rt5 : {e2(req,i), e

1
(rep,j)}

rreq2i rt4 : {e2(req,i)}
rrep2j rt6 : {e2(req,i), e

2
(rep,j)}

rt5 : {e2(req,i), e
1
(rep,j)} rreq1i rt5 : {e2(req,i), e

1
(rep,j)}

rrep1j rt5 : {e2(req,i), e
1
(rep,j)}

rreq2i rt5 : {e2(req,i), e
1
(rep,j)}

rrep2j rt6 : {e2(req,i), e
2
(rep,j)}

rt6 : {e2(req,i), e
2
(rep,j)} rreq1i rt6 : {e2(req,i), e

2
(rep,j)}

rrep1j rt6 : {e2(req,i), e
2
(rep,j)}

rreq2i rt6 : {e2(req,i), e
2
(rep,j)}

rrep2j rt6 : {e2(req,i), e
2
(rep,j)}

This number can be reduced based on the following two observations. First, the routing table of
the source node can be ignored since once having sent the rreq, the source node is not involved in
route establishment until it receives the rrep. Second, although the details are omitted, it can be
shown that the routing table of the destination node has only three possible patterns. As a result,
the total number of SPIN model instances is 6m−2 × 3. When m = 4, this number becomes 108.

5 Experimental Result

In this section we show the results of two experiments. The first experiment evaluates the effec-
tiveness of the proposed modeling technique with respect to performance of model checking. The
second experiment is intended to demonstrate the ability of detecting design faults.

5.1 Performance Evaluation

The purpose of this experiment is to evaluate the effectiveness of the proposed technique with respect
to model checking performance. In this experiment we considered MANETs consisting of four nodes
and five nodes and assumed that each node has at most two neighbor nodes at any time instance. Of
the four or five nodes, two particular nodes were designated as the source node and the destination
node. The machine specifications and the model checking tool are as follows.

42

International Journal of Networking and Computing

Table 11: Experimental results (two nodes)
proposed technique full state space search

Execution time[s] 3.0×10−2 < 1.0× 10−2

State space 99 79
Memory usage[MB] 3.8×103 1.3× 103

Table 12: Experimental results (three nodes)
proposed technique full state space search

Execution time[s] 2.0×10−1 3.0×10−1

State space 3.4×104 3.4×104

Memory usage[MB] 2.3× 103 1.4× 103

Table 13: Experimental results (four nodes)
proposed technique full state space search

Execution time[s] 6.7×10 > 2.2× 103

State space 2.7×107 > 4.1× 108

Memory usage[MB] 2.1×104 > 1.0× 106

Table 14: Experimental results (five nodes)
proposed technique full state space search

Execution time[s] 5.6×104 > 2.3× 103

State space 6.7×1010 > 3.1× 108

Memory usage[MB] 2.3×107 > 1.0× 106

OS : CentOS 6.6

CPU : Xeon E5-2665

MEM : 128GB

Tool : SPIN 6.2.5

For the four node network, as described in the previous section, we created 108 (62 × 3) SPIN
models each with a different initial state (combination of patterns) of routing tables. For the five
node network, we created 648 (63 × 3) SPIN models. The execution time is the summation of the
execution time required for model checking all the instances. The size of the state space and the
amount of memory used are also the summation for all the instances.

For comparison purposes, we also measured performance of full state space search, that is, model
checking of the whole series of the three trials from the beginning. The results of the experiment
are summarized in Tables 11, 12, 13 and 14. We varied the number of nodes from two to four and
each table shows the results for each of these four cases.

When the number of nodes was two or three, model checking was finished almost instantly for
both approaches. Interestingly the full state space search yielded a smaller state space for the two
node-case. This can be explained as follows. The full state space search does not explore the same
state more than once. On the other hand, the proposed approach executes multiple instances of
model checking and the same state may be visited in two or more runs.

When the number of nodes was three or four, the full state space search was not completed
because available memory was exhausted. On the other hand, with our proposed technique, model
checking was successfully completed for both all the 108 instances and all the 648 instances. Note
that the number of states explored by the full state space search until memory exhaustion was much
larger than that of states explored by all runs of the proposed approach. This and the results for
fewer nodes show that reachable states very rapidly increase as the number of nodes grows and that
the proposed approach can significantly lower the increase by achieving considerable state space

43

State space reduction techniques for model checking of MANET protocols

reduction. Execution time, state space, and memory usage were all reduced significantly as shown
in Tables 13 and 14.

No defects were found in the experiments. This is unsurprising as AODV is time tested.
Each of the SPIN models generated by the proposed technique can be executed in isolation,

because these models are independent with each other. This is why the proposed techniques were
successful in completing verification although the total time and memory usage was larger than the
ordinary model checking case.

5.2 Loop Detection

It is known that an older version of AODV had a defect which causes loop generation. For example,
in [6], some scenarios where loop routes are generated were detected by applying model checking
and theorem proving to a MANET with three-node linear topologies. Fig. 5 illustrates one such
scenario where:

S 21 D

(1)
(S, S, seq, 1)

(S, 1, seq, 2)
(2)

(S, S, seq, 1)

(S, 1, seq, 2)
(3)

(S, 1, seq, 2)
(4)

(S, 2, seq, 3)

S 21 D

S 21 D

S 21 D

Figure 5: Example of a loop occurrence

Fig. 5(1) : Node 1 receives rreq from S.
Fig. 5(2) : Node 1 broadcasts rreq, then node 2 receives it.
Fig. 5(3) : The routing table entry of node 1 is discarded.
Fig. 5(4) : Node 2 broadcasts rreq, then node 1 receives it.

Afterwards, the entry of node 1 enforces it to send packets whose destination is S to node 2. Node 2
sends a packet whose destination is S to node 1, thus resulting in a loop.

Aiming to show that our technique can be useful in detecting a defect, we conducted an ex-
periment where we attempted to detect loop. As it was known that this error occurs only when
routing table entries are discarded, we extended our model such that a node may discard the entries
because of time out. In order to detect a loop, we embedded C language code into the SPIN model
written in Promela. By consulting the routing tables of the nodes, this code traverses a route from

44

International Journal of Networking and Computing

Table 15: Experimental results for loop detection
four nodes five nodes

Execution time[s] 5.6×10 5.8× 102

State space 3.7×107 9.0× 108

Memory usage[MB] 2.3×104 3.7× 105

1: c code{
2: int cnt=0,id=PNode→id;

3: now.loop=0;

4: while(cnt<RT LENGTH){
5: if(now.RT[id].entries[cnt].dest==S){
6: id=now.RT[id].entries[cnt].next;
7: if(id==S){break;}
8: else if(id==PNode→id){
9: now.loop=1;break;}
10: else{cnt=0;}
11: }
12: else{cnt++;}
13: }
14: };
15: assert(loop==0);

Figure 6: Embedded C code for loop detection

a given node to the source node. If the node appears on the way to the source node, then it can be
concluded that the traced route forms a loop.

Fig. 6 shows the embedded C code (lines 1–14) and an assertion (line 15) for detecting the
existence of a loop. This code is executed by every process (i.e., node). PNode→ id is the ID of the
node that executes the C code; thus id is initially set to the ID of the node (line 2). The keyword
now is used to access Promela variables from C code. The variable loop is a flag in the Promela
code to decide the existence of a loop and is initialized and set in the C code by setting now.loop
to 0 (line 3) and 1 (line 9).

Route traverse is carried out as follows. First the routing table of node id is checked to see if
there is an entry for S. The while loop (lines 4–13) is used for this purpose, where cnt, ranging
from 0 to RT LENGTH −1, is used as the index for entries. The keyword now is used to access the
routing table: the cnt-th entry can be read by accessing now.RT[id].entries[cnt]. If there is an entry
for destination S (line=5), then id is updated to the next node on the route (line 6). If the next
node is S, then the traverse on the route to S finishes without encountering a loop, thus finishing
loop detection by breaking the while loop (line 7). If the next node is PNode→ id, i.e., the node
that initiates loop detection, then it turns out that a loop exists (line 9). If the above two cases do
not apply, then route traversal continues by checking the route table of node id from the first entry.

Table 15 show the results of experiments on loop detection. The execution time is the summation
of the execution time required for model checking all the instances. The size of the state space and
the amount of memory used are also the summation for all the instances. We created a total of 108
instances and of 648 instances of the new SPIN model with the loop detection code. For all these
instances, the possibility of a loop occurrence was successfully detected by SPIN.

6 Related Work

SPIN model checker
SPIN is the most commonly used model checker. Model checking of AODV with SPIN is described

in [6], where model checking was used to show that a loop can be established in an older version

45

State space reduction techniques for model checking of MANET protocols

of AODV. In [14], De Renesse et al. describe their attempt to model check the WARP protocol.
In their attempt, it is assumed that a network consists of five nodes and that the neighbor nodes
of two of the five nodes are not changed. Model checking was used to check reachability of packets
between two nodes by using supertrace/bitstate mode at runtime option with SPIN. In [36], Wibling
et al. apply SPIN and the UPPAAL model checker to the LUNAR protocol. When using SPIN
they considered six different topologies and verified that a message from a source node reaches the
destination node. Using UPPAAL, they considered eight topologies and verified the protocol against
deadlock freedom, route establishment and message reachability. Câmara et al. proposed techniques
to model protocol’s behavior as two models [8, 9]: One model represents the internal behavior of a
node which concerns processing of received packets, whereas the other model represents the external
behavior model that concerns packet transfer between nodes. They showed that their modeling
techniques were capable of detecting known defects of some MANET protocols, including LAR [27],
DREAM [5] and OLSR. In [35], Steele et al. used to SPIN to verify OLSR against the property
that a route exists for every destination node. Using SPIN they also showed some topologies where
a node suffering from Byzantine failures cannot be detected.

UPPAAL model checker

UPPAAL is a popular model checker which has often been used for MANET verification. A
distinguishing feature of UPPAAL is that it can verify real-time properties. In [10], Chiyangwa
et al. model checked AODV with UPPAAL. They showed that AODV with recommended timing
parameter settings may result in a failure of route establishment and proposed how to solve this
problem. In [37], LUNAR was model checked against properties such as route establishment and
message reachability. In [17, 15], Fehnker et al. used model checking to demonstrate that the
optimal route is not always established in AODV. In [23] and [12], SMC–UPPAAL [13], a statistical
extension of the UPPAAL, was used for model checking of AODV and the DYMO protocol [34].

Others

Process algebras have been used for modeling and verification of MANET protocols. In [38],
Zakiuddin et al. used CSP [22] to model CBRP (Cluster Based Routing Protocol) and verified the
correctness with FDR [21], a CSP model checker. Some process algebras for MANETs have been
proposed in [38, 18, 30, 19, 20]. These algebras did not come with a model checker. Exceptionally
in [24], Höfner et al. used a process algebra called AWN [16] to model a protocol and model checked
it by translating the model into UPPAAL.

A distinguishing work on MANET protocol verification is the one by Musuvathi et al. [31],
where CMC [31], a model checker which works directly on C language source codes, was applied to
three implementations of AODV, namely, AODV-UU [1], kernel-AODV [2] and mad-hoc [3]. CMC
detected several defects in these source codes.

7 Conclusion

In this paper we proposed model checking techniques that can be used to verify a reactive MANET
protocol, namely, AODV. In AODV or other reactive protocols, a source node retries the route
establishing process some fixed number of times in face of failures. The proposed techniques allow
verification of the whole series of trials only by model checking the last trial, thus resulting in state
space reduction. We showed how the SPIN model checker can be used with our proposed technique.
The results of experiments showed that the proposed techniques can significantly reduce time and
space used in the model checking process and that this reduction may lead to an increase of the
number of nodes that can be dealt with.

Also we demonstrated the model developed based on the proposed techniques is capable of
finding a protocol design defect. In future, we plan to apply the proposed technique to other
MANET protocols, including not only other reactive protocols but also multipath routing protocols.
Although this paper only considered AODV, we believe that our approach can be extended to verify
these protocols as they often share features in common with AODV. Such protocols include, for
example, Multicast Ad hoc On-Demand Distance Vector (MAODV).

Finally we make some remarks on other possible extension of the proposed approach. Although

46

International Journal of Networking and Computing

the focus of this paper was limited to route discovery, it should be worth verifying the behavior in
other processes. For example, error handling, where rerr packets which were ignored in this paper
are involved, is as important as route discovery; thus verification against its correctness deserves
further study. Our interest in the paper was placed on reactive MANET protocols which rely on
on-demand route discovery. As mentioned in the introduction, there is another type of protocols
called proactive protocols which do not use on-demand route discovery but periodically update
routing tables to maintain the network topology. Verification of this type of protocols should also
be addressed. One possible direction of extending the proposed approach to address this problem is
to apply it to verification of a starting phase where a node fulfills empty entries of the routing table
by discovering routes to other nodes.

References

[1] AODV-UU. http://sourceforge.net/projects/aodvuu/.

[2] kernel-AODV. http://w3.antd.nist.gov/wctg/aodv kernel/.

[3] mad-hoc. http://web.archive.org/web/20010401143715/http://mad-hoc.flyinglinux.net/.

[4] E. Alotaibi and B. Mukherjee. A survey on routing algorithms for wireless ad-hoc and mesh
networks. Computer Networks, 56(2):940 – 965, 2012.

[5] S. Basagni, I. Chlamtac, V.R. Syrotiuk, and B.A. Woodward. A distance routing effect al-
gorithm for mobility (dream). In Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, MobiCom ’98, pages 76–84, New York, NY,
USA, 1998. ACM.

[6] K. Bhargavan, D. Obradovic, and C.A. Gunter. Formal verification of standards for distance
vector routing protocols. J. ACM, 49(4):538–576, July 2002.

[7] A. Boukerche, B. Turgut, N. Aydin, M.Z. Ahmad, L. Bölöni, and D. Turgut. Routing protocols
in ad hoc networks: A survey. Computer Networks, 55(13):3032 – 3080, 2011.

[8] D. Câmara, A.A.F. Loureiro, and F. Filali. Methodology for formal verification of routing proto-
cols for ad hoc wireless networks. In Proceedings of the Global Telecommunications Conference,
IEEE GLOBECOM ’07, pages 705–709, Nov 2007.

[9] D. Câmara, A.A.F. Loureiro, and F. Filali. Formal verification of routing protocols for wireless
ad hoc networks. In Guide to Wireless Ad Hoc Networks, Computer Communications and
Networks, pages 189–210. Springer London, 2009.

[10] S. Chiyangwa and M. Kwiatkowska. A timing analysis of aodv. Formal Methods for Open
Object-Based Distributed Systems, Lecture Notes in Computer Science, 3535:306–321, 2005.

[11] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). IETF RFC3626,
October 2003.

[12] A.D. Corso, D. Macedonio, and M. Merro. Statistical model checking of ad hoc routing protocols
in lossy grid networks. NASA Formal Methods, Lecture Notes in Computer Science, 9058:112–
126, 2015.

[13] A. David, K.G. Larsen, A. Legay, M. Mikučionis, and Z. Wang. Time for statistical model
checking of real-time systems. Computer Aided Verification, Lecture Notes in Computer Science,
6806:349–355, 2011.

[14] R. de Renesse and A.H. Aghvami. Formal verification of ad-hoc routing protocols using spin
model checker. In Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference
2004, volume 3, pages 1177–1182, May 2004.

47

State space reduction techniques for model checking of MANET protocols

[15] A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W.L. Tan. Automated
analysis of aodv using uppaal. Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, 7214:173–187, 2012.

[16] A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W.L. Tan. A process
algebra for wireless mesh networks. Programming Languages and Systems, Lecture Notes in
Computer Science, 7211:295–315, 2012.

[17] A. Fehnker, R.J. van Glabbeek, P. Höfner, A.K. McIver, M. Portmann, and W.L. Tan. Modelling
and analysis of aodv in uppaal. In International Workshop on Rigorous Protocol Engineering,
2011.

[18] F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted broadcast process theory. In Sixth
IEEE International Conference on Software Engineering and Formal Methods, pages 345–354,
Nov 2008.

[19] F. Ghassemi, W. Fokkink, and A. Movaghar. Equational reasoning on ad hoc networks. Fun-
damentals of Software Engineering, Lecture Notes in Computer Science, 5961:113–128, 2010.

[20] F. Ghassemi, M. Talebi, A. Movaghar, and W. Fokkink. Stochastic restricted broadcast process
theory. Computer Performance Engineering, Lecture Notes in Computer Science, 6977:72–86,
2011.

[21] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A.W. Roscoe. Fdr3 – modern refinement
checker for csp. Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, 8413:187–201, 2014.

[22] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1985.

[23] P. Höfner and A. McIver. Statistical model checking of wireless mesh routing protocols. NASA
Formal Methods, Lecture Notes in Computer Science, 7871:322–336, 2013.

[24] P. Höfner, R.J. van Glabbeek, W.L. Tan, M. Portmann, A. McIver, and A. Fehnker. A rigorous
analysis of aodv and its variants. In Proceedings of the 15th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’12, pages
203–212, New York, NY, USA, 2012. ACM.

[25] G.J. Holzmann. The model checker spin. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

[26] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR) for Mobile Ad
Hoc Networks for IPv4. IETF RFC4728, Feb. 2007.

[27] Y-B. Ko and N.H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks. Wireless
Networks, 6(4):307–321, 2000.

[28] H. Kojima, Y. Nagashima, and T. Tsuchiya. Model checking techniques for state space reduction
in manet protocol verification. In 31st IEEE International Parallel and Distributed Processing
Symposium workshop, pages 509–516, May 2016.

[29] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal on Software
Tools for Technology Transfer, 1(1-2):134–152, 1997.

[30] M. Merro. An observational theory for mobile ad hoc networks (full version). Information and
Computation, 207(2):194 – 208, 2009. Special issue on Structural Operational Semantics (SOS).

[31] N. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler, and D.L. Dill. Cmc: A pragmatic approach
to model checking real code. SIGOPS Oper. Syst. Rev., 36(SI):75–88, December 2002.

48

International Journal of Networking and Computing

[32] R. Ogier, M. Lewis, and F. Templin. Topology Dissemination Based on Reverse Path Forwarding
(TBRPF). IETF RFC3684, February 2004.

[33] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-demand Distance Vector (AODV) Routing.
IETF RFC3561, July 2003.

[34] C. Perkins, S. Ratliff, and J. Dowdell. Dynamic MANET On-demand (AODVv2) Routing
draft-ietf-manet-dymo-26. IETF, Feb. 2013.

[35] M.F. Steele and T.R. Andel. Modeling the optimized link-state routing protocol for verifica-
tion. In Proceedings of the 2012 Symposium on Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium, TMS/DEVS ’12, pages 35:1–35:8, San Diego, CA, USA, 2012.
Society for Computer Simulation International.

[36] O. Wibling, J. Parrow, and A. Pears. Automatized verification of ad hoc routing protocols.
Formal Techniques for Networked and Distributed Systems FORTE 2004, Lecture Notes in
Computer Science, 3235:343–358, 2004.

[37] O. Wibling, J. Parrow, and A. Pears. Ad hoc routing protocol verification through broadcast
abstraction. Formal Techniques for Networked and Distributed Systems FORTE 2005, Lecture
Notes in Computer Science, 3731:128–142, 2005.

[38] I. Zakiuddin, M. Goldsmith, P. Whittaker, and P. Gardiner. A methodology for model-checking
ad-hoc networks. Model Checking Software, Lecture Notes in Computer Science, 2648:181–196,
2003.

49

