
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 7, Number 2, pages 173–186, July 2017

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

Keiichi Kaneko

Graduate School of Engineering
Tokyo University of Agriculture and Technology

Koganei-shi, Tokyo 184-8588, JAPAN

Antoine Bossard

Graduate School of Science
Kanagawa University

Tsuchiya 2946, Hiratsuka, Kanagawa 259-1293, JAPAN

Received: February 14, 2017
Revised: May 5, 2017
Accepted: June 5, 2017

Communicated by Yoshiaki Kakuda

Abstract

Numerous TOP500 supercomputers are based on a torus interconnection network. The torus
topology is effectively one of the most popular interconnection networks for massively parallel
systems due to its interesting topological properties such as symmetry and simplicity. For
instance, the world-famous supercomputers Fujitsu K, IBM Blue Gene/L, IBM Blue Gene/P
and Cray XT3 are all torus-based. In this paper, we propose an algorithm that constructs
2n mutually node-disjoint paths from a set S of 2n source nodes to a set D of 2n destination
nodes in an n-dimensional k-ary torus Tn,k (n ≥ 1, k ≥ 3). This algorithm is then formally
evaluated. We have proved that the paths selected by the proposed algorithm have lengths at
most 2(k + 1)n and can be obtained with a time complexity of O(kn3 + n3 logn).

Keywords: Multicomputer, Interconnect, Parallel processing, Hypercube, Fault tolerance, Perfor-
mance evaluation

1 Introduction

Modern supercomputers are massively parallel systems: they include hundreds of thousands of
computing nodes (CPUs). The interconnection of these nodes is critical: inefficient data transmission
would annihilate any performance hopes no matter the number of cores available. Effectively, in
such case, performance bottleneck would inevitably arise, with most CPUs simply waiting to be fed
data. In practice, the torus topology has been proving very popular as interconnection network of
massively parallel systems. Effectively, many TOP500 supercomputers are now torus-based: Fujitsu
K, IBM Blue Gene/L, IBM Blue Gene/P and Cray XT3 are famous examples [1].

We propose in this paper a solution to the set-to-set disjoint paths routing problem in a torus
network. This problem consists of selecting mutually node-disjoint paths between two sets of nodes.
This problem is critical and has obvious applications: first, it enables simultaneous usage of the

173

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

Table 1: Comparing topological properties of tori with those of other popular interconnection net-
works.

Network Order Degree Diameter Cost Edges

(n, k)-torus kn 2n nbk/2c 2n2bk/2c nkn

n-hypercube 2n n n n2 2nn

n-dual-cube 22n−1 n 2n 2n2 22n−2n

n-star graph n! n− 1 b3(n− 1)/2c (n− 1)b3(n− 1)/2c n!(n− 1)/2

(k,m)-metacube 22
km+k m+ k 2k(m+ 1) 2k(m+ 1)(m+ k) 22

km+k−1(m+ k)

network to transmit data along several, different paths. For a same amount of data to transfer, the
network is thus used a shorter period of time, thus inducing a reduced power consumption, making
it environmental friendly (see Green IT [2, 3]). In addition, because the paths selected are mutually
node-disjoint, the infamous blocking situations of shared resource systems (deadlocks, livelocks and
starvations) are guaranteed not to occur. Disjoint paths routing is thus a very desirable algorithm
property [4, 5, 6].

Furthermore, by addressing the aforementioned issues, system dependability is subsequently
greatly enhanced. When such a huge amount of cores is handled, the probability that a few of these
nodes are broken (faulty nodes) is high. In the case of disjoint paths routing, as the paths selected
share no common node, one faulty node can jeopardise at most one of the selected paths, unlike in
the case of non-disjoint paths where one faulty node can neutralise several paths at once.

For these reasons, the set-to-set disjoint paths routing problem has been addressed in various
interconnection networks: in dual-cubes [7], recursive dual-nets [8], pancake graphs [9], star graphs
[10] and hypercubes [11, 12] to only cite a few of them. A similar approach has been discussed in
various previous works [13, 14]. For reference, a comparative summary of the topological properties
of tori and other networks [15] is given in Table 1 (the network cost is the degree by diameter
product). The approach followed in this paper is a divide-and-conquer one, relying on the recursive
property of tori. Relying on the recursive property of the network topology is a method that has
been proved very efficient when solving disjoint-path routing problems [9, 11, 13]. The same problem
could be solved by using for instance a solution to the maximum flow algorithm, such as the Ford-
Fulkerson algorithm, or even newer solutions, yet the solutions to this problem are polynomial in
the number of edges (or vertices, depending on the algorithm), which thus makes them impractical
solutions. The proposed routing algorithm selects 2n mutually node-disjoint paths (abbreviated
disjoint hereinafter) between a set S of 2n source nodes and a set D of 2n destination nodes in an
n-dimensional k-ary torus Tn,k (n ≥ 1, k ≥ 3). The paths selected have lengths at most 2(k + 1)n
and can be obtained with a time complexity of O(kn3 + n3 log n).

The rest of this paper is organised as follows. Definitions, notations and intermediary results are
established in Section 2. The set-to-set disjoint paths routing algorithm in a torus is described in
Section 3. This algorithm is formally evaluated in Section 4. This paper is concluded in Section 5.

2 Preliminaries

In this section, we first give the definitions and notations that will be used throughout this paper.
In addition, several important results and properties on which is based the proposed torus set-to-set
disjoint paths routing algorithm are established.

Definition 1. For two n-dimensional vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) and a
natural number k, we define the operation a⊕b = ((a1 + b1) mod k, (a2 + b2) mod k, . . . , (an + bn)
mod k). Similarly, we define the operation a	b = ((a1−b1) mod k, (a2−b2) mod k, . . . , (an−bn)
mod k).

Definition 2. Among n-dimensional vectors a = (a1, a2, . . . , an), we denote the nodes that satisfy
aj = 0 (1 ≤ j 6= i ≤ n) and ai = 1 by ei.

174

International Journal of Networking and Computing

(a) (b)

Figure 1: A 2-dimensional 4-ary (a) and a 3-dimensional 4-ary (b) torus network.

We then recall the definition of the torus topology.

Definition 3. [16] An n-dimensional k-ary torus Tn,k (n ≥ 1, k ≥ 3) is an undirected graph
consisting of kn nodes where the set of the nodes is given by {0, 1, . . . , k − 1}n. For two nodes
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in a Tn,k, a and b are adjacent if and only if there exists
ei (1 ≤ i ≤ n) such that b = a⊕ ei or b = a	 ei.

A 2-dimensional 4-ary torus network is given in Figure 1a, and a 3-dimensional 4-ary torus
network is given in Figure 1b.

Next, several topological properties of torus networks are recalled or proven.

Lemma 1. The length of an arbitrary cycle in a torus is at least 4.

Proof. Omitted.

Definition 4. In an n-dimensional k-ary torus Tn,k, the sub graph derived by the set of the nodes
obtained by fixing their rightmost elements to an integer h (0 ≤ h ≤ k − 1) is isomorphic to an
(n − 1)-dimensional k-ary torus Tn−1,k. This sub graph is called a sub torus, and it is denoted by
Tn−1,k(h).

Definition 5. For a node a = (a1, a2, . . . , an) inside a Tn,k, the sub graph derived from the set
of the nodes obtained by fixing their elements other than the rightmost one to a1, a2, . . . , an−1 is
isomorphic to a ring of k nodes. This sub graph is called a class to which the node a belongs, and
it is denoted by C(a).

Definition 6. A path p in a graph is an alternate sequence of nodes and edges: p = u1, (u1, u2), u2,
. . . , uk, with (u1, u2) denoting the edge between the nodes u1 and u2. This path p can be also denoted
by u1 → u2 → . . .→ uk and simplified to u1 ; uk. The length of a path corresponds to its number
of edges.

Definition 7. Two paths are node disjoint (or simply disjoint) if and only if they have no node in
common.

Lemma 2. For a node a in a Tn,k and a sub torus Tn−1,k(h) to which a does not belong, we can

construct (2n − 1) disjoint paths ~Pl(a): a ; bl (1 ≤ l ≤ 2n − 1) of lengths at most k from a to
(2n − 1) distinct nodes bl in Tn−1,k(h) by traversing a class for each path by the ⊕ operation in
O(kn) time.

Proof. For a = (a1, a2, . . . , an), by traversing classes from a and its neighbour nodes in the sub

175

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

torus Tn−1,k(an), we can construct (2n− 1) disjoint paths as follows:

~Pl(a) :

a→ a⊕ el → a⊕ el ⊕ en → a⊕ el⊕
en ⊕ en → · · · → bl (1 ≤ l ≤ n)

a→ a	 el−n → a	 el−n ⊕ en → a	
el−n ⊕ en ⊕ en → · · · → bl

(n+ 1 ≤ l ≤ 2n− 1)

The maximum length of these paths is k. It takes O(k) time to construct a path. Hence, it takes
O(kn) time in total.

Lemma 3. For a node a in a Tn,k and a sub torus Tn−1,k(h) to which a does not belong, we can

construct (2n − 1) disjoint paths ~P l(a): a ; bl (1 ≤ l ≤ 2n − 1) of lengths at most k from a to
(2n− 1) distinct nodes bl in Tn−1,k(h) by traversing a class for each path by the 	 operation with a
time complexity of O(kn).

Proof. For a = (a1, a2, . . . , an), by traversing classes from a and its neighbour nodes in the sub
torus Tn−1,k(an), we can construct (2n− 1) disjoint paths as follows:

~P l(a) :

a→ a⊕ el → a⊕ el 	 en → a⊕ el	
en 	 en → · · · → bl (1 ≤ l ≤ n− 1)

a→ a	 el−n+1 → a	 el−n+1 	 en →
a	 el−n+1 	 en 	 en → · · · → bl

(n ≤ l ≤ 2n− 1)

The maximum length of these paths is k. It takes O(k) time to construct one path. Hence, it takes
O(kn) time in total.

Lemma 4. [17] For a source node set S (|S| = 2) and a destination node set D (|D| = 2) in a
Tn,k, we can find two disjoint paths between S and D in the optimal time complexity O(kn). The
maximum length of the selected paths is kn.

Lemma 5. For three nodes a, b, and c in a torus, if an arbitrary path Q: a ; b in the torus
contains c or multiple neighbour nodes of c in the torus, there exists a path from c to b whose length
is shorter than Q.

Proof. If the path Q contains c, there exists a sub path c ; b of Q that is shorter than Q. If the
path Q contains multiple neighbour nodes of c in the torus, let ĉ represent the neighbour node of c
that is closest to the node b. Then, from Lemma 1, the length of the sub path a ; ĉ of Q is more
than 1. So, the path c→ ĉ ; b obtained by adding the sub path ĉ ; b of Q to the edge c→ ĉ is
shorter than Q.

Lemma 6. For an arbitrary set of 2n nodes A = {a1,a2, . . . ,a2n} in a Tn,k, we can construct two
paths from two nodes in A to Tn−1,k(0), and (2n − 2) paths from the remaining (2n − 2) nodes in
A to Tn−1,k(k − 1) whose lengths are at most k and such that all of these paths are disjoint with a
time complexity of O(n2 log n).

Proof. First, let us assume that there is no class that contains multiple nodes in A. It takes O(n log n)
time to check this assertion. Then, from two nodes in A that have the smallest and second smallest
rightmost elements, say ai (i = 1, 2), we can construct the paths ai → ai 	 en → ai 	 en 	 en →
· · · → a′i(∈ Tn−1,k(0)). The lengths of these paths are at most k − 1, and it takes O(k) time to
construct them. From the remaining (2n − 2) nodes ai (3 ≤ i ≤ 2n), we can construct paths
ai → ai ⊕ en → ai ⊕ en ⊕ en → · · · → a′i(∈ Tn−1,k(k − 1)). The lengths of these paths are at most
k − 1, too, and it takes O(kn) time to construct these paths.

Next, let us assume that there is a class C that contains multiple nodes in A. Then, among the
nodes in A ∩ C, we select the node that has the smallest rightmost element, say a1, and the node

176

International Journal of Networking and Computing

that has the largest rightmost element, say a2, and construct paths a1 → a1	en → a1	en	en →
· · · → a′1(∈ Tn−1,k(0)) and a2 → a2 ⊕ en → a2 ⊕ en ⊕ en → · · · → a′2(∈ Tn−1,k(k − 1)). The
lengths of these paths are at most k − 2, and it takes O(k) time to construct them. Now, we have
constructed two paths by using only one class. Therefore, among the remaining (2n − 2) nodes,
we select the node that has the smallest rightmost element, say a3, and consider the (2n − 1)

paths ~P l(a3) (1 ≤ l ≤ 2n − 1) of lengths at most k by Lemma 3. Then, there is at least one path
a3 ; a′3(∈ Tn−1,k(0)) that is disjoint from other nodes in A and the paths from them. It is sufficient
to find an unoccupied class to find the disjoint path. Hence, it takes O(n log n) time. The disjoint
path construction takes O(k) time. For each of the remaining (2n − 3) nodes ai (4 ≤ i ≤ 2n), we

consider the (2n− 1) paths ~Pl(ai) (1 ≤ l ≤ 2n− 1) of lengths at most k by Lemma 2. Then, there is
at least one path ai ; a′i(∈ Tn−1,k(k−1)) that is disjoint from other nodes in A and the paths from
them. It is sufficient to find an unoccupied class to find the disjoint path. So, it takes O(n log n)
time. The disjoint path construction takes O(k). Therefore, it takes O(n2 log n) time to construct
paths from (2n − 3) nodes. To summarize, the maximum length of the paths is k, and the path
selection is O(n2 log n) time.

3 Set-to-Set Disjoint Paths Routing Algorithm

Because a 1-dimensional k-ary torus (k ≥ 3) is just a ring, and because any source node can be
connected to any destination node, we can easily construct 2 disjoint paths that connect 2 source
nodes and 2 destination nodes in O(k) time. In a 2-dimensional k-ary torus (k ≥ 3), we can construct
4 disjoint paths that connect 4 source nodes and 4 destination nodes in O(k) time. So in this section,
we propose an algorithm S2S that constructs set-to-set disjoint paths in an n-dimensional k-ary torus
Tn,k (n ≥ 3, k ≥ 3).

The algorithm S2S is divided into three cases depending on the numbers of the source and
destination nodes inside the sub torus Tn−1,k(0). The three cases distinguished hereinafter cover
the source-destination node repartition possibilities. Hence, it suffices to prove the correctness and
complexities of these three cases in order to solve the set-to-set disjoint paths routing problem in a
torus network.

3.1 Case 1

In Case 1, we assume that a sub torus contains at least two pairs of the source and destination
nodes (∃h (0 ≤ h ≤ k − 1) such that |Tn−1,k(h) ∩ S| ≥ 2, |Tn−1,k(h) ∩ D| ≥ 2). Without loss of
generality, we can assume that Tn−1,k(0) is the sub torus with at least two source-destination pairs.
An illustration of Case 1 is given in Figure 2.

Tn−1,k(0)

si*

s2

s1

d1

d2 sj

Tn−1,k(k − 1)

s′j

s′i *

Figure 2: Case 1: the sub torus Tn−1,k(0) contains two source-destination pairs.

Step 1 Select two source nodes and two destination nodes in Tn−1,k(0), and find two disjoint paths
between the source and destination nodes by Lemma 4. While at least one of these paths
contains other source or destination nodes in the Tn−1,k(0) or multiple neighbour nodes in the

177

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

Tn−1,k(0) of one of them, apply Lemma 5 to adopt the shorter path. We assume that the
paths s1 ; d1 and s2 ; d2 are obtained finally.

Step 2 For each node si of other source nodes in Tn−1,k(0), from Lemma 3, consider (2n − 1)

disjoint paths ~P l(si) (1 ≤ l ≤ 2n − 1) of lengths at most 2 from si to Tn−1,k(k − 1). Among
these (2n − 1) paths, try to select one that is disjoint from s1 ; d1, s2 ; d2, other source
nodes sj (3 ≤ j 6= i ≤ 2n), and the paths originating from them to Tn−1,k(k − 1). If all the
paths are blocked, let ŝi represent the neighbour node of si that s1 ; d1 contains. Then,
construct the path si → si ⊕ en → ŝi ⊕ en → · · · → s′i(∈ Tn−1,k(k − 1)).

Step 3 For each node di of the other destination nodes in the Tn−1,k(0), execute the process similar
to Step 2 to obtain disjoint paths di ; d′i(∈ Tn−1,k(k − 1)).

Step 4 For each source node si in the sub tori other than Tn−1,k(0), from Lemma 2, consider (2n−1)

paths ~Pl(si): (1 ≤ l ≤ 2n − 1) from the node si to Tn−1,k(k − 1). Among them, select one
path si ; s′i(∈ Tn−1,k(k − 1)) which is disjoint from other source nodes sj (3 ≤ j 6= i ≤ 2n)
as well as the paths originating from them to Tn−1,k(k − 1).

Step 5 For each node di of the other destination nodes in the sub tori other than Tn−1,k(0), execute
the process similar to Step 4 to obtain disjoint paths di ; d′i(∈ Tn−1,k(k − 1)).

Step 6 For the source and destination nodes such that the paths from them encounter each other,
discard the redundant sub paths. For the remaining source and destination nodes, connect the
terminal nodes of the paths from them in the Tn−1,k(k − 1) with disjoint paths by applying
the algorithm S2S recursively.

3.2 Case 2

In Case 2, we first assume that there is not any sub torus that contains at least two pairs of the
source and destination nodes (∀h (0 ≤ h ≤ k−1), |Tn−1,k(h)∩S| < 2 or |Tn−1,k(h)∩D| < 2). Since
k ≥ 3, we can assume that |Tn−1,k(h)∩S| ≤ 2n−2, |Tn−1,k(h)∩D| ≤ 2n−2, and h = k−1 without
loss of generality. In Case 2, we also assume that |Tn−1,k(0) ∩ S| < 2 and |Tn−1,k(0) ∩D| < 2. An
illustration of Case 2 is given in Figure 3.

Tn−1,k(0)

s′2

s′1

d′1

d′2

d2

sj

si

Tn−1,k(k − 1)

s′i

s′j

d′i

dj

Figure 3: Case 2: any sub torus includes at most one source-destination pair, and the condition
|Tn−1,k(0) ∩ S| < 2 and |Tn−1,k(0) ∩D| < 2 holds.

Step 1 For the set of source nodes S, apply Lemma 6 to find 2n disjoint paths. Without loss
of generality, assume that si ; s′i(∈ Tn−1,k(0)) (i = 1, 2) and si ; s′i(∈ Tn−1,k(k − 1))
(3 ≤ i ≤ 2n) are constructed.

Step 2 For the set of destination nodes D, apply Lemma 6 to find 2n disjoint paths. Without
loss of generality, assume that di ; d′i(∈ Tn−1,k(0)) (i = 1, 2) and di ; d′i(∈ Tn−1,k(k − 1))
(3 ≤ i ≤ 2n) are found.

178

International Journal of Networking and Computing

Step 3 If a path si ; s′i(∈ Tn−1,k(0)) and a path dj ; d′j(∈ Tn−1,k(0)) encounter, discard
the redundant sub path. Also, if a path si ; s′i(∈ Tn−1,k(k − 1)) and a path dj ; d′j(∈
Tn−1,k(k − 1)) encounter, discard the redundant sub path.

Step 4 If a path si ; s′i(∈ Tn−1,k(0)) and a path dj ; d′j(∈ Tn−1,k(k− 1)) encounter, discard the
redundant sub paths and execute the following Steps 5 and 6. Otherwise go to Step 7.

Step 5 If both of the paths si ; s′i(∈ Tn−1,k(0)) (i = 1, 2) encounter other paths, execute Step 6
for both of di (i = 1, 2). Otherwise, without loss of generality, we assume that i = 2. Construct
a path s′1 ; d′1 and while the path contains d′2 or its multiple neighbour nodes, apply Lemma
5 to adopt the shorter path. We assume that the path s′1 ; d′1 is eventually obtained.

Step 6 From Lemma 3, consider (2n− 1) disjoint paths ~P l(d
′
i) (1 ≤ l ≤ 2n− 1) of lengths at most

2 from d′i to Tn−1,k(k − 1). Then, select one of the paths that does not contain any other
destination node and that is disjoint from the paths from the other destination nodes. Go to
Step 8.

Step 7 In the Tn−1,k(0), for the source nodes s′1, s′2, and the destination nodes d′1, d′2, from Lemma
4, construct two disjoint paths.

Step 8 For the remaining source and destination nodes, connect the terminal nodes of the paths
from them in the Tn−1,k(k− 1) with disjoint paths by applying the algorithm S2S recursively.

3.3 Case 3

In this case, we assume that there is not any sub torus that contains at least two pairs of the source
and destination nodes (∀h (0 ≤ h ≤ k− 1), |Tn−1,k(h)∩S| < 2 or |Tn−1,k(h)∩D| < 2). Since k ≥ 3,
we can assume that |Tn−1,k(k − 1) ∩ S| ≤ 2n − 2 and |Tn−1,k(k − 1) ∩D| ≤ 2n − 2 without loss of
generality. In Case 3, we assume that |Tn−1,k(0)∩S| < 2 and |Tn−1,k(0)∩D| ≥ 2. For the case that
|Tn−1,k(0) ∩ S| ≥ 2 and |Tn−1,k(0) ∩D| < 2, it can be treated similarly. An illustration of Case 3 is
given in Figure 4.

Tn−1,k(0)

s′2

d2

s1

d1

d3

*

s2

dj

Tn−1,k(k − 1)

s′i
sj

d′j

d′3 *

Figure 4: Case 3: any sub torus includes at most one source-destination pair, and the condition
|Tn−1,k(0)∩S| < 2 and |Tn−1,k(0)∩D| ≥ 2 (or similarly |Tn−1,k(0)∩S| ≥ 2 and |Tn−1,k(0)∩D| < 2)
holds.

Step 1 For the set of source nodes S, apply Lemma 6 to find 2n disjoint paths. Without loss
of generality, assume that si ; s′i(∈ Tn−1,k(0)) (i = 1, 2) and si ; s′i(∈ Tn−1,k(k − 1))
(3 ≤ i ≤ 2n) are constructed.

Step 2 Select two destination nodes, say d1 and d2, in Tn−1,k(0), and construct two disjoint paths
between the source nodes s′1, s′2 and the destination nodes d1, d2 by applying Lemma 4.
While at least one of these paths contains other destination nodes in the Tn−1,k(0) or multiple
neighbour nodes in the Tn−1,k(0) of one of them, apply Lemma 5 to adopt the shorter path.
We assume that the paths s′1 ; d1 and s′2 ; d2 are obtained finally.

179

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

Step 3 For each node di of other destination nodes in Tn−1,k(0), from Lemma 3, consider (2n− 1)

disjoint paths ~P l(di) (1 ≤ l ≤ 2n− 1) of lengths at most 2 from di to Tn−1,k(k − 1). Among
these (2n−1) paths, try to select one that is disjoint from s1 ; d1, s2 ; d2, other destination
nodes dj (3 ≤ j 6= i ≤ 2n), and the paths from them to Tn−1,k(k − 1). If there is no such

path, let d̂i represent the neighbour node of di that s1 ; d1 contains. Then, construct the
path di → di ⊕ en → d̂i ⊕ en → · · · → d′i(∈ Tn−1,k(k − 1)).

Step 4 For each destination node di in the sub tori other than Tn−1,k(0), from Lemma 2, consider

(2n−1) paths ~Pl(di): (1 ≤ l ≤ 2n−1) from the node di to Tn−1,k(k−1). Among them, select
one path di ; d′i(∈ Tn−1,k(k−1)) that is disjoint from other source nodes dj (3 ≤ j 6= i ≤ 2n)
and the paths from them to Tn−1,k(k − 1).

Step 5 If a path si ; s′i(∈ Tn−1,k(k− 1)) and a path dj ; d′j(∈ Tn−1,k(k− 1)) encounter, discard
the redundant sub path.

Step 6 If a path si ; s′i(∈ Tn−1,k(0)) and a path dj ; d′j(∈ Tn−1,k(k− 1)) encounter, discard the
redundant sub paths and execute the following Step 7. Otherwise go to Step 8.

Step 7 If both of the paths si ; s′i(∈ Tn−1,k(0)) (i = 1, 2) encounter other paths, execute the
following for i = 1, 2. Otherwise, without loss of generality, we assume that i = 2. For di,
from Lemma 3, we consider (2n− 1) disjoint paths ~P l(di) (1 ≤ l ≤ 2n− 1) of lengths at most
2 from di to Tn−1,k(k− 1). Then, select one path that does not contain any other destination
node and that is disjoint from the paths from the other destination nodes.

Step 8 For the remaining source and destination nodes, connect the terminal nodes of the paths
from them in the Tn−1,k(k− 1) with disjoint paths by applying the algorithm S2S recursively.

3.4 Routing example

In this section, a concrete routing example in a 3-dimensional 3-ary torus T3,3 is given. Let S =
{s1 = (0, 0, 0), s2 = (0, 0, 1), s3 = (0, 0, 2), s4 = (2, 0, 0), s5 = (2, 0, 1), s6 = (2, 0, 2)} be the set of
source nodes, and D = {d1 = (1, 0, 0),d2 = (1, 0, 1),d3 = (1, 0, 2),d4 = (1, 1, 0),d5 = (1, 1, 1),d6 =
(1, 1, 2)} be the set of destination nodes.

First, s2, s5 and d2,d5 are inside the same sub torus T2,3(1), hence this is Case 1, and two
disjoint paths connecting s2, s5 and d2,d5 are obtained.

Next, route remaining source and destination nodes towards T2,3(2) in at most 2 edges: the paths
s1 → (0, 1, 0) → (0, 1, 2), s4 → (2, 1, 0) → (2, 1, 2) and d1 → (1, 2, 0) → (1, 2, 2), d4 → (2, 1, 0) →
(2, 1, 2) are selected (s3, s6 and d3,d6 already in T2,3(2)).

Third, the paths from s4 and d4 encounter, hence s4 is connected to d4 with the path s4 →
(2, 1, 0)→ d4 and the edge (2, 1, 0)→ (2, 1, 2) is discarded.

Fourth, the algorithm is applied recursively in T2,3(2) with s′1 = (0, 1, 2), s′3 = s3 = (0, 0, 2), s′6 =
s6 = (2, 0, 2) as source nodes and d′1 = (1, 2, 2),d′3 = d3 = (1, 0, 2),d′6 = d6 = (1, 1, 2) as destination
nodes. The sub torus T1,3(0) includes s′3, s

′
6,d
′
3, hence this is Case 3.

The node d′1 is routed disjointly to T1,3(0) with the path d′1 → (2, 2, 2) → (2, 0, 2) = d′′1 . Two
disjoint paths inside T1,3(0) connecting s′3, s

′
6,d
′
3,d
′′
1 are found, and thus the nodes s3, s6,d3,d1 are

disjointly connected.
The remaining source node s′1 and destination node d′6 are routed to T1,3(2) with the paths

s′1 = (0, 1, 2) → (0, 2, 2) and d′6 = (1, 1, 2) → (0, 1, 2) → (0, 2, 2). These two paths encounter, and
thus s′1 is connected to d′6, and the edge (0, 1, 2) → (0, 2, 2) is discarded. In other words, s1 has
been disjointly connected to d6, which solves this routing problem.

4 Evaluation

In this section, we formally establish the complexities of the proposed set-to-set disjoint paths routing
algorithm in a torus S2S. We assume that a node address can be stored in a fixed number of machine

180

International Journal of Networking and Computing

words, and that therefore comparison can be done in constant time. Let τ(n, k) and λ(n, k) represent
the time complexity of the algorithm S2S when applied in a Tn,k, and the maximum length of the
obtained paths, respectively. We shall rigorously go through each step of the three distinguished
cases.

Lemma 7. In Step 1 of Case 1, we can find 2 disjoint paths not including any of the other source
or destination nodes in Tn−1,k(0) and not including multiple neighbour nodes of each of them in
O(kn2) time. The maximum path length is k(n− 1).

Proof. From Lemma 4, we can construct two paths of lengths at most k(n− 1) in O(kn) time. For
each of these paths, we can check if it contains the other source or destination nodes in Tn−1,k(0)
and if it contains multiple neighbour nodes of each of them in O(kn)×O(n) = O(kn2). Selection of
the minimal sub path can be done in O(1) time. Then, the total time complexity is O(kn2).

Lemma 8. In Step 2 of Case 1, we can find disjoint paths from the source nodes si in Tn−1,k(0)
other than s1 and s2 to Tn−1,k(k − 1) in O(kn2) time. The maximum path length is k.

Proof. For the (2n− 1) paths of lengths at most 2 from si to Tn−1,k(k− 1), we can check if there is
a disjoint path from other source nodes or the paths from them in O(kn) time. If there is a disjoint
path, we can select it. Otherwise, if such a path does not exist, that is, if all the paths are blocked,
the paths from the other source nodes sj (3 ≤ j 6= i ≤ 2n) or the nodes themselves must block
the (2n − 3) paths from si to Tn−1,k(k − 1). Note that in this situation all the source nodes are
included in either Tn−1,k(0) or Tn−1,k(k − 1). Also, the paths s1 ; d1 and s2 ; d2 must include
two neighbour nodes ŝi of si that correspond to the remaining two paths. We can find ŝi in O(kn)
time. Then, from k ≥ 3, we can construct a disjoint path si → si ⊕ en → ŝi ⊕ en → · · · → s′i of
length at most k from si to Tn−1,k(k−1) in O(k) time. Hence, for all the nodes si, we can construct
disjoint paths in O(kn2) in total, and the maximum path length is k.

Similarly, we can deduce the following lemma.

Lemma 9. In Step 3 of Case 1, we can construct disjoint paths from the destination nodes di in
Tn−1,k(0) other than d1 and d2 to Tn−1,k(k − 1) in O(kn2) time. The maximum path length is k.

Lemma 10. In Step 4 of Case 1, we can construct disjoint paths from the source nodes si (6∈
Tn−1,k(0)) to Tn−1,k(k − 1) in O(n2 log n) time. The maximum path length is k − 1.

Proof. For the (2n − 1) paths of lengths at most k − 1 from si to Tn−1,k(k − 1), we can find a
disjoint path from other source nodes or the paths from them by checking the occupied classes by
sj (3 ≤ j 6= i ≤ 2n) in O(n log n) time. So in total, we can construct disjoint paths for all of the
source nodes not included in Tn−1,k(0) in O(n2 log n) time.

Similarly, we can deduce the following lemma.

Lemma 11. In Step 5 of Case 1, we can find disjoint paths from the destination nodes di (6∈
Tn−1,k(0)) to Tn−1,k(k − 1) in O(n2 log n) time. The maximum path length is k − 1.

And finally, the last step of Case 1:

Lemma 12. In Step 6 of Case 1, we can connect the paths from the source and destination nodes in
τ(n−1, k)+O(n2) time. The maximum length of the connected paths is max(k+1, λ(n−1, k)+2k).

Proof. Since the paths from the source and destination nodes are in similar structure – i.e. for a
path, the nodes on that path are either all included in a class or all included in a class except for one
(that is, the source or destination node) –, we can find their overlapping by checking their classes
in O(n2) time. The lengths of the paths obtained by connection are at most k+ 1. The application
of the algorithm in Tn−1,k(k − 1) takes τ(n − 1, k) time and the lengths of the paths generated
are at most λ(n − 1, k). Then, the lengths of the connected paths from the source nodes to the
destination nodes are at most λ(n − 1, k) + 2k. Hence, Step 6 in Case 1 takes τ(n − 1, k) + O(n2)
time to connect the paths from the source and destination nodes. The maximum path length is
max(k + 1, λ(n− 1, k) + 2k).

181

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

This discussion for Case 1 is summarised in the following theorem.

Theorem 1. In an n-dimensional k-ary torus Tn,k, for a set of 2n source nodes S and a set of 2n
destination nodes D, assume that at least two pairs of the source and destination nodes are included
in a sub torus. We can find 2n mutually node-disjoint paths between S and D in O(kn3 + n3 log n)
time. The maximum length of the selected paths is 2kn.

Proof. From Lemmas 7, 8, 9, 10, 11 and 12, we can find 2n disjoint paths between S and D in
τ(n, k) = τ(n− 1, k) +O(kn2 + n2 log n) time and the maximum path length is λ(n, k) = max(k +
1, k(n− 1), λ(n− 1, k) + 2k). Then, τ(n, k) = O(kn3 + n3 log n) and λ(n, k) = 2kn hold.

From Lemma 6, we can derive the following two lemmas.

Lemma 13. In Step 1 of Case 2, we can construct two paths from two source nodes to Tn−1,k(0)
and (2n−2) paths from the remaining (2n−2) source nodes to Tn−1,k(k−1) so that all of the paths
are mutually disjoint in O(n2 log n) time. The maximum path length is k.

Lemma 14. In Step 2 of Case 2, we can construct two paths from two destination nodes to Tn−1,k(0)
and (2n− 2) paths from the remaining (2n− 2) destination nodes to Tn−1,k(k− 1) so that all of the
paths are mutually disjoint in O(n2 log n) time. The maximum path length is k.

Lemma 15. In Step 3 of Case 2, we can check if two paths si ; s′i(∈ Tn−1,k(0)) and dj ; d′j(∈
Tn−1,k(0)) encounter, or if two paths si ; s′i(∈ Tn−1,k(k − 1)) and dj ; d′j(∈ Tn−1,k(k − 1))

encounter in O(n2) time. The maximum length of the connected paths is k + 1.

Proof. Since the paths from the source and destination nodes are in similar structure, we can find
their overlapping by checking their classes C(si), C(s′i), C(dj), C(d′j) in O(n2) time. The lengths of
the paths obtained by connection are at most k + 1.

Lemma 16. In Step 4 of Case 2, we can check if two paths si ; s′i(∈ Tn−1,k(0)) and dj ; d′j(∈
Tn−1,k(k − 1)) encounter in O(n) time. The maximum length of the connected paths is k.

Proof. As there are only 2 paths si ; s′i(∈ Tn−1,k(0)), and the paths from the source and des-
tination nodes are in similar structure, we can find their overlapping by checking their classes
C(si), C(s′i), C(dj), C(d′j) in O(n) time. The lengths of the paths obtained by connection are at
most k.

Lemma 17. In Step 5 of Case 2, we can construct a path that does not include any of the other
source or destination nodes in Tn−1,k(0) and does not include multiple neighbour nodes of each of
them in O(kn) time. The path length is at most bk/2c(n− 1).

Proof. In an Tn−1,k(0), we can construct a shortest path of length at most bk/2c(n − 1) in O(kn)
time. We can check if the path contains the other source or destination nodes in Tn−1,k(0) and if it
contains multiple neighbour nodes of each of them in O(kn)×O(1) = O(kn) time. Selection of the
minimal sub path can be done in O(1) time. Then, the total time complexity is O(kn).

Lemma 18. In Step 6 of Case 2, we can construct a disjoint path from d′i to Tn−1,k(k−1) of length
at most 2 in O(n log n).

Proof. Without loss of generality, we can assume that i = 2. Since |Tn−1,k(0) ∩ D| < 2, there
is no destination node in Tn−1,k(0) other than d1. Also, if dj ∈ Tn−1,k(k − 1), it means that
s2 ∈ Tn−1,k(k− 1), too. However, from the proof of Lemma 6, s2, s3, . . . , s2n ∈ Tn−1,k(k− 1) holds,
and this is a contradiction that |Tn−1,k(k− 1)∩ S| ≤ 2n− 2. Therefore, dj 6∈ Tn−1,k(k− 1). Hence,

if we consider (2n − 1) disjoint paths ~P l(d
′
2) (1 ≤ l ≤ 2n − 1) of lengths at most 2 from d′2 to

Tn−1,k(k− 1) from Lemma 3, there is at least one path that does not contain any other destination
node and that is disjoint from the paths from the other destination nodes. We can find this path by
checking the occupied classes by the other destination nodes in O(n log n) time.

From Lemma 4, the following lemma is derived.

182

International Journal of Networking and Computing

Lemma 19. In Step 7 of Case 2, we can construct two disjoint paths of lengths at most k(n − 1)
between {s′1, s′2} and {d′1,d′2} in O(kn) time.

And finally, the last step of Case 2:

Lemma 20. In Step 8 of Case 2, we can connect the paths from the source and destination nodes
in τ(n− 1, k) time. The maximum length of the connected paths is λ(n− 1, k) + 2k + 2.

Proof. The application of the algorithm S2S in Tn−1,k(k− 1) takes τ(n− 1, k) time and the lengths
of the paths generated are at most λ(n − 1, k). From Lemma 13, the lengths of the paths from
si to Tn−1,k(k − 1) are at most k. From Lemmas 14 and 18, the lengths of the paths from di to
Tn−1,k(k− 1) are at most k+ 2. Then, the lengths of the connected paths from the source nodes to
the destination nodes are at most λ(n− 1, k) + 2k + 2.

This discussion for Case 2 is summarised in the following theorem.

Theorem 2. In an n-dimensional k-ary torus Tn,k, for a set of 2n source nodes S and a set of 2n
destination nodes D, assume that there is not any sub torus that contains at least two pairs of the
source and destination nodes. We also assume that |Tn−1,k(k − 1) ∩ S| ≤ 2n − 2 and |Tn−1,k(k −
1) ∩D| ≤ 2n − 2, as well as |Tn−1,k(0) ∩ S| < 2 and |Tn−1,k(k − 1) ∩D| < 2. Then, we can select
2n mutually node-disjoint paths between S and D in O(kn2 + n3 log n) time. The maximum length
of the selected paths is 2(k + 1)n.

Proof. From Lemmas 13, 14, 15, 16, 17, 18, 19, and 20, we can construct 2n disjoint paths between
S and D in τ(n, k) = τ(n− 1, k) +O(kn+n2 log n) time and the maximum path length is λ(n, k) =
max(k + 1, k, bk/2c(n − 1), k(n − 1), λ(n − 1, k) + 2k + 2). Then, τ(n, k) = O(kn2 + n3 log n) and
λ(n, k) = 2(k + 1)n hold.

Next, Case 3 is analysed. From Lemma 6, we can derive the following lemma.

Lemma 21. In Step 1 of Case 3, we can construct two paths from two source nodes to Tn−1,k(0)
and (2n−2) paths from the remaining (2n−2) source nodes to Tn−1,k(k−1) so that all of the paths
are mutually disjoint in O(n2 log n) time. The maximum path length is k.

Lemma 22. In Step 2 of Case 3, we can construct two disjoint paths that do not include any of the
other destination nodes in Tn−1,k(0) and do not include multiple neighbour nodes of each of them in
O(kn2) time. The maximum path length is k(n− 1).

Proof. From Lemma 4, we can construct two disjoint paths s′i ; di (i = 1, 2) of lengths at most
k(n−1) in O(kn) time. For each of these paths, we can check if it contains the other destination nodes
in Tn−1,k(0) and if it contains multiple neighbour nodes of each of them in O(kn)×O(n) = O(kn2)
time. Selection of the minimal sub path can be done in O(1) time. Then, the total time complexity
is O(kn2).

Lemma 23. In Step 3 of Case 3, we can construct disjoint paths from the destination nodes di in
Tn−1,k(0) other than d1 and d2 to Tn−1,k(k − 1) in O(kn2) time. The maximum path length is k.

Proof. For the (2n − 1) paths of lengths at most 2 from di to Tn−1,k(k − 1), we can check if there
is a disjoint path from other destination nodes or the paths from them in O(kn) time. If there is a
disjoint path, we can select it. Otherwise, if such a path does not exist, that is, if all the paths are
blocked, the paths from the other source nodes dj (3 ≤ j 6= i ≤ 2n) or the nodes themselves must
block the (2n−3) paths from di to Tn−1,k(k−1). Note that in this situation all the source nodes are
included in either Tn−1,k(0) or Tn−1,k(k−1). Also, the paths s1 ; d1 and s2 ; d2 must include two

neighbour nodes d̂i of di that correspond to the remaining two paths. We can find such node d̂i in
O(kn) time. Then, from k ≥ 3, we can construct a disjoint path di → di⊕en → d̂i⊕en → · · · → d′i
of length at most k from di to Tn−1,k(k − 1) in O(k) time. Hence, for all the nodes di, we can
construct disjoint paths in O(kn2) time in total, and the maximum path length is k.

183

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

Lemma 24. In Step 4 of Case 3, we can construct disjoint paths from the destination nodes di(6∈
Tn−1,k(0)) to Tn−1,k(k − 1) in O(n2 log n) time. The maximum path length is k − 1.

Proof. For the (2n− 1) paths of lengths at most k− 1 from di to Tn−1,k(k− 1), we can find a path
disjoint from other destination nodes or the paths from them by checking the occupied classes by dj

(3 ≤ j 6= i ≤ 2n) in O(n log n) time. So in total, we can find disjoint paths for all of the destination
nodes not included in Tn−1,k(0) in O(n2 log n) time.

Lemma 25. In Step 5 of Case 3, we can check if two paths si ; s′i(∈ Tn−1,k(k − 1)) and dj ;

d′j(∈ Tn−1,k(k− 1)) encounter in O(n2) time. The maximum length of the connected paths is k+ 1.

Proof. Since the paths from the source and destination nodes are in similar structure, we can find
their overlapping by checking their classes C(si), C(s′i), C(dj), C(d′j) in O(n2) time. The lengths of
the paths obtained by connection are at most k + 1.

Lemma 26. In Step 6 of Case 3, we can check if two paths si ; s′i(∈ Tn−1,k(0)) and dj ; d′j(∈
Tn−1,k(k − 1)) encounter in O(n). The maximum length of the connected paths is k.

Proof. Since there are only two paths si ; s′i(∈ Tn−1,k(0)), and the paths from the source and
destination nodes are in similar structure, we can find their overlapping by checking their classes
C(si), C(s′i), C(dj), C(d′j) in O(n) time. The lengths of the paths obtained by connection are at
most k.

Lemma 27. In Step 7 of Case 3, we can construct a disjoint path from d′2 to Tn−1,k(k−1) of length
at most 2 in O(n log n).

Proof. Note that if this step is executed, the paths si ; s′i (∈ Tn−1,k(0)) and dj ; d′j (∈ Tn−1,k(k−
1)) encounter. If dj /∈ Tn−1,k(0), (2n − 1) disjoint paths ~P l(d

′
i) (1 ≤ l ≤ 2n − 1) and si ; dj are

disjoint. Therefore, at least one path exists among them that is disjoint from the other destination
nodes and the paths from them. If dj ∈ Tn−1,k(0), dj ; d′j is the path dj → dj ⊕ en → d̂j ⊕ en →
. . . → d′j(∈ Tn−1,k(k − 1)). Then, (2n− 1) disjoint paths ~P l(dj) (1 ≤ l ≤ 2n− 1) are blocked, and
it means that the node in C(dj) ∩ Tn−1,k(k − 1) is the destination node. Therefore, C(dj) contains

multiple destination nodes. Among (2n − 1) disjoint paths ~P l(d
′
i) (1 ≤ l ≤ 2n − 1) of lengths at

most 2, there is at least one path that is disjoint from the other destination nodes and the paths
from them. In either case, we can find the path in O(n log n) time by checking the classes occupied
by the destination nodes.

And finally, the last step of Case 3:

Lemma 28. In Step 8 of Case 3, we can connect the paths from the source and destination nodes
in τ(n− 1, k) time. The maximum length of the connected paths is λ(n− 1, k) + 2k.

Proof. The application of the algorithm S2S in Tn−1,k(k− 1) takes τ(n− 1, k) time and the lengths
of the paths generated are at most λ(n− 1, k). From Lemma 21, the lengths of the paths from si to
Tn−1,k(k− 1) are at most k. From Lemma 23, the lengths of the paths from di to Tn−1,k(k− 1) are
at most k. So, the lengths of the connected paths from the source nodes to the destination nodes
are at most λ(n− 1, k) + 2k.

This discussion for Case 3 is summarised in the following theorem.

Theorem 3. In an n-dimensional k-ary torus Tn,k, for a set of 2n source nodes S and a set of 2n
destination nodes D, assume that there is not any sub torus that contains at least two pairs of the
source and destination nodes. We also assume that |Tn−1,k(k − 1) ∩ S| ≤ 2n − 2 and |Tn−1,k(k −
1) ∩D| ≤ 2n − 2, as well as |Tn−1,k(0) ∩ S| < 2 and |Tn−1,k(k − 1) ∩D| ≥ 2. Then, we can select
2n mutually node-disjoint paths between S and D in O(kn3 + n3 log n) time. The maximum length
of the selected paths is 2kn.

184

International Journal of Networking and Computing

Proof. From Lemmas 21, 22, 23, 24, 25, 26, 27, and 28, we can construct 2n disjoint paths between
S and D in τ(n, k) = τ(n−1, k)+O(kn2 +n2 log n) time and the maximum path length is λ(n, k) =
max(k(n − 1), k + 1, k, λ(n − 1, k) + 2k). Then, τ(n, k) = O(kn3 + n3 log n) and λ(n, k) = 2kn
hold.

From Theorems 1, 2, and 3, the main theorem is deduced.

Theorem 4. In an n-dimensional k-ary torus Tn,k, for a set of 2n source nodes S and a set of
2n destination nodes D, we can construct 2n mutually node-disjoint paths between S and D in
O(kn3 + n3 log n) time. The maximum length of the constructed paths is 2(k + 1)n.

5 Conclusions and Future Works

The torus topology is one of the most popular interconnection network for modern massively parallel
systems. Many world-famous supercomputers rely on it: Fujitsu K, IBM Blue Gene/L and Blue
Gene/P, Cray XT3, etc. In this paper, we have proposed an algorithm that constructs mutually
node-disjoint paths between two sets of nodes in an n-dimensional k-ary torus. This problem is
critical for efficient data transmission and system dependability. We have proved that the time
complexity of the described routing algorithm is O(kn3 + n3 log n), and that the maximum path
length is 2(k + 1)n.

Regarding future works, the authors are aware there might be a possibility to reduce the max-
imum path length by carefully selecting the sub torus to concentrate the source and destination
nodes. It is also included in the future works to implement our algorithm for evaluation.

References

[1] TOP500. China’s Tianhe-2 Supercomputer Maintains Top Spot on List of World’s TOP500 Su-
percomputers, 2015. https://www.top500.org/news/lists/2015/11/press-release/. Last
accessed January 2017.

[2] San Murugesan. Harnessing green IT: Principles and practices. IT Professional, 10(1):24–33,
February 2008.

[3] Green500. November 2016 List. https://www.top500.org/green500/. Last accessed January
2017.

[4] Alok Aggarwal, Jon Kleinbergt, David P. Williamson. Node-Disjoint Paths on the Mesh and a
New Trade-Off in VLSI Layout. Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, pages 585–594, Philadelphia, PA, USA, May 22–24, 1996.

[5] Yamin Li, Shietung Peng, Wanming Chu. Disjoint-Paths and Fault-Tolerant Routing on Re-
cursive Dual-Net. International Journal of Foundations of Computer Science, 22(5):1001–1018,
2011.

[6] Yamin Li, Shietung Peng, Wanming Chu. Node-to-Set Disjoint-Paths Routing in Recursive
Dual-Net. International Journal of Networking and Computing, 1(2):178–190, 2011.

[7] Keiichi Kaneko and Shietung Peng. Set-to-set Disjoint Paths Routing in Dual-cubes. Proceedings
of the Ninth International Conference on Parallel and Distributed Computing, Applications and
Technologies, pages 129–136, Dunedin, Otago, New Zealand, December 1–4, 2008.

[8] Yamin Li, Shietung Peng, Wanming Chu. Set-to-Set Disjoint-Paths Routing in Recursive Dual-
Net. Proceedings of the 11th International Conference on Algorithms and Architectures for Par-
allel Processing, volume 1, pages 54–65, Melbourne, Australia, October 24–26, 2011.

185

https://www.top500.org/news/lists/2015/11/press-release/
https://www.top500.org/green500/

A Set-to-Set Disjoint Paths Routing Algorithm in Tori

[9] Shietung Peng and Keiichi Kaneko. Set-to-set disjoint paths routing in pancake graphs. Proceed-
ings of the 18th International Conference on Parallel and Distributed Computing and Systems,
pages 253–258, Dallas, TX, USA, November 13–15, 2006.

[10] Qiang-Ping Gu and Shietung Peng. Set-to-set fault tolerant routing in star graphs. IEICE
Transactions on Information & Systems, E79-D(4):282–289, 1996.

[11] Qian-Ping Gu, Satoshi Okawa and Shietung Peng. Set-to-set fault tolerant routing in hyper-
cubes. IEICE Transactions on Fundamentals, E79-A(4):483–488, 1996.

[12] Qian-Ping Gu and Shietung Peng. Node-to-set and set-to-set cluster fault tolerant routing in
hypercubes. Parallel Computing, 24(8):1245–1261, 1998.

[13] Antoine Bossard and Keiichi Kaneko. Time Optimal Node-to-Set Disjoint Paths Routing in
Hypercubes. Journal of Information Science and Engineering, 30(4):1087–1093, 2014.

[14] Keiichi Kaneko and Yasuto Suzuki. An Algorithm for Node-to-Set Disjoint Paths Problem in
Rotator Graphs. IEICE Transactions on Information and Systems, E84-D(9):1155–1163, 2001.

[15] Yamin Li, Shietung Peng and Wanming Chu. Metacube—a versatile family of interconnection
networks for extremely large-scale supercomputers. The Journal of Supercomputing 53(2):329–
351, 2010.

[16] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks: an engineering
approach, Morgan Kaufmann, 2003.

[17] Antoine Bossard and Keiichi Kaneko. A Set-to-Set Disjoint Paths Routing Algorithm in a Torus-
Connected Cycles Network. Proceedings of the 31st International Conference on Computers and
Their Applications, pages 81–88, Las Vegas, NV, USA, April 4–6, 2016.

186

	Introduction
	Preliminaries
	Set-to-Set Disjoint Paths Routing Algorithm
	Case 1
	Case 2
	Case 3
	Routing example

	Evaluation
	Conclusions and Future Works

