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Abstract

The non-von Neumann computer architecture has been widely studied to prepare us for the
post-Moore era. The authors implemented this kind of architecture, which finds the lower energy
state of the Ising model using circuit operations inspired by simulated annealing in SRAM-based
integrated circuits. Our previous prototype was suited for the Ising model because of its simple
and typical structure such as its three-dimensional lattice topology, but it could not be used
in real world applications. A reconfigurable prototyping environment is needed to develop the
architecture and to make it suitable for applications.

Here, we describe an FPGA-based prototyping environment to develop the annealing proces-
sor’s architecture for the Ising model. We implemented the new architecture using a prototyping
environment. The new architecture performs approximated simulated annealing for the Ising
model, and it supports a highly complex topology. It consists of units having fully-connected
multiple spins. Multiple units are placed in a two-dimensional lattice topology, and neighboring
units are connected to perform interactions between spins. The number of logic elements was
reduced by sharing the operator among multiple spins within the unit. Furthermore, a pseudo-
random number generator, which produces random pulse sequences for annealing, is also shared
among all the units. As a result, the number of logic elements was reduced to less than 1/10,
and the solution accuracy became comparable to that of a conventional computer’s simulated
annealing.

Keywords: FPGA, Ising model, annealing, sharing, random pulse

1 Introduction

Improvements to the performance of conventional computers have mainly been achieved through
semiconductor scaling; however, scaling is reaching its limit [15]. As we approach the end of Moore’s
law, many non-von Neumann architectures have been proposed. Some architectures rely on emerging
devices such as superconductors to enable the quantum superposition [8], while others are still based
on silicon integrated circuits [3, 12]. We previously proposed an SRAM-based integrated circuit to
perform a lower-energy-state search of the Ising model [7, 18–21]. Our architecture aims to solve
combinatorial optimization problems to operate social infrastructure efficiently.
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Figure 1: Ising model and its energy landscape

The Ising model can express the behavior of magnetic spins, and it consists of n binary spins
{σ1, . . . , σn}, interactions {Jij} between spins, and external magnetic fields {hi} as shown in Fig-
ure 1 [4]. The Ising model’s energy is defined as

H(σ1, · · · , σn) = −
∑
i<j

Jijσiσj −
∑
i

hiσi. (1)

The energy varies with the spin configurations, and it can be visualized as an energy landscape,
as shown in Figure 1. The combinatorial optimization problems can be mapped into the Ising
model [10]. The Ising models’ energy corresponds to the objective function of combinatorial opti-
mization problems. This means that a spin configuration having the lowest energy represents the
global optimum solution of the original problem.

Specific purpose computers, which solve the Ising model, have been proposed. Some comput-
ers are based on natural phenomena such as the quantum superposition [8] or optical parametric
oscillation [17]. An FPGA-based prototype has been proposed to implement new architectures for
solving it [6]. In addition, several FPGA-based specific purpose computers have been proposed to
accelerate Monte Carlo simulations of the Ising model [2,5,9]. Their objective is to research physics
further, not to solve optimization problems.

Searching the lowest-energy state of the Ising model is essentially equivalent to the weighted
maximum cut problem in graph theory. The maximum cut problem is an archetype of the non-
deterministic polynomial time hard (NP-hard) problem, as is a lowest-energy state search of the
Ising model [1]. Finding the global optimum solution to the NP-hard problem generally requires
exponential time. Therefore, a near-optimum solution is used in practical use cases.

Our previous prototype had a structure that was too simple to be used practically, and it could
not be applied to real applications. A more complex structure is needed through developing appli-
cations. The requirement for the topology and dynamic range varies according to the application.
A well-suited architecture needs to be developed for each application. Therefore, we developed an
FPGA-based programmable prototyping environment to emulate the various configurations of our
architecture.
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Figure 2: Basic idea of our architecture

This paper is organized as follows. Section 2 describes our architecture’s basic concept. Section
3 presents a operator circuit to determine the next state of spin. Section 4 describes the spin unit’s
architecture to reduce the amount of resource usage by sharing the operator among multiple spins.
Section 5 also describes a technique to reduce resource consumption on a pseudo-random number
generator. Section 6 shows the implementation results and performance evaluation. We describe
related studies in Section 7 and conclude this paper in Section 8.

2 Overview of Annealing Processor

Our architecture uses an electronic circuit mimicking the Ising model shown in Figure 2. The spin
and accompanying coefficients are grouped into a spin unit. Each spin unit has a memory cell array
to represent the spin and coefficients. The next state of spin is determined by a digital or analog
operator. The spin units are connected together according to the topology of the desired Ising model.

This processor is used as an accelerator for the combinatorial optimization problem. Coefficient
values representing the optimization problem are written in memory cells to solve a problem using
the processor. Thus, the interaction between spin units is executed repeatedly by updating the spin
value. The operator takes neighboring spin values and corresponding coefficients for determining
the next state of spin to minimize the energy locally. An update means that the latest output of the
operator is stored in the memory cell representing the spin, and then the output can be observed
using neighboring spin units.

Conflict with the update, meaning that the spin unit uses the spin value updated simultaneously,
must be avoided. To prevent this conflict from occurring, the updating sequence is controlled during
interactions. In the case of Figure 2, the spin units can be grouped in a checkerboard pattern, and
the groups are updated sequentially.

The interaction, which is achieved by updating the spins, acts as the steepest descent method
for reaching the local optimum state. This behavior can find a state that has energy lower than that
of the current state. However, improving the solution is impossible once the state falls into a local
optimum. This means it transits to the same state forever. Therefore, probabilistic behavior is added
to the operator to enable escaping from the local optimum. Pseudo-random number generators are
needed to achieve probabilistic behavior.

In our previous prototype, the topology, coefficient width, and operator were too simple, and it
was not applicable to real world optimization problems. The topology of the supported Ising model
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Figure 3: Circuit diagram of the operator

in our previous prototype was a three-dimensional lattice, and the dynamic range of the interaction
coefficient was limited to 2 bits. The operator also needed to be improved to increase the solution’s
accuracy.

3 Glauber Dynamics Operator

This section describes operator’s circuit, which determines the next spin state. The circuit diagram
is shown in Figure 3. The proposed operator acts in accordance with Glauber dynamics (also known
as the heat bath algorithm). The Glauber dynamics plays an important role in the optimization.
The details of the theoretical background were published in reference [13].

The operator takes the value of adjacent spins shown as Nk in Figure 3. The value of spin
{−1,+1} is represented as that of binary digit {0, 1}. Memory cells H[0] and H[1] represent an
external magnetic field coefficient hi ∈ {±1, 0}. They are defined as

H[0] =

{
1 (hi ≥ 0)

0 (hi < 0)
, H[1] = |hi| . (2)

Similarly, memory cells Jk[0] and Jk[1] represent the interaction coefficient between the spin and its
k-th adjacent spin and are defined in the same way. Each Hk and Jk has 2-bit width, and the index
shows the bit field of the memory cells.

The acceptance rate of the Glauber dynamics is expressed as

PGlauber(∆H) =
1

2

{
1 + tanh

(
−∆H

2T

)}
, (3)

where ∆H is the energy change upon a spin flip, and T is the temperature. Random pulse sequences
are controlled to satisfy Equation (3) to achieve the Glauber dynamics using the circuits shown in
Figure 3.
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Figure 4: Topology of Ising model and corresponding hardware organization

A random pulse sequence that takes value “1” with probability prnd is injected to each random
pulse signal of type 1. Moreover, a signal of type 2 receives a random string that takes value “1”
with a probability of 50%. Each has independent randomness. Inverters probabilistically output
the signals flipped by the random pulse signals. Let X be a random variable that takes the value
“1” with probability of prnd, and let value “0” with probability 1 − prnd and Y be the number of
the majority voter circuit’s inputs with value “1.” The central limit theorem suggests that variable
Y will be approximately normally distributed. By using a simple approximation for hyperbolic
tangent [14,16], we obtain the relationship between probability prnd and temperature T as

prnd =
1

2

1− 1√
1 + 4T 2

πL

 , (4)

where L is the number of spin coefficients. Temperature T determines the probability of accepting
the state transition. At temperature zero, it behaves as the steepest descent method. Usually,
temperature T is scheduled as

Ti+1 = βTi, (5)

where β is cooling coefficient (0 < β < 1), and where Ti is the temperature in the i-th time step.
The temperature exponentially decreases from given initial temperature T0.

Equation (4) depends only on temperature T and the number of coefficients L. L is determined
using the topology of the Ising model, and temperature T is updated every time step during the
annealing. prnd can be shared among all the spins.

4 Shared Spin Unit

The left side of Figure 4 shows the desired complex topology. It consists of a local tight connection
and global sparse connection. The local tight connection can be represented as a complete graph (e.g.,
K4 complete graph in the figure). These complete graphs are placed in a grid pattern. The vertices
in the same position in each of the neighborhood complete graphs are connected. The neighborhood
is defined as being in eight directions in the plane: north, south, east, west, north-east, north-west,
south-east, and south-west.

The complete graph is implemented in the aforementioned topology as a single spin unit, con-
taining multiple spins. The spin units are placed in a grid pattern, and the units are connected
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Figure 5: Updating sequence for spin units

with the neighborhood shown on the right side of Figure 4. Basically, each spin should be updated
sequentially. Spins that are not directly connected may be updated simultaneously, and their result
is the same as that of a sequential update. If the topology is a lattice like that shown in Figure 2,
the spins that may be updated simultaneously can be organized into two groups. In the case of
Figure 4, they can be organized into four groups. No spins may be updated simultaneously in a spin
unit because the topology within them is a complete graph. However, the spins in different spin
units can be updated simultaneously, as shown in Figure 5.

A circuit diagram of spin units is shown in Figure 6. According to the aforementioned updating
rule, only one operator is sufficient in a spin unit because only one spin is updated at a time. The
spin unit has two memories (spin memory and coefficient memory) representing multiple spins, and
one operator is shared among multiple spins. The operator determines the next state of one spin at
a time, and it is used to determine all spins repeatedly by spending multiple cycles.

The spin unit’s temporal behavior is shown as a timing chart in Figure 7. The counter acts as a
simple controller to decide the updating sequence to maintain the updating rule. The value of the
counter is used as the address of memories indicating the spin that is to be updated at the current
cycle. When an interaction begins, the value of the counters is initialized as the appropriate number
shown in t = 0 of Figure 5. During the interaction, the counter is incremented when the spin is
updated. If the number of spins in the spin unit is an exponent of 2, the counter can wrap around
naturally to continue control.

Spin memory, which holds the state of multiple spins, is implemented as an array of flip-flops
because all spins must be readable at all times to provide the spin value for neighboring spin units.
In contrast, coefficient memory is sufficient with 1 R/W memory. During the interaction, only one
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line of the coefficient memory is read out in each cycle. Writing to the coefficient memory is done
during the initialization phase before starting the interaction.

The operator needs the neighboring spin values and random pulses to determine the next spin
state. To generate random pulses according to prnd, one pseudo-random number generator and one
comparator are needed to generate one random pulse sequence. Thus, one spin unit requires many
pseudo-random number generators.

5 Random Pulse Sharing

5.1 Concept of random pulse sharing

We were concerned that the pseudo-random number generators would become dominant in resource
consumption and that they would cap the scalability of our architecture. In our previous prototype,
we added simple hardware for each spin unit instead of one-by-one random pulse generators [7]. The
hardware mixes the few random pulse sequences to generate new random pulse sequences for each
spin unit. The processor has only two random pulse generators as a source for mixing the pulses.

In this study, we created a simple method for sharing the random pulse generators among multiple
spin units, as shown in Figure 8. The multiple spin units, which are shown on the right side of
Figure 4, are organized as a SpinTile in Figure 8. All spin units in the SpinTile have input wires
for random pulses. RandPlane is a collection of random pulse generators that transmit a bunch of
random pulse sequences. Figure 9 shows the variation in the random pulse sharing in 256 spin units
(16 × 16 spin units). The number below each configuration shows the ratio between the spin units
and generator. Basically, the random pulse generator is placed one-by-one along with the spin unit
(ratio 1). Ratio 1/m means that m spin units share random pulse generators.

According to the architecture’s updating rules, a couple of spins, which are connected directly,
are not updated at a time. In other words, the same pulse is not used among directly connected
spins simultaneously even if all spin units share one random pulse generator. We think this is why
multiple units can share the random pulse sequence. However, this method has not been validated
mathematically, and it remains as future work. This paper presents an experimental evaluation of
our method using an FPGA-based prototype.
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Figure 9: Variation in random pulse sharing

5.2 Random pulse generator

In this design, a random pulse generator (shown as a gray box in Figure 9) contains 25 pseudo-
random number generators and 25 comparators, as shown in Figure 10. Each pseudo-random number
generator is xorshift32 [11]. The comparator analyzes the 32-bit threshold and its random number.
The comparator’s output is “1” when the random number is greater than the threshold. Otherwise,
it is “0.” As a result, a random pulse sequence is generated, and it takes value “1” with a probability
according to the threshold.

The bit width of the pseudo-random number generator and comparator determines the resolution
of the temperature. The relationship between the resolution of temperature and the quality of
the solution should be studied. In this prototype, 32-bit resolution is used to express accurately
the behavior at low temperature. The processor has one common scheduler for all random pulse
generators. It calculates prnd and converts the value into the threshold. Both prnd and the threshold
are updated continuously during the interaction.

5.3 Long wiring for random pulse sharing

Long wires might be needed to share the random number generator among spin units, and they may
cause the operating frequency to decrease. Making the pipeline by adding flip-flops into the long
wires can maintain the operating frequency. The scheduler works in advance in accordance with the
number of stages in the pipeline. A tree structure is used to spread the random pulses widely to the
entire SpinTile, as shown in Figure 11. In our implementation discussed later, the pipeline is not
needed in 10 MHz operation. However, we use a 6-depth pipeline for 100 MHz operation to satisfy
the timing constraint.
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6 Implementation and Evaluation

6.1 Prototyping Environment

The block diagram of our prototyping environment is shown in Figure 12, and a photograph of it
is shown in Figure 13. We implemented a prototyping environment consisting of a Xilinx VCU108
evaluation board (FPGA: Virtex UltraScale XCVU095) and a PC used as the FPGA board’s host.
Our architecture was implemented in Bluespec SystemVerilog, and Vivado Design Suite 2016.1 was
used to synthesize the RTL generated by Bluespec. The implementation of our architecture runs at
100 MHz. All spin units update a spin for each clock cycle. Therefore, all spins are updated once
every four cycles.

All storage in the FPGA, representing the spins, coefficients, and annealing parameters, was
accessed using the PCI Express interface. A command, running on the host PC, wrote the coefficients
and parameters into the registers to store the problem to be solved, and the command read the
spins from the registers to load the solution. In an earlier stage of this prototype’s development, the
data between the PC and FPGA were transferred using a memory-mapped I/O. For this reason, the
effective performance of the data transfer was significantly lower (Write to FPGA: 9 MB/s, Read from
FPGA: 2 MB/s) than the peak performance (250 MB/s @ PCI Express Gen1 x1). We implemented
the DMA transfer to enhance the data transfer performance, as shown in Figure 14 and 15. The
DMA version of our implementation uses PCI Express Gen2 x4 (Peak performance: 2 GB/s). Each
plot shows the average bandwidth for 10,000 trials of DMA transfer. For both DMA write and read,
the bandwidth saturated with a transfer size of 256 KB or more. The efficiency was about 70%
(write) and 60% (read) in saturated area.

The design flow of our prototyping environment is shown in Figure 16. We implemented the
parameter-independent design of our architecture using Bluespec System Verilog. The number of
spins in the spin unit, number of spin units in the X direction and Y direction on the SpinTile, and
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ratio between the spin units and random pulse generators can be set as parameters written in the
separated file. The design space can be explored automatically by modifying the parameter file and
by recompiling.

6.2 Evaluation of 1024-Spin Implementation

The resource usage of our architecture is shown in Table 1 and Figure 17. The implemented design
supports 1024 spins (16× 16× 4) and 2-bit coefficients (−1, 0,+1). The look-up table (LUT) is the
dominant component in our design’s resource usage. For example, the consumption of flip-flops is
only 22.10% at maximum. We evaluated the resource consumption by changing the sharing ratio
of the random pulse generator. The table heading indicates the ratio between the spin units and
random pulse generators (e.g., 1/m means that m spin units share one random pulse generator).
The top hierarchy shows the total resource consumption, including those for PCI Express. The core
hierarchy indicates our architecture’s resource consumption, and it contains SpinTile and RandPlane.
SpinTile aggregates the spin units, and it contains 256 (= 16× 16) spin units in every case. Thus,
the resource consumption of SpinTile was almost the same in every case. RandPlane contains the
random pulse generators and its controller. It also contains the wires to distribute the random pulses
to multiple spin units if the random pulse generator is shared. The implementation results showed
that the LUT consumption can be reduced dramatically by using random pulse sharing because
RandPlane dominated the resource consumption. Although almost all resources of the FPGA were
consumed at a ratio of 1, even more spins (4096 spins) could be put into the same FPGA at a ratio
of 1/256.

The number of LUTs in the RandPlane could be linearly approximated with the number of
random pulse generators as 1673 × (256/m) + 10, 664. The LUT consumption for one random
pulse generators could be estimated as being about 1673 LUTs. Thus, more than 10,000 LUTs
were used for the controller in the RandPlane. It has a function to calculate a threshold based
on a scheduled temperature and a function to manage parameters for calculating temperatures. In
addition, it has a state machine that manages the progress of the schedule and is responsible for part
of the overall control of the Ising chip. The circuit scale is large because Equation (4) includes the
reciprocal square root. Block RAM can be used as a table of thresholds to reduce the controller’s
resource consumption. In the current implementation, block RAM (1 MB) was implemented as a
communication buffer with the host. Even if the values of spins and coefficients are stored, most
of the block RAM area remains. Therefore, a threshold is stored there. Instead of calculating the
threshold, the controller uses a previously prepared threshold. Because of these improvements, we
anticipate that the logical amount consumed in controllers can be reduced.

The solution accuracy of these shown implementations and reference code are shown in Table 2.
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Table 1: Number of LUT consumptions in 1024-spin implementation of proposed architecture

1 1/4 1/16 1/64 1/256

Available
537,600 537,600 537,600 537,600 537,600

(100%) (100%) (100%) (100%) (100%)

Top
468,183 146,506 66,435 46,447 41,618

(87.09%) (27.25%) (12.36%) (8.64%) (7.74%)

Core
463,101 141,424 60,806 40,818 36,064

(86.14%) (26.31%) (11.31%) (7.59%) (6.71%)

SpinTile
22,947 22,942 22,952 22,490 22,942

(4.27%) (4.27%) (4.27%) (4.18%) (4.27%)

SpinUnit
91 91 91 91 91

(0.02%) (0.02%) (0.02%) (0.02%) (0.02%)

RandPlane
438,982 117,408 37,353 17,390 12,612

(81.66%) (21.84%) (6.95%) (3.23%) (2.35%)

1/256

Yellow: resources for spin units     Red: resources for random signals     Blue: others (I/O)

1/641/161/41

Figure 17: FPGA implementation results of our architecture (1024 spins)
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Table 2: Solution accuracy in 1024-spin implementation of our architecture

1 1/4 1/16 1/64 1/256

Problem 1 -0.10% 0.26% -0.05% -0.05% 0.05%

Problem 2 1.26% 0.96% 1.26% 1.16% 1.06%

Problem 3 -1.26% -0.96% -1.37% -1.21% -1.21%

Problem 4 0.00% 0.05% 0.10% -0.15% -0.15%

Problem 5 -0.57% -0.26% -0.41% -0.52% -0.41%

Problem 6 2.48% 2.22% 2.01% 2.27% 2.27%

Problem 7 1.78% 2.35% 2.04% 2.09% 1.78%

Problem 8 0.49% 0.34% 0.44% 0.28% 0.44%

Problem 9 2.87% 2.71% 2.56% 2.66% 2.87%

Problem 10 1.34% 1.34% 1.55% 1.50% 1.65%

Ten benchmark problems, which were generated, were used for an evaluation. The category of the
problems was a ground-state search of the Ising model. These problems were essentially equivalent
to the weighted maximum cut problem in graph theory. The randomly generated problems had
the topology shown in the left side of Figure 4. The coefficients were randomly selected from three
possible coefficients (−1, 0,+1). In this experiment, the prototype solved each benchmark problem
ten times, and the best solution was chosen. Because annealing relies on randomness, the quality
of the solution varied in each trial. The quality was measured by comparing the solution from the
reference code. We define the solution accuracy as a metric for comparison by

R(s) =
H(s)

H(sref)
− 1 (6)

where s is the solution derived from the method for comparison, and sref is the solution to the same
problem derived from the reference code. The reference code was a straightforward software-based
implementation of simulated annealing; it also solved each problem ten times, and the best solution
was chosen. The best solution of the reference code was used as reference energy. The quality of the
solution could be measured using an energy function defined as Equation (1). H(s) is the energy
from our prototype implementation, and H(sref) is the energy from the reference code. Lower energy
shows that the state of the Ising model corresponds to a better solution of the optimization problem.
Therefore, both our implementation and reference code used the minimum values of the energy. R(s)
means the increases or decreases relative to the reference energy, and it is listed in Table 2. The
large R(s) value showed that our implementation’s solution was better than the reference code’s
one.

In both our implementation and reference code, all spins were updated 250,000 times during an
execution. Our implementation spent approximately 10 ms (1,000,000 clock cycles).

As a result, the solution accuracy of the proposed architecture was almost the same among the
variations of the random pulse sharing. Thus, random pulse sharing could reduce resource consump-
tion without degrading the solution accuracy. Additionally, the solution accuracy is comparable to
the reference simulated annealing code. This result experimentally demonstrated that our architec-
ture has the potential to be a special-purpose processor for annealing the Ising model.

6.3 Evaluation of 4096-Spin Implementation

Without random pulse sharing, as shown in Table 1, the limitation of integration was 1024 spins
with 87.09% LUT consumption. LUT consumption could be reduced to less than 1/10 using it.
Therefore, 10-times higher integration was expected using our method. Next, a 4096-spin prototype
was implemented and evaluated to show the scalability of random pulse sharing.

The resource usage of the 4096-spin implementation is shown in Table 3 and Figure 18. The
implemented design supports 4096 spins (32 × 32 × 4) and 2-bit coefficients (−1, 0,+1). We tried
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Table 3: Number of LUT consumptions in 4096-spin implementation of our architecture

1/256 (did not meet the timing) 1/1024

Available
537600 537600

(100%) (100%)

Top
154352 149393

(28.71%) (27.79%)

Core
141967 136998

(26.41%) (25.48%)

SpinTile
122942 122965

(22.87%) (22.87%)

SpinUnit
120 119

(0.02%) (0.02%)

RandPlane
17130 12152

(3.19%) (2.26%)

it using a design with low resource usage that had only one random pulse generator placed. In the
design, one random pulse generator was placed for every 1024 spin units (ratio of 1/1024). The
implementation with a 1/1024 ratio met the timing constraints and ran correctly. The solution
accuracy is shown in Table 4 and discussed later.

A more complex design, in which the ratio between the number of spin units and random pulse
generations was increased to 1/256, was also implemented. The implementation with ratio 1/256 had
sufficiently low LUT consumption; however, the timing constraints could not be satisfied in the I/O
wiring. We estimated the timing violation was caused by some long wirings occurring between the
block RAMs and spin units (worst negative slack: −0.213ns, total negative slack: −0.283ns). Block
RAMs were used as the buffer of data transfer. This is not a critical problem of our architecture;
hence, we will continue to improve the detailed design to achieve a more complex one.

Table 4 shows the solution accuracy of the 4096-spin implementation with the ratio 1/1024.
The method of evaluation was the same as that with 1024-spin implementation. We prepared ten
randomly generated problems for benchmarking, with the results shown in Table 4. The number of
repetitions to solve the problem was set to 1, 2, 5, 10, 20, 50, and 100 for each problem to clarify the
relationship between the number of repetitions and the quality of the solution. Each column in the
first line of Table 4 shows the number of repetitions. The best solution among multiple repetitions
was chosen from the results generated by the prototype. For example, 20 means the described
solution accuracy was the best solution among 20 trials. Each item in Table 4 is a value calculated
by Equation (6). In all items, the energy of the reference code H(sref) was the best solution among
100 trials of the reference code. However, the energy of our implementation H(s) was the best
solution among i trials, where i is the number of repetitions.

Table 5 shows the worst solution accuracy with 100 randomly generated problems. Even in the
worst case shown in Table 5, the solution accuracy improved as the number of repetitions of the trials
increased. Under the same temperature scheduling, the hardware implementation could perform the
annealing even when the number of spins increased because the hardware naturally exploits the
parallelism in the Ising model.

7 Related Work

FPGA-based specific purpose computers for the Ising model have been proposed. These computers
can be categorized into two groups based on their objective. One is for a Monte Carlo simulation of
the spin system [2,5, 9]. The other is for a ground-state search of the Ising model [6].

Gilman et al. [5] and Lin et al. [9] implemented pipelined architectures on a single FPGA that
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1/1024 1/256 (not met the timing) 

Yellow: 

resources for spin units  

 

Red: 

resources for random signals  

 

Blue: others (I/O) 

Figure 18: FPGA implementation results of our architecture (4096 spins)

Table 4: Solution accuracy in 4096-spin implementation of our architecture

1 2 5 10 20 50 100

Problem 1 0.05% 0.05% 0.05% 0.05% 0.05% 0.08% 0.08%

Problem 2 -0.06% -0.06% -0.06% -0.06% -0.01% 0.14% 0.14%

Problem 3 -0.27% -0.06% 0.10% 0.10% 0.15% 0.30% 0.42%

Problem 4 -0.60% -0.44% -0.28% -0.19% -0.19% -0.19% -0.10%

Problem 5 -0.65% -0.39% -0.39% -0.19% -0.19% -0.19% -0.19%

Problem 6 -0.35% -0.35% -0.19% -0.19% -0.19% -0.06% -0.06%

Problem 7 -0.19% 0.13% 0.13% 0.25% 0.29% 0.31% 0.40%

Problem 8 -0.20% -0.20% 0.08% 0.08% 0.08% 0.08% 0.11%

Problem 9 -0.54% -0.51% 0.00% 0.00% 0.00% 0.00% 0.09%

Problem 10 -0.44% -0.44% -0.44% -0.29% -0.19% -0.04% -0.04%

Table 5: Worst solution accuracy among 100 randomly generated problems in 4096-spin implemen-
tation of our architecture

1 2 5 10 20 50 100

Worst -0.92% -0.60% -0.53% -0.50% -0.42% -0.42% -0.35%
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integrates 2563 (three-dimensional lattice) and 10242 (two-dimensional lattice) spins, respectively.
They used an external memory chip to store the value of spins. Coefficient values of the Ising
model were assumed to be fixed. This is a critical difference between the simulation purpose and
optimization purpose because this assumption is not applicable for solving optimization problems via
the Ising model. For optimization, the original problem has to be represented using a combination
of coefficient values, and it cannot be fixed.

Belletti et al. [2] developed Janus, which was designed for larger systems. The entire system
consists of multiple compute cores and hosts. Each core has a 4×4 two-dimensional grid of processing
elements and an I/O processor. This system is flexible in terms of the Ising model’s topology and
behavior of updating rules. It offers higher flexibility and scalability in exchange for requiring more
hardware resources.

Gyoten et al. [6] implemented an FPGA-based specific processor that integrates 8× 100 spins in
a two-dimensional torus topology with coefficient (+1,−1) for solving optimization problems. Their
architecture is based on the unit (isingcell) to represent a single spin. The processor is a collection
of many units connected together according to a given topology. This concept is the same as our
architecture’s; however, the main difference is that the unit contains multiple spins to share the
computation resources.

8 Conclusion

In this paper, we presented a FPGA-based prototyping environment for an annealing processor
and a new architecture for solving the Ising model. Compared with our previous prototype, both
the solution accuracy and the complexity of the topology were improved. The new architecture
is based on units having multiple spins, and the spins share one operator to reduce the resource
consumption. Furthermore, a pseudo-random number generator, which generates random pulse
sequences for annealing, is also shared among all the units. As a result, the number of logic elements
was reduced to less than 1/10, and the solution accuracy became comparable to the simulated
annealing running on a conventional computer.

However, a problem still remains regarding practical applications, and solving it is our future
work. The dynamic range of the coefficient in our architecture is 2 bits wide, and it represents the
value of +1, 0, and -1. This range is still insufficient for practical use. We estimated that practical
applications need at least 4 or 5 bits. The specifications of the processor are still being studied,
and co-design with applications is needed. We will continue working on a prototype to develop the
architecture and to ensure its efficient implementation using our proposed environment.
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