
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 7, Number 2, pages 106–123, July 2017

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

Naoki Fujieda, Ryo Yamauchi, Hiroki Fujita and Shuichi Ichikawa

Department of Electrical and Electronic Information Engineering,
Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan

Received: January 31, 2017
Revised: April 19, 2017
Accepted: May 26, 2017

Communicated by Michihiro Koibuchi

Abstract

Oblivious RAM (ORAM) is a technique to hide the access pattern of data to untrusted
memory along with their contents. Path ORAM is a recent lightweight ORAM protocol, whose
derived access pattern involves some redundancy that can be removed without the loss of se-
curity. This paper presents last path caching, which removes the redundancy of Path ORAM
with a simpler protocol than an existing method called Fork Path ORAM. By combining Delay
and Reuse schemes, the performance of our technique was comparable with Fork Path ORAM.
According to our evaluation with a prototyped FPGA implementation, the number of LUTs
used with the last path caching was 1.4%–7.8% smaller than Fork Path ORAM.

1 Introduction

Memory encryption [7] is a common technique for secure processors to prevent information leakage
from a data bus to an external memory being observed [15, 17]. However, information does not only
be leaked from the data themselves, but also from their access pattern, i.e. the sequence of memory
addresses accessed by the processor [8]. For example, some of search queries to an email repository [8]
and an SQLite database [10] can be distinguished by observing access pattern. Memory encryption
hides the contents, while it cannot hide the access pattern.

Oblivious RAM (ORAM) [6] is a technique to hide the data and their access pattern by shuffling
data and adding dummy memory accesses. Path ORAM [14] is a recent lightweight ORAM protocol,
which was proposed with a hardware implementation called PHANTOM [10]. However, its overhead
on the bandwidth is still high for practical use.

This study focuses on the redundancy of Path ORAM. A path is a set of memory blocks read
and written through an ORAM access. In Path ORAM, two consecutive paths has an overlapped
region. Writing to and reading from such regions can be removed as redundant memory accesses
without the loss of security.

To deal with this redundancy, this paper introduces last path caching, which has a simpler
procedure than an existing scheme, called Fork Path ORAM [20]. This paper also points out that
Fork Path ORAM has an disadvantage on security: the derived access pattern may reflect the
original access pattern in a specific condition. Though it can be solved in some ways, the efficiency
and simplicity will decrease. Last path caching, on the other hand, is a virtual cache mechanism
using an existing cache in Path ORAM called a stash and it can be implemented with a minimal
modification to the Path ORAM protocol.

106

International Journal of Networking and Computing

We have presented a preliminary version of this work in CANDAR 2016 [4]. The differences from
the preliminary work include:

• possible solutions to a security-related problem of Fork Path ORAM and an evaluation of them
(in Section 3.3 and 3.4),

• a hardware implementation of the last path caching and its evaluation with a prototype of
ORAM controller (in Section 6),

• a detailed evaluation of the combination with another existing virtual cache mechanism, called
treetop caching (in Section 7), and

• an explanation and a discussion about Merging Aware Cache, which was proposed with Fork
Path ORAM [20] (in Section 7).

We also rename the schemes of the last path caching from WT and WB to Reuse and Delay,
respectively, after the paper we first introduced the concept [5].

The rest of this paper is organized as follows: Section 2 provides an overview and a working
example of Path ORAM. Section 3 includes an explanation of redundancy of Path ORAM and an
existing technique used in Fork Path ORAM, along with its shortcomings, possible solutions to
them, and evaluation of Fork Path ORAM. Section 4 presents our last path caching and its several
schemes. We evaluate the performance of ORAM systems in Section 5. A hardware implementation
of the last path caching and its evaluation is described in Section 6. We discuss some related studies
about optimization techniques and ORAM architectures in Section 7. Finally, we conclude the paper
in Section 8.

2 Path ORAM

2.1 Organization of Path ORAM

Path ORAM [20] is a lightweight ORAM protocol, and PHANTOM [10] is the first hardware im-
plementation of Path ORAM on FPGAs. The main data structure of Path ORAM consists of an
ORAM tree, a stash, and a position map, shown in Figure 1 (a).

The ORAM tree is a binary tree of encrypted data, which is mapped to an external, untrusted
memory. Assume the number of blocks storing actual data to be N , the height of the tree L is set
to approximately log2 N , and the levels are numbered from level 0 (root) to level L (leaf). Each
leaf has its own ID from 0 (left) to 2L − 1 (right). Each node, which is sometimes called a bucket,
holds Z blocks. The number of blocks in the ORAM tree, including dummy data, is calculated as
(2L+1 − 1)Z. The ORAM tree is accessed based on a path from the root to a leaf. In this paper,
the path to the leaf x is denoted as P(x).

The stash is an on-chip cache of the ORAM tree that temporarily keeps blocks being read from
the tree. Some blocks might not be written back to the tree during an ORAM access. The stash
must be large enough that the probability of shortage of the stash due to such blocks is negligible.
In order to determine which block should be written back, the stash has to keep the leaf IDs of its
entries.

The position map is a lookup table between the block address given from the processor and the
path (or leaf ID) that the corresponding block belongs. A block with a leaf ID of x is found either
in the buckets on P(x) or in the stash. The capacity of the position map is NL bits. If it is too
large to be stored on the chip, a recursive approach is applied where the position map is managed
by another Path ORAM [20].

2.2 ORAM Access

An ORAM access in Path ORAM is divided into four steps. It is also illustrated with an example
in Figure 1, where the requested block from the processor is B. This example assumes that L = 2
and Z = 2. In the ORAM tree, actual data blocks are labeled by A, B, ..., and G, while dummy

107

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

���������

� �

� �

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

������������ �����

��	
� ������

� �

� �

� �

� �

��� ���

���

���

���

���

���

���

(a) Initial status.

���������

�

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

������������ �����

����	
�����

� �

� �

� �

� �

��� ���

�

�

�

���

���

���

(b) Step 3: reading P(0) for block C.

���������

�

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

������������ �����

����	
�����

� �

� �

� �

� �

��� ���

���

���

���

���

���

���

�

�

�

(c) Step 4: writing P(0) back.

Figure 1: Organization and working example of Path ORAM.

blocks are denoted by blanks. Before a request comes, blocks A and B are placed at the root and C
is in the left node of level 1. Blocks A, B, C, and D have their respective leaf IDs of 0, 1, 0, and 3.

Step 1 is a search for the stash. If the requested block is found in the stash, it is immediately
accessed by the processor and the following steps are omitted. In this example, this step has no
effect because there are no valid blocks in the stash.

Step 2 is a lookup and an update of the position map. The leaf ID of the requested block (x in
the following steps) is read from the corresponding entry in the position map. It is then replaced
by a random number from 0 to 2L − 1 so that the block can be remapped to another path. In the
example, this step reveals that the block C is stored on P(0). It will be remapped to P(2) after the
ORAM access.

Step 3 is a read of a path. All blocks in the nodes on P(x) are read from external memory and
decrypted. Actual data blocks are moved to the stash. Now that the requested block is in the stash,
it is accessed by the processor. In Figure 1 (b), all blocks on P(0), painted in gray, are read and the
blocks A, B, and C are stored into the stash.

Step 4 is a write back of the path. It applies the following processes to all the nodes on P(x),
in order from the leaf to the root. First, it picks out blocks in the stash whose path includes the
target node. If Z or more blocks are extracted, Z blocks chosen from them are encrypted and
written to external memory. Otherwise, all the extracted blocks and dummy block(s) are written
after encryption. To put it briefly, blocks in the stash are written back to buckets as near as possible
to the leaf. These processes can be done by a min-heap that reorders stash entries with a bit-wise
XOR of each leaf ID and the current path’s ID [10]. The block with the smallest XOR value has
the largest overlap with the current path. In Figure 1 (c), blocks in the stash are reordered with the
XOR values in advance. They are sorted in the order of A, B, and C. At first, blocks with paths
that includes leaf 0 are extracted. Since only P(0) includes leaf 0, only the block A is picked. The
block A and a dummy block are written back to leaf 0. The left node of level 1 is included by P(0)
and P(1). The block B and a dummy block are written there. The remaining block C is written

108

International Journal of Networking and Computing

to the root with a dummy block. Note that some blocks might remain in the stash after this step,
though all blocks are written back to the ORAM tree in this example.

With these steps, a request from the processor (that misses in the stash) becomes a sequence of
a read from and a write to a random path. Therefore, the access pattern derived from Path ORAM
is a sequence of accesses to random paths, which is completely independent of the original access
pattern from the processor.

3 Redundancy of Path ORAM

3.1 Example of Redundant Access

Suppose a request to the block E comes after the example shown in Figure 1 (c). Since the block E
is located in the leaf 1, all blocks along P(1) is read from external memory. The point is that the
blocks read from the root and the left node of level 1 were written back and removed from the stash
in the previous ORAM access. If they remained valid on the chip, the access to these nodes would
be omitted. If the block B, instead of the block E, were requested under the same condition, the
whole access to the ORAM tree would be omitted because the block B was read to the stash in the
previous ORAM access.

An observation from this example is twofold: (1) the paths of two successive ORAM accesses
overlap to some extent, and (2) the preceding path-write-back and the subsequent path-read of the
overlapped part are redundant. The sequence of the accessed paths is “public information that
visible to anyone” [10] and it has no information about the original access pattern. The redundant
parts of ORAM access can be safely removed as far as the way of removal is also independent of the
original access pattern.

3.2 Path Merging

Fork Path ORAM [20] was proposed by Zhang et al. to remove the redundant memory accesses in
Path ORAM. The basis of Fork Path ORAM is that, if the path that will be accessed in the next
ORAM access is known before the path-write-back step, the overlapped part between the current
and the next paths can be determined.

Figure 2 shows an example of Fork Path ORAM, where a path-read from P(0) has been completed
and the next ORAM request to the block E has arrived. Since the block E belongs to P(1), the
non-overlapped parts between the two paths are the leaf 0 and the leaf 1. In the path-write-back,
only leaf 0 is written back (Figure 2 (a)). Similarly, only leaf 1 is read from the ORAM tree in the
next path-read (Figure 2 (b)).

If the next requested block is not known, a dummy request is inserted. In the original Path
ORAM, it only has to be known before completing the path-write-back. This difference causes extra
dummy requests in Fork Path ORAM, which may affect the performance. However, even though
a dummy request has been inserted, there is a chance to replace it silently with an incoming real
request. At the time a real request comes, it can be safely replaced if the series of write-back access
that has been issued is the same as the sequence that would have been issued when it had been
inserted from the beginning. This supplementary technique is called dummy label replacing [20].

To increase the overlap of paths, Fork Path ORAM also adapts a reordering of ORAM requests.
It has a request window with a fixed number of ORAM requests. The request that has the nearest
path to the currently accessed path in the window is selected as the next request. If the number of
real requests is smaller than the window size, dummy requests are inserted to fill the window.

3.3 Weaknesses of Fork Path ORAM and Possible Solutions

Although Fork Path ORAM completely removes the access to the overlapped parts of paths, it has
two major weaknesses. The first one arises from property of the dummy requests. An application
with a small number of memory request is more sensitive to the access latency and easily affected
by the dummy requests. Its performance will be much worse by adapting Fork Path ORAM due to

109

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

���������

�

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

������������ �����

����	
�����

� �

� �

� �

� �

��� ���

���

�

�

���

���

���

�

(a) Writing non-overlapped part of P(0).

���������

�

� �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

������������ �����

����� 	
����

� �

� �

� �

� �

��� ���

�

�

�

���

���

���

�

(b) Reading non-overlapped part of P(1).

���������

� �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

������������ �����

����� �	
���

� �

� �

� �

� �

��� ���

�

�

�

�

���

���

�

������������

	
��

(c) Problem after a hit of the block B in the stash.

Figure 2: Working examples of path merging in Fork Path ORAM.

extra dummy requests. The dummy label replacing technique solves the problem to some extent;
however, it must be carefully considered that it is worth the cost of making the ORAM controller
much more complicated.

The second weakness, which is more critical, security-related problem, is the loss of the deter-
minacy of the derived access pattern. Though it can be solved in some ways as we describe later
in this section, dealing with it harms the performance and the simplicity of the Fork Path ORAM.
This leaves room for us to consider a simple alternative. We evaluate the effect of possible solutions
on the performance in Section 3.4. Suppose the blocks B and D are requested in order after Figure
1 (b). The write back step is the same as the previous example shown in Figure 2 (a). Since the
block B is found in the stash, the controller then skips the path access for the block B and starts to
search for the block D. The only overlapped node between the previous path (P(0)) and the block
D’s path (P(3)) is the root. The non-overlapped part, the left node of level 1 and the leaf 3, are
read to the stash (Figure 2 (c)). The problem is that the left node of level 1, shown in black, has not
been written back. It comes from skipping the path access for the block B. That node is included
in the block B’s path (P(1)) but not in the block D’s path (P(3)). If only the block D had been
requested after Fig 1 (b), the black node would have been written back! It leaks the information
that there was a hit in the stash on the way, which may be a hint for the original access pattern
from the processor.

There are three possible solutions to the latter weakness. The first solution is to ignore hits in
the stash. Even though the requested block is found in the stash, the path access for that block is
continued there in order to avoid the problem by skipping it. It obviously degrades the performance
due to unnecessary path accesses. We call this solution None for the stash is not checked for a
hit at all. In the case of Figure 2, the path access for the block B is not skipped as if it was not
found in the stash. As a result, the non-overlapped part with P(0) (i.e. the leaf 1) is read and the
non-overlapped part with P(3), including the black node, is written.

The second solution is to exclude all requests that hit in the stash from the path merging. The

110

International Journal of Networking and Computing

-10%

-8%

-6%

-4%

-2%

0%

2%

fa
c
e

co
m

m
5

b
la

ck

fr
eq

co
m

m
4

fl
u

id

st
re

am

sw
ap

t

co
m

m
3

le
sl

ie

co
m

m
1

fe
rr

et

co
m

m
2

li
b

q

m
u

m
m

er

ti
g
r

A
v
g

.

D
iff

.
o

f
#

 C
yc

le
s

(f
ro

m

N

o
rm

al
)

Application

Fork+Q8 (Orig) (All) (Once) (None)

Figure 3: Result of preliminary evaluation of Fork Path ORAM. The size of reordering window is
set to 8 (Q8).

problem can also be avoided if a stash hit never occurs in the first step of ORAM access (searching
for the stash). Though it may be a natural assumption, as far as we understand, Fork Path ORAM
does not consider it because this step is left unchanged [20]. The stash is checked for a hit in two
cases. The first case is when the path-read step has been completed and subsequent requests had
already arrived. In this case, the stash may be checked repeatedly until a request that misses in the
stash is found or the request queue becomes empty. The second case is when a new request, which
might replace a dummy request using the dummy label replacing, comes in the path-write-back step.
We call this solution All for all of the incoming requests cause searches for the stash. In Figure 2,
the request for the block B will be processed immediately as the block is found in the stash. Now
that the next request is for the block D, the non-overlapped part of P(0) with P(3), which includes
the black node, is written back in the path-write-back step for P(0). It makes an ORAM controller
much complicated because a search for the stash is required every time a new request comes to the
head of a request window.

The third solution is a combination of the other two solutions. It searches for the stash and
excludes a stash-hitting request only once on the completion of the path-read step (i.e. the first case
of the solution All). Note that only the first request is checked for exclusion, even though more than
one requests have arrived. In all other cases, the stash is not checked and thus hits in the stash are
ignored. It may balance the performance and the complexity of controller. In the case of Figure 2,
it behaves differently according to when the request for the block B comes. If it comes before the
completion of the previous path-read step, it will be excluded and the behavior will be the same as
the solution All. Otherwise, the stash hit of the block B will be ignored and the behavior will be
the same as the solution None.

3.4 Evaluation of Fork Path ORAM

In this section, we make a preliminary evaluation about the possible solutions to a security-related
weakness of Fork Path ORAM. The simulation environment and the performance index for this
evaluation are the same as what we will explain in Section 5.1. The following four variants of Fork
Path ORAM are evaluated here:

• the original Fork Path ORAM (Orig) that has a security-related weakness,

• the second solution that excludes stash hits from the path merging (All)

• the third solution that checks the stash only once (Once), and

• the first solution that ignores hits in the stash (None).

111

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

���������

�

� �

� � � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

�

�

�

	�������

�	

�	

�	

�	

�	

���

(a) Last Path Cache between the ORAM tree and the stash.

���������

�

� �

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

�

	�������

�

�

�

��	

��	

(b) Reading P(1) for the block E.

���������

� �

�

� � � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

�

� �

	�������

�	

�	

�	

�	

�	

���

(c) Writing P(1) back, along with the LPC.

Figure 4: Organization and behavior of last path caching (write-through).

The possible solutions are named after the number of stash checks.

Figure 3 shows the relative execution time to the original Path ORAM [14]. The X-axis is the
shortened name of application trace, while the Y-axis is the difference of the relative number of
executed cycles. Avg. means the average of all of the traces. The performance loss with the possible
solutions was about 0.2 percentage points on average. Even though all of the stash-hitting requests
are excluded from the path merging, it sometimes falls into a situation that no real requests follow
after an excluded request, which results in an increase of dummy requests. While the performance
of None is slightly lower than the others, All and Once showed almost the same performance. We
will apply Once to Fork Path ORAM in the following evaluations, considering the complexity of
ORAM controller.

4 Last Path Caching

In this paper, we propose last path caching as an alternative technique to remove the redundant
memory accesses, which has a simpler procedure than Fork Path ORAM. Figure 4 (a) illustrates
its principles of operations. An additional cache called Last Path Cache (LPC) is placed between
the ORAM tree and the stash. Though it can be implemented as a virtual cache in the stash as
described in Section 6, we place an actual cache in the figures to simplify an explanation. It stores
the previously written path from the stash. It has a function to mask or postpone some parts of
path access. Its derived access pattern depends only on the sequence of accessed paths and it is
independent of the original access pattern. Therefore the LPC does not harm the security of the
Path ORAM. Although it can be write-through or write-back, it is shown as a write-through cache
in Figure 4 (a). The characteristics of the last path caching vary according to the type of cache. In
the following subsections, we introduce three schemes: Reuse, Delay, and Delay/Reuse Hybrid.

112

International Journal of Networking and Computing

���������

�

� �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

�

	�������

�

�

�

���

���

���

(a) Reading P(1) for the block E.

���������

�

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

	�������

�

�

�

���

���

���

(b) Writing unread LPC blocks to the ORAM tree.

���������

�

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

�

� �

	�������

�	

�	

�	

�	

�	

���

(c) Writing stash blocks to the LPC.

Figure 5: Behavior of the last path caching (write-back).

4.1 Reuse Scheme

Figure 4 shows the organization and a working example of the Reuse scheme. There, all levels of the
LPC is set to write-through. It means that all the blocks in the LPC have been also written to the
ORAM tree and they are present in the tree. In the example, if the block E is requested (Figure 4
(b)), the overlapped part (including B and C) is supplied from the LPC, while the non-overlapped
part (including E) is read from the ORAM tree. The non-overlapped part in the LPC (including A)
can be simply discarded. On the write back, the whole path are written to both the ORAM tree
and the LPC, as shown in Figure 4 (c).

An advantage of the Reuse scheme is that they do not change the order of requests to external
memory. As we will explain in Section 4.2, reordering the requests to external memory may affect
the locality of access to external memory.

A weakness of the Reuse scheme is that the redundant write accesses are not removed. It means
the reduction of the memory accesses becomes only a half of that achieved by Fork Path ORAM,
when ignoring the effect of the extra dummy requests. The effect of this weakness gets large in nodes
near the root. Such nodes are more likely to be included in the overlapped region. On the other
hand, nodes near the leaf are little affected. They are not likely to be overlapped and they will have
to be written back to the ORAM tree after all.

4.2 Delay Scheme

Figure 5 describes the Delay scheme, where all levels of the LPC is set to write-back. All blocks
in the LPC are dirty: they do not exist in the ORAM tree and they must be written either to the
tree or to the stash before the path-write-back step of the subsequent access. The read step (Figure
5 (a)) works in the same way as the Reuse scheme. The overlapped part in the LPC are read to
the stash, while the non-overlapped part must be written to the ORAM tree. Before the write-back

113

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

Table 1: Traces for evaluation, which are sorted by MPKI (Miss Per Kilo Instruction) of the last
level cache.

Name MPKI Name MPKI

face (facesim) 1.22 comm3 6.41
comm5 1.51 leslie (leslie3d) 7.75

black (blackscholes) 1.79 comm1 9.09
freq (freqmine) 2.69 ferret 13.00

comm4 3.74 comm2 14.99
fluid (fluidanimate) 4.09 libq (libquantum) 19.16

stream (streamcluster) 4.90 mummer 24.23
swapt (swaptions) 5.80 tigr 32.40

step, all blocks (including dummy blocks) in the non-overlapped part of the LPC are written back
to the ORAM tree (Figure 5 (b)). Blocks in the stash are then written back to the LPC, rather than
the ORAM tree (Figure 5 (c)). From the viewpoint of the derived access pattern with the Reuse
scheme, it corresponds to a postponement of the path-write-back until the next ORAM access.

An advantage of the Delay scheme is that it does not suffer from extra dummy requests. The
write-back step of Fork Path ORAM [20] requires the overlapped region between the current and the
next path, while the Delay scheme needs the overlapped region between the current and the previous
path. As well as the original Path ORAM, the next path has to be known before the completion of
the path-write-back step in the Delay scheme.

A weakness of the Delay scheme is that the time between reading a block in the ORAM tree
and writing back to the same block gets longer. DRAM is usually used as external memory, which
leverages locality of access with a row buffer. Writing blocks immediately after reading increases the
chance for the blocks to hit in the row buffer. The delay of the write back decreases the possibility
of the row buffer hit, which degrades the effective bandwidth of the memory. This weakness gets
more serious in nodes near the leaf. In the original Path ORAM, the path-read step begins from
the root and the path-write-back step begins from the leaf. Thus the nodes near the leaf are written
back with a shorter interval and more likely to hit in the row buffer. Conversely, the nodes near the
root are not likely to hit in the row buffer and the effective memory bandwidth is not much affected
even if their write-backs are delayed.

4.3 Delay/Reuse Hybrid Scheme

The summary of the weak points of the above-mentioned schemes is that the Reuse scheme does
not affect much near the leaf and the Delay scheme has little effect near the root. The last scheme,
called Delay/Reuse hybrid scheme, combines them to complement each other. To be more precise,
with a threshold t, a part of the LPC from the root to the level t − 1 is set to write-back and the
rest (i.e. from the level t to the leaf) is set to write-through. The path-read step is in common with
the Delay and Reuse schemes. The path-write-back step is different in the selection of blocks to
be written to the ORAM tree. We will explain its detail along with a hardware implementation in
Section 6.

5 Evaluation

5.1 Methodology

In this section, the performance of the proposed schemes is evaluated with a trace-based simulation
environment. Sixteen traces from single-thread applications of the Memory Scheduling Champi-
onship [16] are used, Applications, listed in Table 1, are composed of PARSEC, SPEC CINT2006,
BioBench, and commercial (comm) workloads. Requests in the traces have been filtered in advance
by a last level cache with 512 kiB of capacity and 64-byte data blocks [1]. They are simulated with
a modified version of a DRAM simulator usimm [1] where an ORAM controller is added between

114

International Journal of Networking and Computing

Table 2: System Parameters.
Processor Cores

Core Type 4-way, out-of-order
of Cores 4

Core Frequency 3.2 GHz
Last-level Cache 512 kB/core

DRAM and Memory Controller
of DRAM Channels 4

DRAM Frequency 800 MHz
Peak Throughput 51.2 GB/s

ORAM Controller
Data Block Size 64 B

Height of Tree (L) 23
of Slots per bucket (Z) 4

of Levels for Treetop Cache 3
ORAM Hit Latency 40 ns
AES Circuit Latency 25 ns

AES Circuit Throughput 204.8 GB/s

Table 3: Result of evaluation without reordering.
Criterion Delay Reuse D/R Fork

of Cycles +0.6% -2.2% -3.9% -4.0%

of DRAM Accesses -8.3% -4.2% -8.3% -8.3%

DRAM Row Buffer +89.9% 0.0% +7.3% +7.3%
Miss Rate on Write

the processor and the DRAM controller. Main system parameters are summarized in Table 2. All
four cores executes the same program. The first 400 million instructions are fast-forwarded to warm
ORAM up. The following 100 million instructions are used for the measurement. The performance
index is the sum of the number of cycles to execute them. The number of ORAM accesses, the
number of DRAM accesses, and the miss rate in row buffers of DRAM on write are also measured
for reference.

The following five ORAM variants are evaluated:

• the original Path ORAM [14] (Normal) as the baseline of performance,

• the Delay scheme (Delay),

• the Reuse scheme (Reuse),

• the Delay/Reuse hybrid scheme (D/R), and

• Fork Path ORAM [20] (Fork) for the comparison, where the Once solution in Section 3.4 is
applied.

In the Delay/Reuse hybrid, the threshold is set to 8 unless otherwise mentioned: the LPC blocks
from the root to the level 7 are set to write-back. We also evaluate a case of adapting a reordering
of ORAM requests [20]. The size of the window is set to 4 or 8 requests, which is denoted as Q4
or Q8, respectively. In order to prevent starvation, the movement to find the next path is limited
to one-way: the next request is selected from those with higher leaf ID than the current one. If no
such requests are found, a request with the smallest leaf ID is selected.

5.2 Evaluation Result without Reordering

Table 3 summarizes the evaluation results in the case the reordering of requests is not applied. The
results are shown by the relative difference from Normal. The average values of all the traces are

115

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

-10%

-8%

-6%

-4%

-2%

0%

2%

fa
c
e

co
m

m
5

b
la

ck

fr
eq

co
m

m
4

fl
u

id

st
re

am

sw
ap

t

co
m

m
3

le
sl

ie

co
m

m
1

fe
rr

et

co
m

m
2

li
b

q

m
u

m
m

er

ti
g
r

A
v
g

.

D
iff

.
o

f
#

 C
yc

le
s

(f
ro

m

N

o
rm

al
)

Application

Reuse+Q4 D/R+Q4 Fork+Q4

(a)

-10%

-8%

-6%

-4%

-2%

0%

2%

fa
c
e

co
m

m
5

b
la

ck

fr
eq

co
m

m
4

fl
u

id

st
re

am

sw
ap

t

co
m

m
3

le
sl

ie

co
m

m
1

fe
rr

et

co
m

m
2

li
b

q

m
u

m
m

er

ti
g
r

A
v
g

.

D
iff

.
o

f
#

 C
yc

le
s

(f
ro

m

N

o
rm

al
)

Application

Reuse+Q8 D/R+Q8 Fork+Q8

(b)

Figure 6: Result of performance evaluation with reordering window size of 4 (Q4) and 8 (Q8).

shown because they show almost the same result. The Delay scheme decreased the performance by
0.5%. While the number of DRAM accesses was reduced, the miss rate in row buffers was almost
doubled, which widely increased the time to process an ORAM request. In the Reuse scheme,
the performance gain was 2.2%, almost half of that in the Delay/Reuse hybrid or Fork Path. The
reduction in DRAM accesses was also halved. This result confirms the discussion about the weakness
of the Reuse scheme in Section IV. The result of the Delay/Reuse hybrid almost matched that of
Fork Path. The increased row buffer miss came from the omission of access to levels near the root.
Such blocks are also likely to hit in row buffers because they fit in a single row buffer per DRAM
channel.

5.3 Evaluation Result with Reordering

Figure 6 shows the relative execution time where the reordering of requests is applied. Graphs (a)
and (b) correspond the cases where the size of the window is 4 and 8, respectively. The X-axis is
the shortened name of trace, while the Y-axis is the difference of the relative number of executed
cycles. Avg. stands for the average of all the traces. The result of the Delay scheme is omitted in
this evaluation.

When the window size was 4 (Figure 6 (a)), Almost the same result among the applications was
observed, in similar to Table 3. The average performance loss of D/R+Q4 over Fork+Q4 was only
0.2 percentage points.

On the other hand, when the window size increased to 8 (Figure 6 (b)), the difference of the
relative performance among the applications was shown. The performance gain got smaller in the
applications that had fewer cache misses, with exceptions of leslie and libq. The advantage of the
Delay/Reuse hybrid scheme over Fork Path was observed in such applications. With respect to the
average increase of performance, D/R+Q8 (6.87%) was slightly better than Fork+Q8 (6.75%).

Detailed analysis on the difference of the number of DRAM accesses was made in Figure 7. Dark
bars correspond to the difference (increase) of the number of ORAM accesses, while light bars mean
the difference (decrease) of the number of DRAM accesses per ORAM access. The product of two
numbers makes the number of DRAM accesses.

The increase of ORAM accesses came from dummy accesses due to the shortage of requests from
the processor. The number of dummy requests became large when there were few cache misses (i.e.
an application on the left, leslie, or libq was running). Dummy requests with Fork Path increased
by 0.6 points on average (from 1.5% to 2.1% of real ORAM requests) over the proposed schemes.
The increased dummy requests came from earlier deadline to decide the next path, which had been
pointed out in Section 3.2. In other words, the situation that a dummy request cannot be replaced
with a real request occurred at a frequency of 0.6% on average.

The number of DRAM accesses per ORAM access corresponded to the number of the redundant
memory accesses actually omitted. Its difference between D/R and Fork was only 0.1 points on
average. When the paths of two successive requests went too close, their overlapped region was

116

International Journal of Networking and Computing

0%

5%

10%

 Reuse+Q8 D/R+Q8 Fork+Q8

In
cr

ea
se

 o
f

O
R

A
M

 a
cc

es
s

0%

5%

10%

15%

20%

fa
ce

co
m

m
5

b
la

ck

fr
eq

co
m

m
4

fl
u

id

st
re

am

sw
ap

t

co
m

m
3

le
sl

ie

co
m

m
1

fe
rr

et

co
m

m
2

li
b

q

m
u

m
m

er

ti
g

r

A
v

g
.

Application

D
ec

re
as

e
o
f

D
R

A
M

ac
ce

ss

p
er

 O
R

A
M

 a
cc

es
s

Figure 7: Breakdown of the difference of the number of DRAM access.

-10%

-8%

-6%

-4%

-2%

0%

2%

fa
c
e

co
m

m
5

b
la

ck

fr
eq

co
m

m
4

fl
u

id

st
re

am

sw
ap

t

co
m

m
3

le
sl

ie

co
m

m
1

fe
rr

et

co
m

m
2

li
b

q

m
u

m
m

er

ti
g
r

A
v
g

.

D
iff

.
o

f
#

 C
yc

le
s

(f
ro

m

N

o
rm

al
)

Application

Reuse (R24) D4/R20 D8/R16 D12/R12

(a) The difference of the number of cycles.

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

R
eu

se
 (

R
2

4
)

D
4
/R

2
0

D
8
/R

1
6

D
1

2
/R

1
2

D
iff

.
o
f

#
 D

R
A

M
 a

cc
es

s
p
er

O
R

A
M

 a
cc

es
s

(f
ro

m
 N

o
rm

al
)

Setting

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

R
eu

se
 (

R
2
4

)

D
4

/R
2
0

D
8

/R
1
6

D
1

2
/R

1
2

D
iff

o
f

D
R

A
M

 R
o

w
 B

uf
fe

r
M

is
s

R
at

e
o
n

W
ri

te
 (

fr
o

m
 N

o
rm

al
)

Setting

(b) The difference of indices in DRAM access.

Figure 8: The effect of the threshold in Delay/Reuse Hybrid Scheme.

partially stored in the write-through levels of the LPC where write to external memory could not
be removed. However, the result implied that it was rare case.

5.4 Effect of Threshold in Hybrid Scheme

Figure 8 depicts the result of a sensitivity study to the threshold of the Delay/Reuse hybrid scheme.
Similarly to Figure 6, Graph (a) shows the difference of the number of executed cycles for each
application. The name of setting is expressed as Dn/Rm, Dn, or Rm, where n levels of the LPC
from the root are set to write-back and the other m(= 24 − n) levels are write-through. R24
is identical to the Reuse scheme. Graph (b) summarizes the difference of the number of DRAM
accesses (left) and the difference of the miss rate in row buffers (right). In similar to Table 3, the
average of each of them is only shown because both of them did not vary with application.

From Figure 8, the peak of the reduction of execution time was found at D8/R16 for the all
applications. The reduction of DRAM accesses per ORAM access almost reached at the upper limit
at D8/R16, while the row buffer miss steadily rose by increasing the threshold. Thus, the Reuse
and Delay schemes were balanced at this point.

117

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

���� ����	
���

����	������ ����	������ ����	������ �����	������

����	����������

����

��� ���

������	����

���

���

���

���

Figure 9: Block diagram of our prototype of ORAM controller.

6 Hardware Implementation

6.1 A Prototype of ORAM Controller

Figure 9 depicts our prototype of ORAM controller, which implements minimal elements of an
ORAM controller. Blue arrows represent stream input and output. It does not include the position
map: the leaf ID of the requested block is included in an ORAM request stream. It does not include
the ORAM tree: input from and output to the ORAM tree are treated as three kinds of stream I/O
i.e. read request, read response, and write request streams. The stash only holds tags of blocks.
The stash is composed of a CAM (content-addressable memory) for looking up the stash for the
requested block and a RAM for storing tag, such as corresponding leaf ID, for each block. A binary
heap coordinates with the stash. It reorders the stash to find blocks to be written back. The block
to be written back next always comes to the head of the binary heap. In addition, a random number
generator (RNG) is required for remapping blocks.

6.2 Modification with Last Path Caching

To implement the last path caching, an LPC must be added to ORAM controller, which is shown
in gray in Figure 9. However, it only has to memorize the indices of the stash of the lastly written
blocks, which correspond to less than 1k bits of RAM.

Figure 10 demonstrates a pointer array implementation of the last path caching. The point of
this modification is that the blocks pointed by the LPC i.e. blocks written back in the last path-
write-back stage remain valid in the stash. A non-overlapped part of such blocks is removed from
the stash in the next path-write-back stage. Figure 10 (a) depicts the ORAM states with the pointer
array implementation after writing P(0) back. In contrast to Figure 4 (a), the stash still holds the
blocks A, B, and C, each of which is pointed by the corresponding entry of the LPC. When the
block E is requested in Figure 10 (b), blocks in the overlapped part between the last path (P(0))
and the current path (P(1)) has to be read to the stash again. It is simply done by leaving them
valid in the stash. In Figure 10 (c), since the block A belongs to the non-overlapped part, the block
A is invalidated on writing back P(1). If the leaf level of LPC is set to write-back (i.e. the Delay
scheme), the block A is written to the ORAM tree.

An advantage of this implementation is that a search for the LPC can be integrated in the search
for the stash in the first step of the ORAM access, Since blocks pointed by the LPC are valid in
the stash, they can also be found by looking up the stash, which is done by a CAM. Thus no extra
clock cycles are required to determine whether a requested block resides in the LPC.

The path-read step of ORAM controller has to be modified for an overlapped part. Since it is
already in the stash, read accesses to the ORAM tree are omitted. Instead, if real blocks are found
in the overlapped part by reading the LPC, they must be registered to the binary heap.

Modifications to the path-write-back step are threefold. First, if the current level is in the non-

118

International Journal of Networking and Computing

���������

�

� �

� � � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

	�������

�

�

�

�	

�	

���

(a) Last Path Cache can be implemented as a pointer array.

���������

�

� �

� � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

	�������

�

�

�

�

��	

(b) Reading P(1) for the block E.

���������

� �

�

� � � �

	
���

	
��

	
���

	����� 	���� 	����� 	�����

	�������

�

�

���

�

�	

���

���������

�������
���������

��	����������	��������

(c) Writing P(1) back for the block E.

Figure 10: Pointer array implementation of the last path caching.

overlapped part and belongs to the Delay scheme, blocks in the LPC are written to the ORAM tree,
instead of the head of the binary heap. Second, the blocks in the non-overlapped part of the LPC
are removed from the stash, instead of the head of the binary heap. Third, the index of the head of
the binary heap is written to the LPC if that block can be written in the current level. If not, an
invalid index is written to the LPC.

6.3 Implementation Results

This section describes the operating frequency and the logic scale of the prototyped ORAM con-
troller. Xilinx AC701 evaluation board with an Artix-7 XC7A200T FPGA was adopted for this
evaluation. Xilinx Vivado 2016.3 was used for logic synthesis and implementation. Synthesis and
implementation options were default, with an exception of additional option -mode out of context,
which prevent I/O ports to be placed to specific position. The amount of hardware was evaluated
with the numbers of LUTs, flip-flops (FFs), and block RAMs (BRAMs). The maximum frequency
fmax was calculated from the target frequency ftarg and the worst negative slack (WNS) reported
from the tools. The target frequency was adjusted at 2-MHz intervals in order not to cause timing
errors. CAM in the stash is implemented with a Xilinx IP [18]. RAM in the stash is implemented
using Block RAMs, while the other RAMs (i.e. the binary heap and the LPC) uses LUTs because
they are too small. We adopted an Xorshift random number generator [11] as an RNG.

We evaluated the original Path ORAM (Normal), the Delay/Reuse Hybrid scheme of the last
path caching (LPC), and Fork Path ORAM (Fork). The height of the ORAM tree (L) was 14, 17,
20, and 23. The number of slots per bucket (Z) was set to 4. The size of the stash is set to 256.

Table 4 summarizes the hardware implementation results. The number of LUTs of LPC was
1.4%–7.8% smaller than Fork. The number of bits for the RAM in the LPC is calculated as a
product of (L + 1), Z, and logarithm of the stash size (to base 2). In this evaluation setting, it
becomes up to 768 bits, which is equivalent to only 12 LUTs. Moreover, as we have explained

119

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

Table 4: Result of hardware implementation.
L = 14 L = 17

Normal LPC Fork Normal LPC Fork

LUT 1,908 2,025 2,054 1,953 1,974 2,131

FF 794 875 829 846 938 886

BRAM 16.5 16.5 16.5 16.5 16.5 16.5

Fmax [MHz] 126.1 108.0 123.2 120.3 104.0 124.5

L = 20 L = 23

Normal LPC Fork Normal LPC Fork

LUT 2,125 2,147 2,329 2,418 2,301 2,489

FF 902 1,001 947 951 1,064 1,003

BRAM 25.0 25.0 25.0 25.0 25.0 25.0

Fmax [MHz] 127.1 109.3 116.5 120.0 107.4 118.5

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 1 2 3 4 5

P
er

fo
rm

an
ce

G

ai
n

Level of treetop caching (k)

w/o LPC w/ LPC

0

10

20

30

40

50

60

0 1 2 3 4 5

A
ve

ra
ge

 b
lo

ck
s

in
 t

he
 s

ta
sh

Level of treetop caching (k)

Figure 11: Overview of the evaluation results with the treetop caching.

in Section 6.2, the modification of the ORAM controller with the last path caching is minimal,
which could keep the state machine of the controller simple. The increase of flip-flops probably
came from temporal registers to check if the current level is in the overlapped part or not. The
number of block RAMs was not changed because it came only from the stash in this prototype. The
maximum frequency of LPC was 6.2%–16.5% lower than Fork. It might be because reading the LPC
in zero-cycle caused longer combinational paths.

We had an unintended result seen in L = 23: the number of LUTs of LPC was smaller than
Normal, the original Path ORAM. Though it might be due to optimization in logic synthesis, the
detailed analysis is left as future work.

7 Related Work

After the algorithm [14], the first implementation [10], and an exploration of design space [13] of
Path ORAM were presented, many optimization techniques and ORAM architectures similar to
Path ORAM have been proposed, including Fork Path ORAM [20] explained in Section 3.

The PHANTOM implementation [10] applied another caching technique, called treetop caching,
to the ORAM tree. It caches all blocks on a few levels of the tree from the root. It is achieved by
skipping access to these levels and leaving blocks, which would be moved to the tree, be untouched
in the stash [9]. Our last path caching is also implemented by leaving some blocks in the stash.

120

International Journal of Networking and Computing

In this sense, our method is similar to the treetop caching. Since nodes near the root are the
most frequently accessed, the treetop caching leverages spatial locality of the ORAM tree, while
our last path caching utilizes temporal locality. Though the effect of these two caching techniques
are partially overlapped, using both of them gives higher performance. Figure 11 is the overview
of the evaluation results of combination of both caching with a similar environment as shown in
Section 5.1. The left and right graphs show the average performance gain and the average number
of blocks in the stash after ORAM access, respectively. For example, as we have evaluated in Section
5.3, the average performance gain of D/R+Q8 was 6.9%, while 3-level treetop caching increased the
performance by 5.7%. The combination of these two caches achieved 7.5% of the performance gain.
Due to the overlap of the two types of locality, the advantage of the last path caching was reduced as
the number of levels k increased. However, the average number of blocks in the stash also increased
with higher k, which put pressure on the size of the stash. It was almost proportional to the number
of nodes to be cached, which was (L+ 1) in the last path caching and 2k − 1 in the treetop caching.
Therefore, the combination to the treetop caching should be discussed as a trade-off between the
performance and the pressure on the size of the stash.

Fork Path ORAM was proposed with another caching technique called Merging Aware Cache
(MAC) [20], which may solve an overlap of effect with the treetop caching. Unlike the last path
caching and the treetop caching, MAC is an actual cache organization for nodes in the intermediate
levels, say, level m1 to level m2. Each level r of the MAC has 2r−m1+1 entries to hold recently
accessed blocks of that level. However, we currently do not consider the MAC for two reasons. The
first reason comes from a limitation in our simulation environment. As we have explained in Section
5.1, we limit the movement in a reordering of ORAM requests [20] to one-way in order to prevent
starvation. This is because we did not prevent the performance loss due to starvation using an age-
based method presented in [20]. However, this modification makes MAC useless: in a round-robin,
the lastly accessed blocks are least likely to be reused. The second reason is that the MAC is too
large to compare with the other caching methods. For fair comparison, if we supposed a large cache
to the ORAM tree, we would have to evaluate the case of simply enlarging the last level cache in
the processor. A detailed analysis with a larger cache, including the MAC, is left as future work.

Ring ORAM [12] is an ORAM architecture based on Path ORAM. In the original Path ORAM, if
a node is included in the accessed path, all blocks in the node are read out to the stash. Ring ORAM
limits the number of blocks read by an ORAM access to only one per node. As a result, the total
number of read blocks becomes unproportional to Z, the number of blocks for each node. However,
it may reduce the efficiency in capacity because of an increased number of dummy blocks. Although
it was reported that it did not affect in a practical use [12], the detail has not been reported. The
idea of separate treatment of the path-read and the path-write-back was also seen in RAW ORAM
[3]; its goal was to reduce the cost of encryption, which is not related to our research.

When the position map is too large and the recursive approach is applied as explained in Section
II.A, Freecursive ORAM [2] is effective. It introduces a PosMap Lookaside Buffer (PLB), a cache to
the position map, which greatly reduces the ORAM accesses caused by looking up the position map.
Although the recursive approach is not currently considered in our research, the proposed schemes
do not interfere the use of the PLB.

Prefetch is often useful when a running program has high spatial locality. In Path ORAM, blocks
can be prefetched by making multiple blocks always mapped to the same path. This technique is
called super block [13]. PrORAM [19] extends it to a dynamic approach: it merges adjacent blocks
into a super block or unmerges super blocks on the fly. It showed higher performance than the static
approach by unmerging useless super blocks. These approaches are also orthogonal to the proposed
schemes.

8 Conclusion

This paper proposed a technique to remove the redundant memory accesses in Path ORAM, which
was simpler than existing Fork Path ORAM and was determinate in the access pattern derived
by ORAM. Our evaluation showed that the performance was comparable to the existing method.

121

A Virtual Cache for Overlapped Memory Accesses of Path ORAM

The advantage of the reduced dummy accesses was also observed when ORAM requests were not
frequently arrived. A prototyped hardware implementation was also presented along with its evalu-
ation. The number of LUTs used was 1.4%–7.8% smaller than the existing method.

Our future work includes a detailed analysis on the applicability of the proposed technique,
especially with a larger cache to the ORAM tree.

Acknowledgement

This study was partially supported by JSPS Grants-in-Aid for Scientific Research (KAKENHI),
Grant Number 26870278 and 16K00072.

References

[1] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, Seth H. Pugsley, Anirud-
dha N. Udipi, Ali Shafiee, Kshitij Sudan, Manu Awasthi, and Zeshan Chishti. USIMM: the
Utah SImulated Memory Module. Technical Report UUCS-12-002, University of Utah, 2012.

[2] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive ORAM: [Nearly] Free Recursion and Integrity Verification for Position-based Obliv-
ious RAM. In Proceedings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 103–116, 2015.

[3] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Stefanov, Dimitrios
Serpanos, and Srinivas Devadas. A Low-Latency, Low-Area Hardware Oblivious RAM Con-
troller. In 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 215–222, 2015.

[4] Naoki Fujieda, Ryo Yamauchi, and Shuichi Ichikawa. Last Path Caching: A Simple Way to
Remove Redundant Memory Accesses of Path ORAM. In Proceedings of the 4th International
Symposium on Computing and Networking, number 347–353, 2016.

[5] Naoki Fujieda, Ryo Yamauchi, and Shuichi Ichikawa. Preliminary study on the reduction of
bandwidth overhead for Path ORAM. In IPSJ SIG Technical Report 2016-ARC-219, pages
17:1–17:6, 2016. (in Japanese).

[6] O. Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious RAMs.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 182–194,
1987.

[7] Michael Henson and Stephen Taylor. Memory Encryption: A Survey of Existing Techniques.
ACM Computing Surveys, 46(4):53:1–53:26, 2014.

[8] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantacioglu. Access Pattern disclosure
on Searchable Encryption: Ramification, Attack and Mitigation. In Proceedings of the 19th
Annual Network & Distributed System Security Symposium, 2012.

[9] Martin Maas. PHANTOM: Practical Oblivious Computation in a Secure Processor. Technical
Report UCB/EECS-2014-89, University of California at Berkeley, 2014.

[10] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubi-
atowicz, and Dawn Song. PHANTOM: Practical Oblivious Computation in a Secure Processor.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Se-
curity, pages 311–324, 2013.

[11] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1–6, 2003.

122

International Journal of Networking and Computing

[12] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and
Srinivas Devadas. Constants Count: Practical Improvements to Oblivious RAM. In Proceedings
of 24th USENIX Security Symposium, pages 415–430, 2015.

[13] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas.
Design Space Exploration and Optimization of Path Oblivious RAM in Secure Processors.
In Proceedings of the 40th Annual International Symposium on Computer Architecture, pages
571–582, 2013.

[14] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path ORAM: An Extremely Simple Oblivious RAM Protocol. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pages 299–
310, 2013.

[15] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.
AEGIS: architecture for tamper-evident and tamper-resistant processing. In Proceedings of
the 17th annual international conference on Supercomputing, pages 160–171, 2003.

[16] The Journal of Instruction Level Parallerism. 3rd JILP Workshop on Computer Architecture
Competitions (JWAC-3): Memory Scheduling Championship (MSC). http://www.cs.utah.

edu/~rajeev/jwac12/.

[17] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell,
and Mark Horowitz. Architectural support for copy and tamper resistant software. In Proceed-
ings of the 9th international conference on Architectural support for programming languages and
operating systems, pages 168–177, 2000.

[18] Xilinx Inc. Parameterizable Content-Addressable Memory, 2011. Application Note XAPP1151
(v1.0).

[19] Xiangyao Yu, Syed Kamran Haider, Ling Ren, Christopher Fletcher, Albert Kwon, Marten van
Dijk, and Srinivas Devadas. PrORAM: Dynamic Prefetcher for Oblivious RAM. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture, pages 616–628, 2015.

[20] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao Wang, Yiran Chen, and
Jia Di. Fork Path: Improving Efficiency of ORAM by Removing Redundant Memory Accesses.
In Proceedings of the 48th International Symposium on Microarchitecture, pages 102–114, 2015.

123

