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Abstract

Linear cellular automata have many invariant measures in general. There are several studies
on their rigidity: The unique invariant measure with a suitable non-degeneracy condition (such
as positive entropy or mixing property for the shift map) is the uniform measure — the most
natural one. This is related to study of the asymptotic randomization property: Iterates starting
from a large class of initial measures converge to the uniform measure (in Cesàro sense). In this
paper we consider one-dimensional linear cellular automata with neighborhood of size two, and
study limiting distributions starting from a class of shift-invariant probability measures. In the
two-state case, we characterize when iterates by addition modulo 2 cellular automata starting
from a convex combination of strong mixing probability measures can converge. This also gives
all invariant measures inside the class of those probability measures. We can obtain a similar
result for iterates by addition modulo an odd prime number cellular automata starting from
strong mixing probability measures.

Keywords: Linear cellular automata; stationary measures; limiting measures

1 Introduction

Let p be a prime number, and A = {0, 1, · · · , p− 1}. In this paper, we consider a transformation Λ
of a configuration space Ω := AZ = {ω : Z→ A} defined by

(Λω)(x) = ω(x− 1) + ω(x+ 1) mod p

for ω ∈ Ω and x ∈ Z. This is called addition modulo p cellular automata. While the transformation
is quite simple, the iterates exhibit various complex and interesting behaviors. For the case p = 2,
it can be regarded as a one-dimensional version of life game ([6]; see also Exercise (2.6) of [11]).
On the other hand, before that a similar kind of transformations are studied as a special case of
probabilistic cellular automata in Russian literatures including [14, 15, 16] (see also [13]). Besides
the delta measure concentrated on the ‘all-zero’ configuration, the state given by fair coin tossing,
the ‘most random’ measure, is invariant under the transformation. After Wolfram’s classification
of one-dimensional “elementary” cellular automata [17], this transformation is called rule 90, and
some of important results in [6] are independently discovered by [3].

When the distribution of the initial configuration ω is given by µ, the distribution of Λω is
denoted by Λµ. Central problems in studying the transformation Λ are the following:

• If Λµ = µ, then µ is called Λ-invariant: What is the Λ-invariant measures?
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• What is the limiting behavior of Λnµ? How about the limit in Cesàro sense: lim
N→∞

1

N

N−1∑
n=0

Λnµ?

Let θ = (θ0, θ1, · · · , θp−1) be a probability distribution on A, namely

θk = 0 for k ∈ A, and
∑
k∈A

θk = 1.

Let (ω(x) : x ∈ Z) be a doubly infinite sequence of independent, identically distributed random
variables satisfying

ω(x) = k with probability θk [k ∈ A].

The distribution of (ω(x) : x ∈ Z) is denoted by µθ, and called a product measure with density θ. In
particular, µθ with

θk =
1

p
[k ∈ A]

is called the uniform measure and is denoted by µ1/p. For a ∈ A, the constant configuration
· · · aaa · · · is denoted by a, and the delta measure concentrated on a, namely µθ with

θk =

{
1 (k = a),

0 (k 6= a)

is denoted by δa. When p = 2, the product measure with θ1 = ρ and θ0 = 1 − ρ is called the
Bernoulli measure with density ρ, and is denoted by βρ.

Suppose that p = 2 for the moment. Starting from a single 1, rule 90 generates Pascal’s triangle
mod 2 a.k.a. the pre-Sierpiński gasket, which reflects the scaling relation (see Lemma 3.5 below)

(Λ2m

ω)(x) = ω(x− 2m) + ω(x+ 2m) mod 2 [ω ∈ Ω, x ∈ Z; m = 0, 1, 2, · · · ].

From this, we have

βρ
(
(Λ2m

ω)(x) = 1
)

= βρ
(
ω(x− 2m) + ω(x+ 2m) = 1

)
= 2ρ(1− ρ) [m = 0, 1, 2, · · · ].

On the other hand, since

(Λ2m−1ω)(x) =
∑

j=x±2m−1±2m−2±···±20

ω(j) mod 2 [ω ∈ Ω, x ∈ Z; m = 0, 1, 2, · · · ],

we can see that

lim
m→∞

βρ
(
(Λ2m−1ω)(x) = 1

)
=

1

2
if 0 < ρ < 1.

Miyamoto [6] and Lind [3] proved that

• lim
n→∞

Λnβρ exists if and only if ρ ∈ {0, 1/2, 1}. βρ is Λ-invariant if and only if ρ ∈ {0, 1/2}.

• If 0 < ρ < 1, then the Cesàro mean
1

N

N−1∑
n=0

Λnβρ converges to β1/2 as N →∞.

Cai and Luo [1] extended the above result to p odd prime:

• lim
n→∞

Λnµθ exists if and only if µθ = δ0 or µ1/p. Thus those are only Λ-invariant measures in

the class of product measures.

• If θk < 1 for all k, then the Cesàro mean
1

N

N−1∑
n=0

Λnµθ converges to µ1/p as N →∞.

The above results show that
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• The uniform measure is the only invariant measure among non-trivial product measures.

• Iterates starting from non-trivial product measures converge to the uniform measure in Cesàro
sense.

The former property is a kind of rigidity — under some condition excluding “degenerated” measures
(e.g. probability measures generated from periodic points), the only invariant measure is the uniform
one. Observations towards such a property can be found already in [16]. See [4] for a recent survey
and related references. The latter property is called asymptotic randomization — convergence to the
uniform measure for a large class of initial measures. Among several attempts to extend the class of
measures randomized by cellular automata, Pivato and Yassawi [9] introduced harmonically mixing
measures, and proved those measures they are randomized by non-trivial affine cellular automata.
Their theory can be applied to very general settings.

This paper is an extended version of [12]. We give some rigidity results for probability measures
with a mixing property with respect to the spatial shift; a general class including product measures.
The rest of the paper is organized as follows: In section 2 we explain our setting and state our
results. Preliminary facts are presented in section 3. Proofs of our results are given in sections 4
and 5.

2 Setting and results

We introduce several notions from ergodic theory, which are generalizations of properties of product
measures µθ.

2.1 Borel probability measures on the configuration space

For a positive integer L, let

ΩL = AL := {σ = (σ1, σ2, · · · , σL) : σ1, σ2, · · · , σL ∈ A}.

For σ = (σ1, σ2, · · · , σL) ∈ ΩL and a ∈ Z, put

[σ]a+L
a+1 = [σ1σ2 · · ·σL]a+L

a+1 := {ω ∈ Ω : ω(a+ x) = σx (x = 1, 2, · · · , L)}.

Such a subset of Ω is called a cylinder set.
The σ-algebra of events generated by all cylinder sets is denoted by B. Hereafter we treat

probability measures on (Ω,B), which are called Borel probability measures on Ω: They are uniquely
determined by the probability of cylinder sets. For example, a product measure µθ with density
θ = (θ0, θ1, · · · , θp−1) is characterized by

µθ([σ]a+L
a+1 ) =

L∏
x=1

θσx
[σ ∈ ΩL] (1)

for any a ∈ Z.
For probability measures µ1 and µ2, we write µ1 = µ2 if µ1(A) = µ2(A) for each cylinder set A.

For a sequence of probability measures {µn} and a probability measure µ, we write lim
n→∞

µn = µ if

lim
n→∞

µn(A) = µ(A) for each cylinder set A.

2.2 Shift-invariant measures

By (1), the probability µθ([σ]a+L
a+1 ) is independent of a: This property is called shift-invariance of

µθ. More precisely, we define a left shift transformation T of Ω by

(Tω)(x) = ω(x+ 1) [x ∈ Z].
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The inverse transformation T−1 is the right shift transformation. The n-fold iteration of T (resp.
T−1) is denoted by Tn (resp. T−n). For an event A ∈ B, let

T−nA := {ω ∈ Ω : Tnω ∈ A} = {T−nω : ω ∈ A}.

For example,

T−n[σ]L1 = {ω ∈ Ω : (Tnω)(x) = σx (x = 1, 2, · · · , L)}
= {ω ∈ Ω : ω(x+ n) = σx (x = 1, 2, · · · , L)} = [σ]L+n

1+n ,

where σ ∈ ΩL. A probability measure µ on Ω is called shift-invariant if µ(T−1A) = µ(A) for all
A ∈ B. This is equivalent to the following: For any L, n, and σ = (σ1, σ2, · · · , σL) ∈ ΩL,

µ
(
[σ]L+n

1+n

)
= µ

(
[σ]L1

)
.

This common value is often denoted by µ(σ).

2.3 Mixing properties

The following property of µθ is called pairwise independence: Let a, b ∈ Z and L,L′ be positive
integers. If [a+ 1, a+ L] ∩ [b+ 1, b+ L′] = ∅, then

µθ([σ]a+L
a+1 ∩ [σ′]b+L

′

b+1 ) = µθ([σ]a+L
a+1 )µθ([σ′]b+L

′

b+1 )

for any σ ∈ ΩL and σ′ ∈ ΩL′ . In fact µθ has a much stronger property called independence, which
asserts that µθ-probability of an intersection of finitely many cylinder events with disjoint supports
is given by the product of µθ-probability of each cylinder set.

Let µ be a shift-invariant probability measure. Notions of asymptotic independence with respect
to shift transformations are called mixing properties. (See e.g. Chapter VII of [10].) µ is called
strong mixing if

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B)

for all A,B ∈ B. This is equivalent to the following: Let L,L′ be positive integers. For any σ ∈ ΩL
and σ′ ∈ ΩL′ ,

µ
(

[σ]L1 ∩ [σ′]L
′+n

1+n

)
→ µ

(
[σ]L1

)
µ
(

[σ′]L
′

1

)
as n→∞. More generally, µ is called r-fold mixing if for A,B1, · · · , Br ∈ B,

µ(A ∩ T−n1B1 ∩ · · · ∩ T−nrBr)→ µ(A)µ(B1) · · ·µ(Br)

as n1 → ∞, n2 − n1 → ∞ , · · · , nr − nr−1 → ∞. Let Mr be the set of r-fold mixing probability
measures on Ω (M1 is the set of strong mixing probability measures). Note that

M1 ⊃M2 ⊃ · · · ⊃ Mr ⊃ · · · .

µ is called K-mixing if for any A ∈ B,

lim
n→∞

sup
B∈Gn

|µ(A ∩B)− µ(A)µ(B)| = 0,

where Gn is the σ-algebra generated by {ω(i) : i = n}. It is known that µ is K-mixing if and only if
the σ-algebra

G∞ :=

∞⋂
n=1

Gn

is trivial with respect to µ. Let M be the set of K-mixing probability measures on Ω. It is also
known that

M⊂
∞⋂
r=1

Mr.

By the Kolmogorov 0-1 law, product measures µθ are K-mixing: Thus they have all mixing properties
explained above.
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2.4 Results

For a set of probability measures P, the convex hull of P is defined by

Conv(P) :=

{∫
P
µdπ(µ) : π is a probability measure on P

}
.

We obtain the following result for p = 2, which is an improvement of Theorem II.2 in [12].

Theorem 2.1. Let p = 2. Assume that P ∈ Conv(M1). Then ΛnP converges as n → ∞ if and
only if

P = αβ0 + α′β1/2 + α′′β1

for some α, α′, α′′ = 0 with α + α′ + α′′ = 1. Thus P ∈ Conv(M1) is a stationary measure for Λ if
and only if

P = αβ0 + α′β1/2

for some α, α′ = 0 with α+ α′ = 1.

Our second result is for p > 2, which is an improvement of Theorem II.1 in [12].

Theorem 2.2. Let p be an odd prime number, and µ be a shift-invariant, strong mixing probability
measure on {0, 1, · · · , p− 1}Z.

lim
n→∞

Λnµ

exists if and only if µ = δ0 or µ1/p. In particular, shift-invariant, strong mixing, Λ-invariant
probability measures are only those two.

Miyamoto [7] obtained an analogous result to Theorem 2.1 for P ∈ Conv(M). (In fact, the
proof given in [7] works for P ∈ Conv(M3).) Theorem 2.2 implies a result obtained by Marcovici
(Proposition 5.5 of [5] and Proposition 3.2.2 of [2]): If µ ∈ M1 has full support on Ω (i.e. positive
probability on each cylinder set) and Λ-invariant, then µ = µ1/p. In the paper of Pivato [8], much
more general linear cellular automata are treated, and invariant measures in some classes of shift-
mixing probability measures are investigated.

3 Preliminaries

3.1 Fourier transform

Let µ be a probability measure on Ω = AZ. For a configuration ξ ∈ Ω, we put

#ξ := the number of x ∈ Z with ξ(x) 6= 0.

Let Ξ := {ξ ∈ Ω : #ξ < +∞}. For ξ ∈ Ξ and ω ∈ Ω, we define

〈ξ, ω〉 :=
∑
x∈Z

ξ(x)ω(x),

and

µ̂(ξ) = F (µ)(ξ) :=

∫
Ω

exp

(
2πi

p
〈ξ, ω〉

)
µ(dω).

Note that |µ̂(ξ)| 5 1 and µ̂(0) = 1.
The following theorem is well-known: An elementary proof is found in [12].

Theorem 3.1 (the Fourier inversion formula). Let x0, x1 ∈ Z with x0 5 x1, and

Ξx0,x1 := {ξ ∈ Ω : ξ(x) = 0 if x < x0 or x > x1} ⊂ Ξ.
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For any (σx0
, · · · , σx1

) ∈ Ωx1−x0+1,

µ([σx0
· · ·σx1

]x1
x0

) =
1

px1−x0+1

∑
ξ∈Ξx0,x1

exp

(
−2πi

p

x1∑
x=x0

ξ(x)σx

)
µ̂(ξ).

As its corollaries,

• For probability measures µ1 and µ2 on Ω, if µ̂1(ξ) = µ̂2(ξ) for any ξ ∈ Ξ, then µ1 = µ2.

• For a sequence {µn} of probability measures on Ω and a probability measure µ on Ω, if
lim
n→∞

µ̂n(ξ) = µ̂(ξ) for any ξ ∈ Ξ, then lim
n→∞

µn = µ.

For example, let us calculate the Fourier transform of the product measure µθ: Clearly µ̂θ(0) = 1.
For any ξ ∈ Ξ \ {0}, we have

µ̂θ(ξ) =

∫
Ω

exp

(
2πi

p
〈ξ, ω〉

)
µθ(dω)

=
∏

x∈supp ξ

∫
Ω

exp

(
2πi

p
ξ(x)ω(x)

)
µθ(dω) =

∏
x∈supp ξ

{∑
k∈A

θk exp

(
2πi

p
ξ(x)k

)}
, (2)

where supp ξ := {x ∈ Z : ξ(x) 6= 0}. In particular, the uniform measure µ1/p satisfies that µ̂1/p(ξ) =
0 for any ξ ∈ Ξ \ {0}.

3.2 Fourier transform and addition modulo p

We recall a ‘duality’ for addition modulo p (see e.g. section 2 of [1]).

Lemma 3.2. Let ξ ∈ Ξ and ω ∈ Ω. For any n = 1, 2, · · · , 〈ξ,Λnω〉 = 〈Λnξ, ω〉.

Proof. For the case n = 1,

〈ξ,Λω〉 =
∑
x∈Z

ξ(x) · (Λω)(x) =
∑
x∈Z

ξ(x) · (ω(x− 1) + ω(x+ 1))

=
∑
x∈Z

(ξ(x+ 1) + ξ(x− 1)) · ω(x) =
∑
x∈Z

(Λξ)(x) · ω(x) = 〈Λξ, ω〉.

Noting that #(Λξ) < +∞ if #ξ < +∞, we can show the lemma for the general n by induction.

Lemma 3.3. Λ̂nµ(ξ) = µ̂(Λnξ) for any ξ ∈ Ξ.

Proof. By Lemma 3.2,

Λ̂nµ(ξ) =

∫
Ω

exp

(
2πi

p
〈ξ,Λnω〉

)
µ(dω) =

∫
Ω

exp

(
2πi

p
〈Λnξ, ω〉

)
µ(dω) = µ̂(Λnξ).

Besides the obvious Λ-invariant measure δ0,

Lemma 3.4. The uniform measure µ1/p is Λ-invariant.

Proof. For ξ ∈ Ξ \ {0}, since 0 < #(Λξ) <∞, Lemma 3.3 implies that

Λ̂µ1/p(ξ) = µ̂1/p(Λξ) = 0 = µ̂1/p(ξ).
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3.3 Strong mixing measures and addition modulo p

The following scaling relation is well-known, and found in section 4 of [1] among others.

Lemma 3.5. For any m = 0, 1, 2, · · · ,

(Λp
m

ω)(x) = ω(x− pm) + ω(x+ pm) mod p

for ω ∈ Ω and x ∈ Z.

Proof. Since p is prime, we can see that (1 + x)p
m

= 1 + xp
m

as {0, 1, · · · , p− 1}-polynomials, from
which the conclusion follows.

We use an important formula in the proof of Theorem 1 of [7]:

Lemma 3.6. If µ ∈M1, then

lim
m→∞

F (Λp
m

µ)(ξ) = µ̂(ξ)2 for any ξ ∈ Ξ.

Proof. We may assume that ξ ∈ Ξ \ {0}. Lemma 3.5 implies that for any m,

F (Λp
m

µ)(ξ) =

∫
Ω

exp

(
2πi

p
〈ξ,Λp

m

ω〉
)
µ(dω)

=

∫
Ω

exp

2πi

p

∑
x∈supp ξ

ξ(x) · (Λp
m

ω)(x)

 µ(dω)

=

∫
Ω

exp

2πi

p

∑
x∈supp ξ

ξ(x)ω(x− pm)

 · exp

2πi

p

∑
x∈supp ξ

ξ(x)ω(x+ pm)

 µ(dω).

Letting m→∞, we obtain the conclusion by the strong mixing property of µ.

4 Limiting measures for addition modulo p

In this section, we prove Theorem 2.2. First we prepare a simple lemma.

Lemma 4.1. Let n > 1 be an integer, and {θk}k∈{0,1,··· ,n−1} be a probability distribution on
{0, 1, · · · , n− 1}. A necessary and sufficient condition for∣∣∣∣∣

n−1∑
k=0

θk exp

(
2πi

n
· k
)∣∣∣∣∣ = 1

is θk = 1 for some k ∈ {0, 1, · · · , n− 1}.

Proof. Sufficiency is obvious. To show necessity, recall that for two complex numbers z and w,
|z + w| < |z|+ |w| if and only if zw 6= 0 and arg z 6= argw. If θ`, θm > 0 for `,m ∈ {0, 1, · · · , n− 1}
with ` 6= m, then we have

1 =

∣∣∣∣∣
n−1∑
k=0

θk exp

(
2πi

n
· k
)∣∣∣∣∣ <

n−1∑
k=0

θk

∣∣∣∣exp

(
2πi

n
· k
)∣∣∣∣ =

n−1∑
k=0

θk = 1,

a contradiction.

Let p be a prime number, and 0L := (0, 0, · · · , 0) ∈ ΩL = AL.

Lemma 4.2. Suppose that µ ∈ M1 and µ(0L) > 0 for any L. If µ̂(ξ) = 1 for some ξ ∈ Ξ \ {0},
then µ = δ0.
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Proof. Suppose that µ̂(ξ) = 1 for ξ ∈ Ξ with

ξ(x) =

{
a (x = x0),

0 (x 6= x0)
[a 6= 0].

Since

µ̂(ξ) =

p−1∑
k=0

µ (aω(x0) = k) · exp

(
2πi

p
· k
)

= 1,

Lemma 4.1 implies that µ (ω(x0) = 0) = µ (aω(x0) = 0) = 1. By the shift-invariance, µ = δ0.
Now we turn to the case µ̂(ξ) = 1 for some ξ ∈ Ξ with #ξ > 1. By the shift-invariance of µ, we

can assume that there is a positive integer L such that

ξ(x) = 0 if x < 0 or x > L, and ξ(0), ξ(L) 6= 0.

Since

µ̂(ξ) =

p−1∑
k=0

µ

(
L∑
x=0

ξ(x)ω(x) = k

)
· exp

(
2πi

p
· k
)

= 1,

Lemma 4.1 implies that

µ

(
L∑
x=0

ξ(x)ω(x) = 0

)
= µ

(
ξ(0)ω(0) +

L∑
x=1

ξ(x)ω(x) = 0

)
= 1.

Using the shift-invariance of µ, we can see that

µ

(
ξ(0)ω(n) +

L∑
x=1

ξ(x)ω(x+ n) = 0 for n = 0, 1, 2, · · ·

)
= 1.

On the event in the left hand side, if ω(1 + n) = ω(2 + n) = · · · = ω(L + n) = 0 for some n, then
ω(0) = 0. This means that

µ({ω(0) 6= 0} ∩ [0L]L+n
1+n ) = 0 for any n.

By the strong mixing property of µ, letting n→∞,

µ(ω(0) 6= 0) · µ(0L) = 0.

Since µ(0L) > 0, we have
µ(ω(0) 6= 0) = 0, i.e. µ = δ0.

This completes the proof.

Now we prove Theorem 2.2. Let p be an odd prime number. We assume that µ is strong mixing
and µ∞ := lim

n→∞
Λnµ exists. Noting that

µ∞ = lim
m→∞

Λp
m

µ,

we obtain

µ̂∞(ξ) = lim
m→∞

µ̂(Λp
m

ξ) = µ̂(ξ)2

by Lemmata 3.3 and 3.6. On the other hand, since the limiting probability measure µ∞ is Λ-
invariant,

µ̂∞(ξ) = F (Λnµ∞)(ξ) = µ̂∞(Λnξ) = µ̂(Λnξ)2
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for any n. Substituting n = pm and letting m→∞, we have

µ̂∞(ξ) = {µ̂(ξ)2}2 = µ̂(ξ)4,

again by Lemma 3.6. Thus we have µ̂(ξ)2 = µ̂(ξ)4. Since p is odd, Lemma 4.1 shows that µ̂(ξ) = 0
or 1. Noting that µ̂(0) = 1, Theorem 3.1 implies

µ([0L]L1 ) =
1

pL

∑
ξ∈Ξ1,L

µ̂(ξ) =
#{ξ ∈ Ξ1,L : µ̂(ξ) = 1}

pL
=

1

pL
> 0 for any L.

If µ̂(ξ) = 1 for some ξ ∈ Ξ \ {0}, then µ = δ0 by Lemma 4.2. Otherwise µ = µ1/p. This completes
the proof.

5 Limiting measures for rule 90

For the case p = 2, the Fourier transform is given by

µ̂(ξ) = F (µ)(ξ) =

∫
Ω

(−1)〈ξ,ω〉µ(dω),

and the Fourier inversion formula (Theorem 3.1) becomes

µ([σx0 · · ·σx1 ]x1
x0

) =
1

2x1−x0+1

∑
ξ∈Ξx0,x1

(−1)−
∑x1

x=x0
ξ(x)σx µ̂(ξ). (3)

By (2), we have

Lemma 5.1. β̂ρ(ξ) = (1− 2ρ)#ξ for any ξ ∈ Ξ. In particular,

β̂0(ξ) ≡ 1, β̂1/2(ξ) =

{
1 (ξ = 0),

0 (ξ 6= 0),
β̂1(ξ) = (−1)#ξ.

Lemma 5.2. Suppose that µ is a shift-invariant, strong mixing probability measure on Ω = {0, 1}Z.
If |µ̂(ξ)| = 1 for some ξ ∈ Ξ \ {0}, then µ = β0 or µ = β1.

Proof. We define a probability measure µ ∗ µ on Ω by

(µ ∗ µ)(σ) :=
∑
τ∈ΩL

µ(τ )µ(σ − τ ) [σ ∈ ΩL].

Note that F (µ ∗ µ)(ξ) = µ(ξ)2 for any ξ ∈ Ξ. By (3),

(µ ∗ µ)(0L) =
1

2L

∑
ξ∈Ξ1,L

F (µ ∗ µ)(ξ) =
1

2L

∑
ξ∈Ξ1,L

µ̂(ξ)2 =
1

2L
µ̂(0)2 =

1

2L
> 0 for any L.

We can see that µ ∗ µ is also shift-invariant and strong mixing: The shift-invariance is obvious. For
any σ ∈ ΩL and σ′ ∈ ΩL′ , as n→∞,

(µ ∗ µ)
(

[σ]L1 ∩ [σ′]L
′+n

1+n

)
=

∑
τ∈ΩL, τ ′∈ΩL′

µ
(

[τ ]L1 ∩ [τ ′]L
′+n

1+n

)
µ
(

[σ − τ ]L1 ∩ [σ′ − τ ′]L
′+n

1+n

)
→

∑
τ∈ΩL, τ ′∈ΩL′

µ
(
[τ ]L1

)
µ
(

[τ ′]L
′

1

)
µ
(
[σ − τ ]L1

)
µ
(

[σ′ − τ ′]L
′

1

)

=

{ ∑
τ∈ΩL

µ
(
[τ ]L1

)
µ
(
[σ − τ ]L1

)}{ ∑
τ ′∈ΩL

µ
(

[τ ′]L
′

1

)
µ
(

[σ′ − τ ′]L
′

1

)}
= (µ ∗ µ)

(
[σ]L1

)
· (µ ∗ µ)

(
[σ′]L

′

1

)
.
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By Lemma 4.2, µ ∗ µ = β0. Since

(µ ∗ µ)(ω(x) = 0) = µ(ω(x) = 0)2 + µ(ω(x) = 1)2 and β0(ω(x) = 0) = 1,

we can conclude that

µ(ω(x) = 0) = 1 or µ(ω(x) = 1) = 1.

By the shift-invariance, µ = β0 or µ = β1.

Now we prove Theorem 2.1. Suppose that

P =

∫
M1

µdπ(µ) ∈ Conv(M1),

where π is a probability measure on M1. Since Λβ0 = β0 and Λβ1 = β0, we can assume that
π({β0, β1}) = 0. For ξ ∈ Ξ, we have

P̂ (ξ) =

∫
M1

µ̂(ξ) dπ(µ).

Suppose that P∞ := lim
n→∞

ΛnP exists. Noting that P∞ = lim
m→∞

Λ2m

P , by Lemmata 3.3 and 3.6, and

the bounded convergence theorem, we have

P̂∞(ξ) = lim
m→∞

P̂ (Λ2m

ξ) = lim
m→∞

∫
M1

µ̂(Λ2m

ξ) dπ(µ) =

∫
M1

µ̂(ξ)2 dπ(µ).

On the other hand, since the limiting probability measure P∞ is Λ-invariant,

P̂∞(ξ) = F (ΛnP∞)(ξ) = P̂∞(Λnξ) =

∫
M1

µ̂(Λnξ)2 dπ(µ) for any n.

Substituting n = 2m and letting m→∞, we have

P̂∞(ξ) =

∫
M1

{µ̂(ξ)2}2 dπ(µ) =

∫
M1

µ̂(ξ)4 dπ(µ),

again by Lemma 3.6 and the bounded convergence theorem. Thus we have∫
M1

{µ̂(ξ)2 − µ̂(ξ)4} dπ(µ) = 0.

Since π({β0, β1}) = 0 and µ̂(ξ)2 − µ̂(ξ)4 = 0, Lemma 5.2 shows that

π({µ ∈M1 : µ̂(ξ) = 0}) = 1 for ξ ∈ Ξ \ {0}.

By Lemma 5.1, ⋂
ξ∈Ξ\{0}

{µ ∈M1 : µ̂(ξ) = 0} = {β1/2}.

Noting that Ξ \ {0} is a countable set, we have π({β1/2}) = 1. This completes the proof.

6 Concluding remarks

In this paper, we study limiting measures of iterates of addition modulo p cellular automata, starting
from strong mixing measures. Our method can be applied to

(Lω)(x) = ω(x) + ω(x+ 1) mod p
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as well. In this case, Lemma 3.2 should be replaced with 〈ξ,Lnω〉 = 〈(L∗)nξ, ω〉, where L∗ is defined
by

(L∗ω)(x) = ω(x− 1) + ω(x) mod p.

One of future problems is to extend Theorem 2.1 to addition modulo p CA with p odd prime.
For addition modulo 3 CA, by Theorem 2.2, µ ∈ M1 is invariant if and only if µ = δ0 or µ = µ1/3.
We remark that

1

2
δ1 +

1

2
δ2 ∈ Conv(M1)

is another invariant measure.
Our method works well for linear rules with equal coefficients, but we have some troubles to

treat other linear rules — the simplest one is aω(x− 1) + bω(x+ 1) mod p with nonzero a 6= b. On
the other hand, it is possible to obtain analogous results for some linear rules depending on more
than two coordinates. As an example, we shall prove the following theorem for rule 150, which is
an improvement of Theorem 1’ in [7]:

Theorem 6.1. We consider the transformation Λ̃ of Ω = {0, 1}Z defined by(
Λ̃ω
)
(x) = ω(x− 1) + ω(x) + ω(x+ 1) mod 2

for ω ∈ Ω and x ∈ Z. Assume that P ∈ Conv(M2). Then the following three conditions are
equivalent to each other:

(i) Λ̃nP converges as n→∞.

(ii) P is Λ̃-invariant.

(iii) P = αβ0 + α′β1/2 + α′′β1 for some α, α′, α′′ = 0 with α+ α′ + α′′ = 1.

Proof. Since β0, β1/2 and β1 are Λ̃-invariant, we can see that (iii) ⇒ (ii) ⇒ (i). Here we show that

(i) implies (iii). Suppose that P =

∫
M2

µdπ(µ) ∈ Conv(M2), where π is a probability measure on

M2. We can assume that π({β0, β1}) = 0. Rule 150 versions of Lemmata 3.2, 3.5 and 3.6 are:

• Let ξ ∈ Ξ and ω ∈ Ω. For any n = 1, 2, · · · , 〈ξ, Λ̃nω〉 = 〈Λ̃nξ, ω〉.

• For any m = 0, 1, 2, · · · ,
(
Λ̃2m

ω
)
(x) = ω(x − 2m) + ω(x) + ω(x + 2m) mod 2 for ω ∈ Ω and

x ∈ Z (Lemma 3’ in [7]).

• If µ ∈M2, then lim
m→∞

F
(
Λ̃2m

µ
)
(ξ) = µ̂(ξ)3 for any ξ ∈ Ξ.

Suppose that P∞ := lim
n→∞

ΛnP exists. As in the proof of Theorem 2.1, we have

∫
M2

{µ̂(ξ)3 − µ̂(ξ)9} = 0 (4)

for any ξ ∈ Ξ. Now we use a trick in the proof of Theorem 1’ in [7]: For any finite sequence ξ̃ of 0
and 1, let

ξn = · · · 000ξ̃ 00 · · · 0︸ ︷︷ ︸
n

ξ̃000 · · · ∈ Ξ.

Since µ ∈ M2 ⊂ M1, we have lim
n→∞

µ̂(ξn) = µ̂(· · · 000ξ̃000 · · · )2. Substituting ξn into (4) and

letting n→∞, we have

∫
M2

{
µ̂(ξ)6 − µ̂(ξ)18

}
dπ(µ) = 0 for any ξ ∈ Ξ. Now we can conclude that

π({β1/2}) = 1.
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