
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 7, Number 1, pages 86–104, January 2017

Finding Key Persons on Social Media by Using MapReduce Skyline

Asif Zaman
Graduate School of Engineering, Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: d140094@hiroshima-u.ac.jp

Md. Anisuzzaman Siddique
Graduate School of Engineering, Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: siddique@hiroshima-u.ac.jp, anis cst@yahoo.com

Annisa
Graduate School of Engineering, Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: d144809@hiroshima-u.ac.jp

and

Yasuhiko Morimoto
Graduate School of Engineering, Hiroshima University

Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
Email: morimoto@mis.hiroshima-u.ac.jp

Received: February 15, 2016
Revised: April 30, 2016

Revised: August 30, 2016
Revised: November 19, 2016

Accepted: November 25, 2016
Communicated by Hiroyuki Sato

Abstract

This study considers the problem of selecting a small number of important persons from social media.
Skyline query has been utilized for selecting key persons. Based on certain criteria from social media,
this query selects persons who are not dominated by any other. Owing to the complex structure of social
media, selecting a key person is more complicated and its application is quite different from conventional
skyline queries. We need to consider various metrics in the social media. In addition, social media contains
massive data, and the data increase is huge. It is collection of online communication channels dedicated to
community-based inputs, interactions, content sharing, and collaboration. We use MapReduce framework
to speed up the computation and introduce parallelism in the processing. An extensive set of experiments
shows that the analysis of social activities, social relationships, and socially shared contents helps finding
a key person. The experimental results also confirm the efficiency and scalability of our algorithm on a
synthetic dataset.

Keywords: Social networks, Key person, Skyline query, MapReduce.

86

International Journal of Networking and Computing

1 Introduction
At every moment, enormous amounts of data are generated on social media. Such huge amounts of data can
be used to interpret people and predict their behaviors more diligently. Social media or social network is
a collection of online communication channels dedicated to community-based inputs, interactions, content
sharing, collaboration, and etc. Examples of social media includes websites and apps dedicated to forums,
micro-blogging, social networking, social bookmarking, and wikis.

Data mining research has successfully produced numerous methods, tools, and algorithms for handling
large amounts of data to solve real-world problems. Therefore, data mining has become an integral part
of many application domains including bioinformatics, data warehousing, business intelligence, predictive
analytics, and decision support systems. The primary objectives of the data mining process are to effectively
handle large-scale data, extract actionable patterns, and gain insightful knowledge. Nowadays, social media
is widely used for various purposes. Vast amounts of user-generated data exist and it can be made available
for various kinds of analysis. There is no doubt that to utilize such data in social media is the key to improve
various business processes.

In this study, we consider the problem of selecting a small number of key persons from a social media
database. As a model of social media, we selected the data from Facebook database because of its usefulness,
reputation, and popularity.

Skyline queries, which select non-dominated objects, are known to be useful to select a small number
of preferable objects from a database [6, 13, 20]. We use the idea of skyline query to solve the key per-
son selection problem. However, selecting a key person from the Facebook database is more complicated
as compared to a general skyline query, because it is different from general relational tables where there
are attributes and their corresponding domain values. We must consider the different metrics in social me-
dia to handle large datasets. The metrics in social media may include the inter-personal relationship (e.g.
friend, follower), user’s group membership, their “comments,” “comment feedback,” “likes,” picture and sta-
tus “shares,” “blocks,” etc. In this work, we consider friends, followers, “like” events, comment feedback,
and memberships for different groups to select the key person.

A symbolic Facebook database is illustrated in Figure 1. Let us assume that we want to select a small
number of key persons from this symbolic dataset. We consider following criteria to select the key person:

1. Friend power − total number of friends that a person has in a social network

2. Followee strength − total number of followers

3. “Like” score − average “like” count

4. Comment support − based on positive and negative comment replies

5. Group score − sum of the group scores of all groups to which the user belongs.

We assume a key person has a large number of friends, followers, higher average “like” count, higher com-
ment score; he/she also has the membership to important groups. User U dominates another user U ′ if all the
five criteria of U are better than or equal to those of U ′’s and in at least one of the five criteria of U is better
than that of U ′.

In Figure 1, the first, second, and third columns represent user id (denoted as UID) of social media, friend
list, and followee list (list that follows the UID), respectively. The fourth column represents the “like” records
in the pattern of 〈IDpost, UIDliker〉, where IDpost is the unique ID of different posts or status update posted
by different users in social media, and UIDliker is the user id of the person who has given a “like” to that
post or status update. Facebook does not support any “dislike” event. Similarly, the fifth column represents
the comment feedback form different users in the pattern of 〈IDpost, UIDreplyer, Commentfdbk〉, where
IDpost is the unique id of different status updates posted in social media, UIDreplyer is the user id of the
commentator who has posted a feedback comment to that status post, and the Commentfdbk is the text that
has been replied by the UIDreplyer. Note that Commentfdbk could have been a neutral, positive or negative
feedback. For simplicity, in this work, we did not consider comments on photos. The sixth column represents
the group membership of each user. We put 1 if UID is a member of that group, otherwise we leave the cell
blank.

The first record of Figure 1 shows that user “A” has several friends (C, D, G, K,· · ·) in the friends list,
in which we assume the friend number count as 34 and the followee count as 81. User “D” has given a

87

Finding Key Persons on Social Media by Using MapReduce Skyline

UID Friends Followee Like Records Comment Feedback
������

G1 G2 G3 G4 G5

A C, D, G, K, …(34) B, L, H, …(81) (5, D),(7, D)...
(36, C, Comment1),

(26, D, Comment3)…
1 1 1

B D, H, ...(20) A, F, W, …(73) (79, E), (79,K)…
(27, C, Comment2),

(78, K, Comment8)…
1 1 1

C A, E, …(55) L, H, …(32) (61, A),(65, E)… (42, F,Comment15)… 1 1

D A, E, F, H, … (75) B, C, …(40) (33,B),(33,A)… (31, B, Comment6)… 1 1 1 1

E D, F, C, G, …(72) A, B, …(96) (101,L),(107,C)… (11, L, Comment17)… 1 1 1 1 1

F E, D, …(94) P, Q, …(56) (201, D),(209, L)… (20, D Comment11)… 1 1 1

G A, E, …(63) M, N, O, …(63) (301, P),(308,F)… (6, P, Comment12)… 1 1 1

H B, D, …(62) A, Q, M, …(71) (307, J), (455, I)… (37, C, Comment19)… 1 1 1

I K, L, …(30) O, P, R, …(23 (510, S), (544,U)… (36, L, Comment18)… 1 1

J P, Q, R, …(46) A, B, C, …(57) (515, A), (515,C)… (45, B, Comment7)… 1 1

… … … … … … … … … …

Figure 1. Example of Facebook data

“like” to the 5th and 7th status update of user “A,” meanwhile users “C” and “D” have replied as Comment1
and Comment3 to the 36th and 26th “status update” of user “A,” respectively. In addition, user “A” has
membership of groups G1, G4, and G5. In our example, there are five groups: Carrier support (G1), Sports
(G2), Video club (G3), Photography (G4), and Tourist (G5). As mentioned earlier, if a person is a member of
some particular group, the corresponding cell is marked as 1, otherwise it is left blank or empty. In general,
all five groups do not have the same importance depending on the context of an analysis. However, in this
study, we assume that the larger the number of members in a group is the more important the group is in the
analysis. In the rest of the paper, we term the group importance as “group weight.”

If we apply skyline query on our symbolic dataset, it will retrieve users “E” and “F ” as key persons. This
is because user “E” has the highest number of followees, “like” score, comment support, and the maximum
group scores’ sum among all the other persons. On the other hand, user “F ” has the highest number of
friends. Moreover, these two persons dominate the rest of the users.

Facebook data are increasing in an exponential manner, and nowadays it has become almost impossible
to process such huge amounts of data in a single node computing system. Therefore, we apply MapReduce
framework to speed up the computation and parallelism. MapReduce is a programming model and software
framework, that was developed by Google Inc. Many real-world tasks are expressible in this model. Pro-
grammers find the system easy to use and hundreds of MapReduce programs have been implemented; and
around one thousand MapReduce jobs are executed on Google clusters every day [3, 10, 23]. For better
understanding and simplicity, we tried to keep the MapReduce explanation figures as simple as possible.

In summary, the contributions of this paper include the following aspects:

� We have considered effective utilization methods of skyline query to handle “Facebook data.”

� We develop a novel scalable parallel algorithm to select the key person.

� We have empirically proved the efficiency of the proposed method through extensive experiments using
synthetic datasets.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 presents the
notions and properties of key person computation using skyline query. We explained the detailed algorithm
with appropriate examples and analysis in Section 4. We experimentally evaluate the algorithm in Section 5
under a variety of settings. Section 6 concludes the paper.

88

International Journal of Networking and Computing

2 Related Work
Retrieving key persons from social network includes the use of skyline computation. We review the related
work on social network in Section 2.1. In addition, we survey existing methods for skyline computation in
Section 2.2.

2.1 Social Networks
Discovering individuals who possess a given set of expertise, or who are familiar about a given topic, is
a widely studied problem, usually known as the expert retrieval problem. The “expert finding task” was
introduced by TREC in 2005. That task involved the exploration of an enterprise-data corpus (an email
archive) and the retrieval of a set of individuals who are specialists in some given topic. DeMartini et al. have
introduced a model for retrieving and ranking entities with its application to find experts [9]. The “expert
team formation problem” is known as another characterization of the expert finding task. Such an approach
uses the social associations among individuals, and the cumulative communication cost as the optimization
term of the objective function [11]. Cao et al. have addressed the jury selection problem by using micro-blog
services like Twitter to solve decision-making tasks [5]. In order to reduce the overall decision-making error
rate, the authors have introduced two models for selecting jury members. They predict the error rate of each
user by evaluating a Twitter graph.

Although several works discussed user profiling on social media [1] [15], to the best of our knowledge,
our work is the first attempt that applies skyline query on Facebook, and it performs an extensive analysis
of the performance on different online groups. Therefore, this paper complements the existing efforts for
addressing key the person selection problem and creates an opportunity to recruit them as brand ambassador.

2.2 Skyline Query Processing
The use of skyline operator over large databases was first addressed by Borzsonyi et al. They introduced
three methodologies: Block Nested Loops (BNL), Divide and Conquer (D&C), and B-tree-based schemes
[4]. In BNL, each data object is compared with every other object in the database, and the object is reported
only if no other object dominates it. For this purpose, a portion of main memory, called window W , is
allocated. The input data are scanned sequentially and placed in W if it is not dominated by any object in W .
A block of non-dominated objects is produced in every iteration. When the window is full, a temporary-file
is used to store data that cannot be placed in W . This temporary-file is used as input to the next iteration.
D&C divides the entire dataset into several blocks such that each block can fit into memory. Non-dominated
objects for each individual block are then computed by a main-memory dominance check algorithm. The
final result is obtained by merging the skyline objects for each block. Chomicki et al. improved BNL by
presorting, that is, they introduced Sort Filter Skyline (SFS) as a variant of BNL [7]. While considering
index-based approaches, Tan et al. addressed “Bitmap” and “Index” as two progressive skyline computing
approaches [21]. In the “Bitmap” methodology, every dimensional value of a data point is exemplified by a
few bits. By applying a bit-wise AND operation on these vectors, a given data point can be checked whether
it is in the skyline. However, in “Index” methodology, a set of d-dimensional objects are organized into d
lists. Lists are organized in such way that an object O is assigned to a list i if its value at dimension i is the
best among all dimensions of O. Subsequently, lists are indexed by a B-tree, and the skyline is computed by
perusing the B-tree. Perusing continues until an object that dominates the remaining entries in the B-trees is
found. Currently, Branch and Bound Skyline (BBS) is known to be the most efficient method of computing
skyline, and it was proposed by Papadias et al. BBS is a progressive algorithm and it is based on the best-first
nearest neighbor (BF-NN) algorithm [18]. It directly prunes using the R*-tree structure. However, BF-NN
deploys the technique of searching for nearest neighbor repeatedly.

Recently, more aspects of skyline computation have been explored. The k-dominant skyline was ad-
dressed by Chan et al. and they have proposed efficient ways to compute it in a high-dimensional space [6].
The n-of-N skyline query was proposed by Lin et al., which was designed to perform online query on data
streams, i.e., to find the skyline of the set comprising of the most recent n elements. If the datasets are
too large and stored in a distributed environment, it may impossible to handle them in a centralized fash-
ion [12]. Balke et al. first excavated skyline in a distributed environment by partitioning the whole dataset

89

Finding Key Persons on Social Media by Using MapReduce Skyline

User Friend Followee Like Comment Group
ID Power Strength Score Support Score

A 34 81 45 120 60
B 20 73 25 87 52
C 55 32 32 99 46
D 75 40 69 16 69
E 72 96 90 300 100
F 94 56 67 38 71
G 63 63 29 60 73
H 62 71 55 12 54
I 30 23 33 2 44
J 46 57 44 0 37

Table 1. Calculated Example Data

vertically [2]. Vlachou et al. introduced the concept of extended skyline set, which contains all data elements
that are necessary to answer a skyline query in any arbitrary subspace [24]. Tao et al. discuss skyline queries
in arbitrary subspace [22]. Other variants, like dynamic skyline [17] and reverse skyline [8] operators, have
recently attracted substantial attention.

3 Preliminaries
In this section, we present definitions and basic properties of our key person selection problem. Let us assume
that Table 1 shows the calculated values of the data described in Figure 1.

3.1 Social Network Metrics
At first, we introduce some definitions that are used in this work:

Definition 1 (Friend Power). Friend power, Fp, is the total number of friends that a user has on social
media. It can be denoted as follows:

Fp =| Friends | .

More friend counts indicate higher friend power. For example, in Table 1 user “E” has more friends (72)
than user “B” (20); therefore, Fp of “E” is better than that of “B.”

Definition 2 (Followee Strength). Followee strength, Fs, is the total number of followers that a user has
on social media. It is denoted as follows:

Fs =| Followee | .

More followers mean better followee strength. Table 1 illustrates that user “A” has better followee strength
(81) than user “D” (40).

Definition 3 (Like Score). Like score, Ls, is the average number of “like” count that a user has achieved
from his social media’s posts or status updates. It is defined as:

Ls =

∑
Like(IDpost)

| IDpost |

where IDpost is a post or status update by UID and Like(IDpost) is the number of “likes” achieved by
IDpost. From Figure 1, user “C” has posted a status update whose IDpost is “61” and it is “liked” by user
“A.” Let us assume that 37 other people has given a “like” to that post. Again, he/she has posted another
status update whose IDpost is “65” and it is “liked” by user “E.” Let us consider that 27 people have given
a “like” to post “65.” If we assume “C” has posted only two posts or updates, which are “61” and “65” and
the total number of “likes” received by the two posts or updates are 64, then the “like” score of “C” is 32
[∵ (27 + 37)÷ 2 = (64÷ 2) = 32].

90

International Journal of Networking and Computing

Definition 4 (Comment Support). Friends, followers, and others may give comment feedback on some
posts or status updates. The feedback can be neutral, positive, or negative. Comment support is the numerical
summation of positive and negative feedbacks. If comment support is denoted by Cs, then

Cs =
∑

CommentBias(Commentn)

where CommentBias(Commentn) is a function that will return a numeric value of Commentn. It returns
+1 if the comment is positive, −1 if the comment is negative, and 0 if the comment is neutral or unrecog-
nizable. In Figure 1, user “B” has posted a status update whose post ID is “27” and user “C” has replied
with some text feedback: Comment2. Comment2 could be a positive, negative, or neutral sentence. Func-
tion CommentBias(Commentn) is responsible to find the bias of Comment2. The return value could be
+1/− 1/ 0 depending on the bias of the comment. Let us assume that user “B” has received 175 positive, 88
negative, and 32 neutral comment feedbacks in his/her status updates. His/her comment support Cs becomes
87 [∵ Cs(B) = (+1)× 175 + (−1)× 88 + (0)× 32 = 87].

Definition 5 (Group Weight). A group with larger members has more importance than the ones with
small members. It indicates the importance of a group on social network. However, for generalization, we
use the normalized value of group member count for each group and call this measure “group weight” and
denote it for group “t” as:

Gwt(t) =
Gcounts(t)∑n
i=1 Gcounts(i)

where Gcounts(i) is the number of members in ith group and n is total number of groups. Gcounts(t)

denotes the number of members belonging to group “t” for which we are calculating the group weight.
For example, if we assume that group “G1” has 300 members and the total members of different groups
are

∑n
i=1 Gcounts(i) = 2413 then after normalizing the Gwt value of “G1” becomes 12 [∵ Gwt(G1) =

{(300 ÷ 2413) ≈ 0.12} × 100]. Similarly, we assume that Gwt(G2) = 25, Gwt(G3) = 15, Gwt(G4) = 17
and Gwt(G5) = 31.

Definition 6 (Group Score). Group score is the summation of all group weights for a user of a social
media that he/she belongs to.

Gs(U) =

n∑
i=1

Gwt(i)×m(U, i)

where n is the total number of groups and m(U, i) is a group membership factor. m(U, i) is 1 if user U belongs
to group i, otherwise m = 0. In Figure 1, user “A” is the member of groups {G1, G4 & G5}. Summing the
group weights of those groups, we can get the group score of user “A,” Gs(A) = 12 + 17 + 31 = 60, which
is also shown in Table 1.

3.2 Dominance and Skyline

Let us assume we have a dataset DS (shown in Table 1) with five attributes. We represent friend power,
followee strength, “like” score, comment support, and group score from (a1) to (a5), respectively. We use
Ui.ak to denote the kth (1 ≤ k ≤ 5) attribute value of a user Ui, where i denotes user id (UID).

Definition 7 (Person Dominance). A user U ∈ DS can dominate another user U ′ if user U ’s friend
power, followee strength, “like” score, comment support, and group score are better or equal to user U ′’s and
at least one of the mentioned feature of U is better than U ′’s. In Table 1 user “E” dominates user “B.” This is
because user “E” has more friends, followers, “like” score, comment support, and group score than user “B.”

Definition 8 (Key Person Skyline). A user U ∈ DS is in key person skyline of DS if U is not dominated
by any other user in DS. In Table 1, users “E” and “F” are not dominated by any other user. Therefore, they
represent the key person skyline result of the dataset DS.

91

Finding Key Persons on Social Media by Using MapReduce Skyline

3.3 Comment Bias
“Opinion mining,” also known as “sentiment analysis,” [14] is a research area for finding the bias of a com-
ment. Opinions are important because they significantly influence our behaviors. Classification of opinion
can be formulated as a supervised learning problem with three classes: positive, negative, and neutral. The
features, which are often used in this problem, are listed below [16]:

Terms and their frequency. These features are individual words or word n-grams and their frequency
counts. In some cases, we also consider word positions. These features could have been quite effective in
sentiment classification.

Part of speech. Findings of numerous research work indicates that adjectives are significant indicators
of opinions. Therefore, adjectives within a sentence have been treated as special features.

Opinion words and phrases. Opinion words are words that are commonly used to express positive
or negative sentiments. For example, wonderful, beautiful, great, and amazing are positive opinion words,
whereas poor, bad, and horrible are negative opinion words. Apart from individual words, there are also
opinion idioms and phrases, e.g., a piece of cake. Opinion words and phrases are influential to sentiment
analysis for obvious reasons.

In our proposed CommentBias() function, opinion words and phrases has been considered as key bias
detection approach.

Rules of opinions. Although opinion words and phrases are important, there are also many other expres-
sions that contain no opinion words or phrases but they indicate opinions or sentiments.

Negations. Negation words are crucial because their presence often change the orientation of the opinion.
For example, the sentence “I don’t like this book” is negative. However, negation words must be handled with
extra care because occurrences of such words do not confirm a negative meaning. For example, the “not” in
“not only but also” does not change the orientation direction.

Syntactic dependency. Words dependency-based features generated from parsing or dependency trees
are also used by several researchers.

3.4 Hadoop MapReduce
Hadoop is known to be an open source implementation of Google Inc.’s MapReduce framework. It is main-
tained by Apache Software Foundation. This framework is designed to allow users to submit a MapReduce
job by defining the map and reduce functions. Data are represented as 〈key, value〉 pairs and computation is
distributed across the cluster of autonomous machines. Two user-defined functions, called Map and Reduce,
are responsible in performing computational tasks:

Map(k1, v1)→ list(k2, v2)

Reduce(k2, list(v2))→ list(v3)

The Map function (sometimes called Mapper) processes on each 〈key, value〉 pair of input data, and
produces intermediate 〈key, value〉 pairs. The intermediate 〈key, value〉 pairs are then sorted and grouped
associated with the same key. The Reduce function (sometimes called Reducer) takes a key and a list of
values for that key, applies the processing logic, and generates the final result as a list of values.

4 Key Person Finding Algorithm
Our MapReduce based key person finding algorithm has the following seven consecutive calculation phases:

1. Friend power (Fp)

2. Followee strength (Fs)

3. “Like” score (Ls)

4. Comment support (Cs)

5. Group weight (Gwt)

92

International Journal of Networking and Computing

UID1 UID2

A C

A D

A G

A F

… …

C A

… …

D E

D H

D F

… …

Mapper A 1

Mapper A 1

Mapper D 1

UID List of Val.

A 1

1

1

.

.

B …

C …

D 1

1

1

1

.

.

.

… …

�

�

�

�

�

�

�

Reducer A 34

B 20

C 55

… …

… …

… …

D 75

E 72

F 94

G 63

H 62

I 30

J 46

Reducer

Input: Friend List
UID1 & UID2 = User ID

Mapper output

After Shuffling Friend Power (Fp)

UID Value

UID Fp

�

�

	

	

�

�

�

�

	

�

Mapper C 1

Algorithm: Friend Power Calculation

1. Function MAPPER (����	value)

���� 	�	

�

� ���
	��	���
�����	

������ 	�	

�

� �
����

�

�	��	���
����

2. Begin

3. �
�����	�����	��
���� 	� �	

�

��	

�

� ���	

depict � �	

�

� � � as Mapper output

4. End

5. Function REDUCER (key
	

� � ����	� 	!"�#�� �)

���� 	�	
 � ���
	��	���
�����	

����	��	������� 	����	��	1′�		�������
	���&��

6. Begin

7. ��� '

�

	

8. for each item in � ����	��	������ � do

9. ��� 	 	����(���&	�
�& � ����	��	������ �

10. '

�

	 '

�

� ���

11. ���	����

12. write �	
�'
�

to)
'*

13. End

Figure 2. Friend power computation procedure

6. Group score (Gs)

7. Sorting and skyline computation

4.1 Friend Power (Fp)
Calculating the friend power (Fp) in MapReduce fashion is the first phase of algorithm. We assume that our
friend list DataSet is in kvs (key value storage) format and structured as: 〈UID1, UID2〉, where UID2

is a friend of UID1. In addition these data are distributed among several DataNodes. When a Mapper
reads 〈UID1, UID2〉 pair, it depicts one 〈key, value〉 pair as the intermediate result (i.e., Mapper output):
〈UID1, 1〉 indicating that UID1 has one friend. According to MapReduce framework, the Mapper output is
shuffled; group by corresponding keys, and values are tagged together as list(values). In the proposed case,
the list(values) is represented by a sequence of 1′s. After shuffling and grouping, data with the same key are
fed into a single Reducer. The Reducer counts the number of 1′s in the list(value) sequence and produces
the counting result as our Fp.

Figure 2 represents the Fp computation procedure with its formal algorithm. For the first input pair 〈A,C〉
the Map worker produces one 〈key, value〉 pair: 〈A, 1〉. This is because user “A” has one friend “C,” and
therefore, the friend power of “A” increases by one. By applying (UID, count(value)) each Reduce worker
produces the total friends number (which we call friend power Fp). For example, user “A” has 34 friends,
user “D” has 75 friends, etc.

4.2 Followee Strength (Fs)
This section explains followee strength (Fs) calculation in MapReduce framework. This calculation is similar
with Fp calculation. In this case, we assume that our follower list DataSet is in kvs format and structured as:
〈UID1, UID2〉, where UID2 is following UID1. As stated earlier, this DataSet is distributed among several

93

Finding Key Persons on Social Media by Using MapReduce Skyline

Algorithm: Followee Strength Calculation

1. Function MAPPER (����	value)

���� 	�	

�

� ���
	��	���
�����	

������ 	�	

�

� ��������′�	��	���
����

2. Begin

3. �
�����	�����	��
���� 	� �	

�

��	

�

� ���	

depict � �	

�

� � � as Mapper output

4. End

5. Function REDUCER (key
	

� � ��� 	!"	#$�%�� �)

���� 	�	
 � ���
	��	���
�����	

����	��	������� 	����	��	1′�		�������
	���'��

6. Begin

7. ��� (

�

	

8. for each item in � ����	��	������ � do

9. ��� 	 	����)	���'	�
�' � ����	��	������ �

10. (

�

	 (

�

� ���

11. ���	����

12. write �	
�(

�

to *
(+

13. End

UID1 UID2

A B

A L

A H

B A

B F

B W

C L

C H

D B

D C

. .

. .

. .

. .

M
ap

p
er

A 1

A 1

A 1

B 1

B 1

V 1

C 1

C 1

D 1

D 1

… …

UID Value

UID List of Val.

A …

B 1

1

1

.

.

.

… …

H 1

1

1

.

.

… …

�

�

�

�

�

�

�

A 81

B 73

C 32

D 40

E 96

F 56

G 63

H 71

I 23

J 57

… …

UID Fs

Input: Followee List
UID1 & UID2= User ID

Mapper output

After Shuffling Followee Strength (FS)

�

�

�

�

�

�

�

�

�

	

�

�

	

R
ed

u
ce

r

Figure 3. Followee strength computation procedure

DataNodes. When a Mapper reads 〈UID1, UID2〉 it knows that UID2 is following UID1. Therefore,
Mapper output depicts a pair of value 〈UID1, 1〉, indicating that UID1 has one follower. According to
MapReduce framework, the Mapper output is shuffled, grouped by keys, and the corresponding values are
tagged together as list(values). Like the Fp calculation, the list(values) is represented by the sequence of
1′s. After shuffling and grouping, data with the same key are fed into a single Reducer. The Reducer counts
the number of 1′s in the list(value) and produce the counting result as our Fs.

Figure 3 illustrate the followee strength computation process. Where for the first input pair 〈A,B〉 Map-
per produces 〈key, value〉 pair 〈A, 1〉 which means “A is followed by another user B.” Here “B is followed
by A” is not true. Subsequently, by applying (UID, count(value)) each Reducer produces the total followee
number (which we termed as followee strength Fs); for example, user “B” has 73 followers, user “H” has 71
followers, etc.

4.3 Like Score (Ls)
“Like” score (Ls) is one of the important matrices of a social network like Facebook. This section explains
the procedure of calculating Ls in MapReduce framework. Here, we assume that the kvs format of our input
data is structured as: 〈UID1, (IDpost, UID2)〉, where UID1 represents a user id that posted the original
post or status update, IDpost is the id of the post posted by UID1, and UID2 is the id of the person who
gave “like” to the IDpost. After reading 〈UID1, (IDpost, UID2)〉 pair, a Mapper confirms that user UID1

receives a “like” for his/her post IDpost. Therefore, it depicts a (key, value) pair as: 〈UID1, IDpost〉. As we
discussed previously, these values are shuffled, grouped together, and values with similar key will be fed to a
single Reducer. The list(values) would be a collection of IDpost in which UID1 has achieved “likes” from
other users. After shuffling, a single Reducer calculates the average “likes” that user UID1 has achieved.
The calculated result is known as “like” score (Ls).

Figure 4 illustrates the “like” score (Ls) computation process with its formal algorithm. The figure shows
that when a Mapper reads 〈A, 5, D〉 as input, it depicts 〈A, 5〉 as the intermediate output (i.e. Mapper output).
Similarly, when a Mapper reads 〈B, 79, E〉 it produces 〈B, 79〉. After shuffling, each Reducer receives values

94

International Journal of Networking and Computing

Algorithm: Like Score Calculation

1. Function MAPPER (key, value)

�������

�

	

� 		�	�
	��	�	

����,������ ��

����

����

�

��

����

� 	�����	�����	��	
	��(string)

���

�

� �	�
	��	����	�����	
��	��	
�

2. Begin

3. �
���			����
		

���� 	� ���

�

� ��

����

����

�

�	

���	depict � ���

�

� ��

����

� as Mapper output

4. End

5. Function REDUCER (���� � ��� 	!"	#$�%�� �)

�������	� �	�
	��	 	

���

��	
	�&	�����	� ��	
	�&	��

����

6. Begin

7. ��	
������	
	 	 	���	'

��(�	
	 � 	

��� �

���������
 	
, ��	
��������
 	

8. for each item in � ��	
	�&	�����	 � ��

9. post_id = fetch item from � ��	
	�&	�����	 �

10. if (���	
������	
.contains(post_id)) then

11. ��	
��������
 ��

12. ��	
������	

 ������	
����

13. ���	�&

14. ���������
 ��

15. ���	����

16. (

�

	 ���������
 � ��	
��������

17. �
�
�	 ���� (

�

�)�*+

18. End

UID1 IDpost , UID2

A 5 D

A 7 D

B 79 E

F 209 A

H 22 D

D 33 B

J 45 B

B 79 K

D 33 A

E 101 L

F 201 D

… … …

Mapper A 5

UID IDpost

Mapper B 79

Mapper B 79

S
h

u
ff

le

UID List of Val.

A 5, 7, …,5…, 9

B 79, 37, 79,…

… …

D 33,…,33…

E 101,…,22…

F 209, 201,….

G …

H …

I …

J …

… …

�

�

�

�

�

�

�

�

�

	

�

�

	

Reducer

UID Ls

A 45

B 25

C 32

D 69

E 90

F 67

G 29

H 55

I 33

J 44

… …

Reducer

Reducer

Input: Like records
UID1 & UID2= User ID

IDpost= ID of post or status update

Like Score (Ls)After Shuffling

Mapper output

Figure 4. Like Score (Ls) calculation procedure

with similar UID. In Figure 4, the first Reducer gets the list(values) = 5, 7, · · · 5, · · · , 9 · · · and it calculates
the average of like score Ls. For example, the Ls value for user “A” is 45, for user “B” it is 25, etc.

4.4 Comment Support (Cs)

Comment support (Cs) is another key matrix of social media. Users post status update or comments in social
media. Other people reply or send feedback on those status update or comments. Comment feedback may
be neutral, positive or negative. Some feedback bias is too hard to understand due to their complexity. For
simplicity, we consider those complex feedbacks as neutral. Let us assume that we have a function named
CommentBias() that determines whether the parameter comment feedback is positively or negatively bi-
ased. Let us also assume input data kvs format to be structured as: 〈UID1, (IDpost, UID2, Commentfdbk)〉.
Where UID1 represent original status posted by the person, IDpost is the post id, and UID2 is the user
id that provides the feedback. Commentfdbk is the plain text comment feedback. When Mapper reads
〈UID1, (IDpost, UID2, Commentfdbk)〉, it uses the CommentBias() function to get the bias of comment
feedback. CommentBias(Commentfdbk) returns +1 or −1 depending on Commentfdbk being either a
positive or negative comment. This function also returns 0 for neutral or complex comment, whose bias is
hard to understand. After processing each input data, each Mapper retrieves 〈UID1,±1〉, indicating UID1

receives positive or negative feedback. The Mapper does not produce any result if the CommentBias()
returns 0 and has no significance in the calculation of Cs.

After shuffling and grouping based on key similarity, the list(values) will be a sequence of +1 and −1.
Subsequently, each Reducer calculates the numerical aggregation (e.g., sum) of those values and produces
the result as comment support (Cs).

Figure 5 illustrates the process of calculating Cs. When a Mapper reads 〈A, 306, C, Comment1〉, then
it tries to find the bias of Comment1 using CommentBias() function. Let us assume Comment1 is a

95

Finding Key Persons on Social Media by Using MapReduce Skyline

Algorithm: Comment Support Calculation

1. Function MAPPER(�������
�

���	
�� �����
�����

�

���������)

���

�

� 		����	��	���	�� �	!��	"��!��!��#��

���

�

� 		����	��	���	��$%!��	!�	!��	"��!��!��#��

��

����

� 	"��!	�� �!��#� 	�	&�''�#!� 	!�(!	%�''�#!��!��#��

2. Begin

3. depict 	 ���

�

�&�''�!#!)�$��&�''�#!��
 as Mapper output

4. End

5. Function REDUCER (���� 	 	*
�	�+	��	
�

)

,�-����	� 	����	��	�		.��!	�/	 $.���� 	.��!	�/	�
	��		�

6. Begin

7. &

�

� �

8. /��	�$%�	�!�'	�#	 	 .��!	�/	 $.���	
 	��

9. 0�$�� $. � 	/�!%�	�!�'	/��'	 	 .��!	�/	 $.���	
	

10. &

�

� &

�

� 		0�$�� $.

11. �#�	.��"

12. ���!�	�����&

�

�	!�	1�23

13. End

Algorithm: CommentBias

1. Function CommentBias (������� as string)

2. Begin

3. determine Comment bias using opinion mining techniques – Opinion

word & phrase

4. �/	 &�''�#!	��	"���!� �	��#!�#%� 	��!��#		�

5. �.���/ &�''�#!	��	#��$!� �	��#!�#%� 	��!��#		�

6. �.��		��!��#			�

7. �#�	�/

8. End

UID1 IDpost UID2 Comment

A 306 C Comment1

B 207 C Comment2

A 207 D Comment3

… … … …

… … … …

D 331 B Comment6

J 451 B Comment7

B 719 K Comment8

D 313 A Comment9

E 1101 L Comment10

F 2011 D Comment11

… … … …

Mapper A +1

��� ����

Mapper A −1

Mapper B +1

S
h

u
ff

le

UID List of Val.

A

+1

+1

−1

+1

…

B

−1

+1

−1

−1

…

… …

H

−1

+1

−1

−1

…

… …

A 120

B 87

C 99

D 16

E 300

F 38

G 60

H 12

I 2

J 0

… …

UID Cs

�

�

�

�

�

�

�

�

�

	

�

�

	

Reducer

Reducer

Input: Comment Records

UID1 & UID2= User id

IDpost= Post or status ID

Mapper output

After Shuffling Comment Support (Cs)

Figure 5. Comment support (Cs) calculation procedure

positive comment, and therefore, CommentBias() will return +1. In this particular scenario, the Mapper
output becomes 〈A,+1〉. Similarly for input 〈A, 207, C, Comment3〉, mapper outputs 〈A,−1〉 (assuming
Comment3 is a negative comment). After shuffling, grouping, and feeding into Reducer the Comment
Support (Cs) is being calculated as 120 for user “A,” 87 for user “B,” etc. For better understanding, we have
included formal algorithm with in Figure 5.

4.5 Group Weight (Gwt)

To calculate group weight, each mapper takes UID and their corresponding group lists as input. Each
Mapper generates a pair of intermediate output: 〈GID, value〉. Here, GID represents group id. After
shuffling and grouping by the corresponding GID, the Mappers outputs are sent to Reducers. Each Reducer
produces 〈GID, count(value)〉 pair for each group, where count(value) is the membership number of each
group. Finally, a separate module named WeightCalculation calculates the normalized value of membership
count. These normalized values are known as Group Weight (Gwt).

Figure 6 shows the procedure of group weight computation. For the input pair 〈A,G1〉, Mapper pro-
duces 〈G1, 1〉. Subsequently, using 〈GID, count(value)〉 pair each Reducer produces the total membership
number for each group. For example, group “G1” has 300 members, “G2” has 604 members, etc. After
normalizing the Gwt value of “G1,” it becomes 12 [∵ Gwt(G1) = (300 ÷ 2413) → 0.12 × 100, 2413 =∑n

i=1 Gcounts(i)] and the Gwt value of “G2” becomes 25, etc.

96

International Journal of Networking and Computing

Algorithm: Group Weight Calculation (MapReduce part)

1. Function MAPPER (����	value)

���� 	�	
 � ���
	��	���
�����	

�������	
 � �
���	��	���
����

2. Begin

3. �
�����	�����	��
���� 	� �	
��	
 � ���	

depict � �	
� � � as Mapper output

4. End

5. Function REDUCER (key
	

� � ����	� 	!"�#�� �)

�����	
 � �
���	��	���
�����	

����	�$	������� 	����	�$	1′�		�������
	���'��

6. Begin

7. ��� 	�

��

 �

8. for each item in � ����	�$	������ � do

9. ���
 	$���(���'	$
�' � ����	�$	������ �

10. ��

��

 ��

��

� ���

11. ���	����

12. write �	
� ��
��

to)
*+

(Weight Calculation module will use these ��
��

values to get

normalized 	�
��

	

)

13. End

UID GID

A G1

B G1

D G2

E G5

H G1

I G4

J G2

B G2

D G2

E G2

F G2

… …

G1 1

GID Val.

G4 1

GID List of Val.

G1 1

1

1

1

.

G2 …

… …

G4 1

1

1

1

… …

S
h
u
ff

le

G1 300

… …

G2 604

… …

G4 400

… …

Mapper output

Mapper Layer

Reducer Layer

W
ei

g
h
t

C
al

cu
la

ti
o
n

G1 12

G2 25

G3 15

G4 17

G5 31

… …

GID Count GID Gwt

Reducer output

Input: Group Membership List
UID= User ID

GID= Group ID

Group Weight (Gwt)

�

�

�

�

�

�

�

�

�

	

�

�

	

After Shuffling

Figure 6. Group weight computation procedure

4.6 Group Score (Gs)
In this MapReduce procedure each Mapper takes 〈UID,GID〉 pair and Gwt as input and generates pairs:
〈UID, value〉 . Where value is the normalize weight value for each group. On the downside, after shuffling
each Reducer produces the 〈UID, sum(value)〉 pair for each user. We termed sum(value) as group score
(Gs).

Group score computation process is shown in Figure 7. For the input pair 〈A,G1〉, Mapper produces pair
〈A, (G1, 12)〉. Here normalized group weight value for group “G1” is 12. Subsequently, using sum(value)
function, each Reducer produces the group score for each user. To illustrate, user “A” has a group score of
60, user “B” has a group score of 52, etc. For better understanding, we have included a formal algorithm in
Figure 7

4.7 Sorting and Skyline Computation
We perform descending sort on UID according to Fp, Fs, Ls, Cs, and Gs. A similar procedure has been
applied for these five sorting. To avoid redundancy in this paper, we discuss only about the sorting procedure
based on Fp. Initially, each Mapper takes 〈UID,Fp〉 pair as input and produces 〈Fp, UID〉 pair. After
completing the shuffling process on Fp, all 〈FP , UID〉 pairs are sent as Reducers’ input. Subsequently, each
Reducer outputs UID in descending order based on Fp.

Figure 8 represents this sorting procedure. Mapper reverses the input pair 〈A, 34〉 as 〈34, A〉. After
sorting on friend power in descending order each Reducer outputs sorted UID. In Figure 8, user “F” holds
the topmost position because of his/her highest Fp. It is to be noted that to sort in descending order, we must
override the default output key class of Hadoop (because the default sorting operation of Hadoop framework
is ascending). For clear understanding, we have included a formal algorithm in Figure 8.

In the next stage, the proposed method receives five sorted UID lists respectively on Fp, Fs, Ls, Cs, and
Gs. We must select our key person based on these five criteria. That means a key person has at most five

97

Finding Key Persons on Social Media by Using MapReduce Skyline

Broadcast: Group Weight (Gwt)

Mapper A (G1, 12)

Mapper B (G1, 12)

Mapper F (G2, 25)

UID GID

A G1

B G1

D G2

E G5

H G1

I G4

J G2

B G2

D G2

E G2

F G2

… …

UID Val.

UID List of Val.

A

(G1, 12)

(G4, 17)

(G5, 31)

B

(G1, 12)

(G2, 25)

(G3, 15)

C
(G1, 12)

(G5, 31)

D

(G1, 12)

(G2, 25)

(G3, 15)

(G4, 27)

E …

F …

G …

… …

S
h
u
ff

le

R
ed

u
ce

r

A 60

B 52

C 46

D 69

E 100

F 71

G 73

H 54

I 44

J 37

… …

… …

UID Gs

Mapper output

Group Score (Gs)

Input: Group Membership List
UID= User ID

GID= Group ID

�

�

�

�

�

�

�

�

�

	

�

�

	

After Shuffling

Algorithm: Group Score Calculation

1. Broadcast �
��

to each ������

2. Function MAPPER �����������

	
���
�	� ��
�	��	 ������

����
� 	�
�	� 	�����	�� (string)

3. Begin

4. ����
��	 � �
���
� � 	���	

depict � �
�� ��
���

��

� � as Mapper output

5. End

6. Function REDUCER (���
	

� � ��� 	!"	������ �)

	
�� 	�
�	� 	��
�	��	��������

����	�#	����
�� ����	�#	 �
���$�

�
� � 	�����	��	 ������ 	�	�$�	� 	�����	$
��%�	���&'
��	

7. Begin

8. ��� �

�

	

9. for each item in � ����	�#	����
� � do

10. ��� 	 	#
��%	��
&��

��

	

#��& � ����	�#	����
� �

11. �

�

	 �

�

� ���

12.
��	����

13. 	$���
	�
���

�

	��	(�)*

14. End

Figure 7. Group score computation procedure

times the opportunity to be selected as the best person. Therefore, our method maintains a counter for each
user and if a user is retrieved five times, then it stops the candidate selection.

Figure 9 shows the skyline computation procedure. In the first iteration, it selects users “F” and “E” as
candidates and sets the frequency counter value 1 for “F” and 4 for “E” [as it picks {F,E,E,E,E} in the
first iteration]. Subsequently, it chooses user “D,” “A,” and “G” as candidates and sets their corresponding
frequency counter values. Thereafter, the counter value for user “E” becomes 5, which is equivalent to the
total number of input criterion. Finally, the candidate list for key persons are {A,D,G,E, F}. Now, we can
easily compute skyline by comparing these candidates. The details of this skyline computation procedure are
discussed in [20]. For interested audiences, we briefly describe the idea of that work below.

In the work [20], we partitioned the dataset vertically and sorted each partition. That means, we have to
sort the data objects according to domain values. Based on the result of sorting, the object IDs are given a
ranking value. An Eliminator module collects top IDs from each domain horizontally. The module maintains
a counter for each retrieved object. When a counter value becomes equal to the number of domains, then it
stops ID collection. The IDs collected by the module are candidates of Skyline query result.

In Figure 9, UIDs are already sorted according to friend power, followee strength, like score, comment
support and group score. In the first iteration, the Eliminator module picks {E,F,E,E,E}, as they are
the top ranked UIDs. At the same time, the Eliminator module maintains a counter for each retrieved UID.
After the first iteration, the counter of UID “E” is set to 4 as it occurs four times in the retrieved list. For
the same reason, the counter for UID F is set to 1. In the second iteration, {D,A,D,A,G} are picked and
the counters are set or updated (if needed). In the third iteration, the UID picking procedure stops as the
Eliminator module picks “E,” updates the counter value for “E,” and finds that it is equal to 5, which is the
same as the number of domains.

When the Eliminator module stops, it already has had a list of UIDs. In the example, the list contains
{F,E,D,A,G} − known as candidate list. Now, each of the elements in the candidate list has its own
domain values.

98

International Journal of Networking and Computing

Algorithm : Ordering with MapReduce

1. Function MAPPER �����������

�	
���
	� ��	�	��	 ������

����	��

�

�friend power (number)

2. Begin

3. ����	��	 � ��
��

�

� 	���	

depict � �

�

	

���
 � as Mapper output

4. End

5. Function REDUCER (���
	

� � ��� 	!"	������ �)

�	
��

�

� #��	��	��$	�	���%&	��

����	�#	����	�� ����	�#	��

6. Begin

7. for each item in � ����	�#	����	� � do

8. 	#	��'	��

	

#��% � ����	�#	����	� �

9. $���	 � ��
 � ��	(
�)

10. 	��	����

11. End

UID Fp (a1)

A 34

B 20

C 55

D 75

E 72

F 94

G 63

H 62

I 30

J 46

… …

… …

M
ap

p
er

Fp (a1) UID

34 A

20 B

55 C

75 D

72 E

94 F

63 G

63 H

30 I

46 J

… …

… …

S
h
u
ff

le
UID

F

D

E

G

H

C

J

A

I

B

…

Fp (a1) UID

94 F

75 D

72 E

63 G

62 H

55 C

46 J

34 A

30 I

20 B

… …

… …

R
ed

u
ce

r

Friend Power List
UID= User ID and Fp=Friend Power

Mapper output

�

�

�

�

�

�

�

�

�

	

�

�

	

After Shuffling
Ordered UID

based on Fp

Figure 8. Sorting on friend power

In the example, the domain value of “F” for five domain Fp,Fs, Ls, Cs & Gs are {94, 56, 67, 38 & 71},
respectively. Table 2 shows us the domain values for all UID in the candidate list:

uid Fp Fs Ls Cs Gs

F 94 56 67 38 71
E 72 96 90 300 100
D 75 40 69 16 69
A 34 81 45 120 60
G 63 63 29 60 73

Table 2. Candidates’ Domain Values

It is obvious, when we perform dominance tests among those candidate list UIDs, “E” will dominate “A”
and “G.” No one within the candidate list dominates “F,” “E,” and “D,” therefore they are our desired key
persons. The dominance test operations are performed by the Simple Comparison module.

99

Finding Key Persons on Social Media by Using MapReduce Skyline

UID Sorted by

Friend

Power

Followee

Strength

Like

Score

Comnt.

Support

Group

Score

F E E E E

D A D A G

E H F C F

G B H B D

H G A G A

C F J F H

J J I D B

A D C H C

I C G I I

B I B J J

E
li

m
in

a
to

r

Candidate

F

E

D

A

G

S
im

p
le

 C
o

m
p

a
ri

so
n

Result Set

F

E

D

Figure 9. Skyline computation

5 Performance Evaluation

This section reports our experimental results to validate the effectiveness and efficiency of the proposed
method. We set up a cluster of four commodity PCs in a high-speed gigabit networks, each of which had an
Intel Core 2 Duo E8500 3.16 GHz CPU, with 8 GB memory. These machines were connected with Cisco
SG300-20 gigabit manageable switch. We compile the source codes under Java V8. We used hadoop version
2.5.2 and the OS platform was 64 bit CentOS 7. The replication parameter of hadoop configuration was 2.

One of the important goal for designing our experiments was to study the flexibility of processing large
amount of data using the proposed algorithm in MapReduce framework. To study the effectiveness, we have
compared our proposed method with “Single Node” execution. The term “Single Node” is used to specify a
standalone autonomous desktop PC. It is neither a part of the MapReduce framework nor it is considered as a
part of any other cluster or grid. It is used to study the performance variation of our proposed algorithm while
not using MapReduce framework. We have also conducted experiments with the domain value idea expressed
in [19], where a similar problem is considered as the graph mining problem. To conduct experiments, we
used synthetic datasets (because of the unavailability of Facebook data); each experiment is repeated five
times and the average result is considered for performance evaluation.

5.1 Effect of Proposed Algorithm in MapReduce

We study the effect of various steps described in Section 4. Figure 10 (a−f) shows the effect of Fp, Fs, Ls, Cs,
Gwt and Gs calculation. In general, social media mining problems are considered as graph-mining problem.
Similar graph mining problems are basically analogous to top-k query problem [e.g., ranking problem], rather
than skyline query. However, a top-k query requires users to have the domain knowledge, while for skyline
query, no domain knowledge is required. We have compared the performance of our proposed algorithms
with the skyline idea described in [19], where the problem of InfraSky is explained as a graph-mining issue
and domain values are expressed by indegree and outdegree of a node. For example, in case of Fp calcu-
lation, we assumed that if user “A” has a friend “B” then there exists a directed edge from node “B” to “A”
and so on for other metrics. From each of the experimental results, shown in Figure 10, we can see that
the performance of using MapReduce is better than the performance of Single Node implementation as well
as the InfraSky idea defined in [19]. However, we can also observe in every experiment that the execution
time of using MapReduce framework is almost identical (almost a constant value), even if the cardinality of
data set increased significantly. This identical execution time indicates that the proposed MapReduce-based
method can be used to efficiently process larger amounts of data than in our experiments. Meanwhile, the
other methods are not suitable for processing large scale of data, as their execution time increases linearly.

100

International Journal of Networking and Computing

0

50

100

150

200

250

300

600k 1200k 1800k 2400k 3000k

T
im

e
in

 S
ec

Friend List Size

��������	
�

��
��
���

����������
��

0

50

100

150

200

250

600k 1200k 1800k 2400k 3000k

T
im

e
in

 S
ec

Followee List Size

��������	
�

��
��
���

����������
��

��������	�
�����	����������	
�����

�

 ��
��
���	� ��������	�
�����	���	��	
�� �����������

�

 ��
��
���	�

0

50

100

150

200

250

600k 1200k 1800k 2400k 3000k

T
im

e
in

 S
ec

Like Data Size

��������	
�

��
��
���

����������
��

0

50

100

150

200

250

300

350

600k 1200k 1800k 2400k 3000k
T

im
e

in
 S

ec

Comment Data Size

���������

��
��
���

����������
��

��������	�
�����	����������	�����

�

���
��
���	� ��������	�
�����	���	����������	�����

�

 ��
��
���	�

0

50

100

150

200

250

600k 1200k 1800k 2400k 3000k

T
im

e
in

 S
ec

��	�
����������

��������	
�

��
��
���

����������
��

0

50

100

150

200

250

600k 1200k 1800k 2400k 3000k

T
im

e
in

 S
ec

Group List Size

��������	
�

��
��
���

����������
��

��������	�
�����	�����	��������� ��

��

���
��
���	� ��������	�
�����	����	�����	�����

�

 ��
��
���	�

Figure 10. Performance of domain value calculation

5.2 Effect of Skyline Computation
The naive method of skyline computation is a greedy approach and it requires a lot of computational resources
like memory, and CPU time, etc. We report the performance on skyline computation. For this experiment, the
data cardinality varies from 50k to 800k. The performance result is illustrated in Figure 11. In traditional way
the complexity of “single node” skyline computation is O(n2 − 1). It is observed that “single node”-based
method is highly affected by cardinality. If the data size increases more than 100k ,it cannot compute the final
result due to memory space limitations, and this is because of the large cardinality of non-dominating records.
However, our proposed algorithm does not face such a problem. The implementation of dominance test
portion of the idea [19] was implemented in our proposed MapReduce framework, therefore, the execution
time is identical.

5.3 Effect of New Metrics
The major problem of using skyline query is that it may produce a “too few or too large” result set. When
the result set is too small, the user may not get any advantage from the computation as the resultant data
set may have been already occupied or may not be interested to serve. When the result set is too large,
it may also confuse the result seeker in making any choice. Expanding the size of social media matrices

101

Finding Key Persons on Social Media by Using MapReduce Skyline

0

500

1000

1500

2000

2500

3000

50k 100k 200k 500k 800k

T
im

e
 i

n
 S

e
c

User ID Volume

��������	
�

��
��
���

����������
��

Figure 11. Performance on skyline computation

work can minimize the possibility of encountering such a problem. In our previous work [25], we have used
three social media matrices: friend power (Fp), followee strength (Fs) and group score (Gs). However, in
this paper work we have introduced two new metrics: “like” score (Ls) and comment support (Cs). The
enhancement of result due to upgrade of social media matrices has been shown in Figure 12. It is clear that
if we use the conventional three dimensional approach [25], we may have very few results needed to select
key persons. Meanwhile, the proposed five dimensional approach gives us a better opportunity to choose the
perfect ones.

0

100

200

300

400

500

600

700

50k 100k 200k 500k 800k

S
k
y
li

n
e

 R
es

u
lt

 S
iz

e

Social Media User Size

Conventional approach (3D)

Proposed approach (5D)

Figure 12. Effect of introducing two new Social Media metrics

6 Conclusion

In this study, we addressed the problem of selecting key persons from different groups of Facebook network.
We consider a novel algorithm to identify key persons. The main feature of the proposed algorithm is that
it can retrieve results using the skyline query. Moreover, in our proposed approach we consider the parallel
distributed MapReduce framework to speed up the computation process and to handle massive data. Extensive
experiments demonstrate the efficiency of our algorithm for synthetic datasets.

It is noteworthy to mention that this work can be expanded in a number of directions. First, to generate
more precise results we need to consider the regular activities of people in social networks such as share,
check-in etc. Secondly, if the result is too high or too low, management may be confused to select the key
person. In such case we need to consider other variant queries such as representative skyline query and top-k
query.

102

International Journal of Networking and Computing

Acknowledgment
This work is supported by KAKENHI (16K00155, 23500180, 25.03040) Japan. Asif Zaman is under the
Japanese Government MEXT Scholarship program. Annisa is under the Indonesian Directorate General of
Higher Education (DIKTI) Scholarship program.

References
[1] A. Alkouz, E. W. D. Luca, and S. Albayrak. Latent semantic social graph model for expert discovery in

facebook. In Proceedings of 11th Int’l Conference on Innovative Internet Community Systems (IICS),
pages 128–138, 2011.

[2] W-T. Balke, U. Gntzer, and J-X. Zheng. Efficient distributed skylining for web information systems. In
Proceedings of EDBT, pages 256–273, 2004.

[3] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A comparison of join algorithms
for log processing in mapreduce. In Proceedings of SIGMOD, pages 975–986, 2010.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of ICDE, pages
421–430, 2001.

[5] C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selection for decision making tasks on
micro-blog services. Proceedings of the VLDB Endowment, 11(2):1495–1506, 2012.

[6] C. Y. Chan, H. V. Jagadish, K-L. Tan, A. K. H. Tung, and Z. Zhang. Finding k-dominant skyline in high
dimensional space. In Proceedings of ACM SIGMOD, pages 503–514, 2006.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proceedings of ICDE, pages
717–719, 2003.

[8] E. Dellis and B. Seeger. Efficient computation of reverse skyline queries. In Proceedings of VLDB,
pages 291–302, 2007.

[9] D. Gianluca, G. Julien, and N. Wolfgang. A vector space model for ranking entities and its application
to expert search. Advances in Information Retrieval, 5478:189–201, 2009.

[10] D. Jiang, A. K. H. Tung, and G. Chen. Map-join-reduce: Toward scalable and efficient data analysis on
large clusters. IEEE Transactions Knowledge Data Engineering (TKDE), pages 1299–1311, 2011.

[11] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks. In Proceedings of the
ACM SIGKDD, pages 467–476, 2009.

[12] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline computation over sliding
windows. In Proceedings of ICDE, pages 502–513, 2005.

[13] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: the k most representative skyline operator. In
Proceedings of ICDE, pages 86–95, 2007.

[14] Bing Liu. Ch-11: Openion mining and sentiment analysis. In book Web Data Mining -Exploring
Hyperlinks, Contents,and Usage Data. Springer, New York, 2011.

[15] H. Liu. Social network profiles as taste performances. J. Computer-Mediated Communication,
13(1):252–275, 2009.

[16] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1-2):1–135,
January 2008.

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline queries. In
Proceedings of SIGMOD, pages 467–478, 2003.

103

Finding Key Persons on Social Media by Using MapReduce Skyline

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. ACM
Transactions on Database Systems, pages 41–82, 2005.

[19] Zhuo Peng, Chaokun Wang, Lu Han, Jingchao Hao, and Xiaoping Ou. Discovering the Most Potential
Stars in Social Networks with Infra-skyline Queries, pages 134–145. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[20] Md. A. Siddique, H. Tian, and Y. Morimoto. Distributed skyline computation of vertically splitted
databases by using mapreduce. In Proceedings of DASFAA Workshop, pages 33–45, 2014.

[21] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In Proceedings of
VLDB, pages 301–310, 2001.

[22] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines in subspaces. In Proceedings of
ICDE, pages 65–65, 2006.

[23] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapreduce. In Proceed-
ings of SIGMOD, pages 495–506, 2010.

[24] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis. Skypeer: Efficient subspace skyline
computation over distributed data. In Proceedings of ICDE, pages 416–425, 2007.

[25] Asif Zaman, Md. Anisuzzaman Siddique, Annisa, and Yasuhiko Morimoto. Selecting key person of
social network using skyline query in mapreduce framework. In Proceedings of the International Sym-
posium on Computing and Networking (CANDAR), pages 213–219, 2015.

104

