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Abstract

Stream compaction, also known as stream filtering or selection, produces a smaller output
array which contains the indices of the only wanted elements from the input array for further
processing. With the tremendous amount of data elements to be filtered, the performance of
selection is of great concern. Recently, modern Graphics Processing Units (GPUs) have been in-
creasingly used to accelerate the execution of massively large, data parallel applications. In this
paper, we designed and implemented two new algorithms for stream compaction on GPU. The
first algorithm, which can preserve the relative order of the input elements, uses a multi-level
prefix-sum approach. The second algorithm, which is non-order-preserving, is based the hybrid
use of the prefix-sum and the atomics approaches. We compared their performance with other
parallel selection algorithms on the current generation of NVIDIA GPUs. The experimental
results show that both algorithms run faster than Thrust, an open-source parallel algorithms
library. Furthermore, the hybrid method performs the best among all existing selection algo-
rithms on GPU and can be two orders of magnitude faster than the sequential selection on CPU,
especially when the data size is large.
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1 Introduction

Stream compaction is a common programming function that produces a smaller output array, con-
taining the indices of the only wanted elements from the input array. So the further processing
can benefit from the reduced data size and hence the performance can be improved. This primitive
building block has been used in a wide range of applications, such as database, statistics, artificial
intelligence, image processing, simulations, etc.[3][4][10]. With the tremendous amount of data ele-
ments to be processed, the performance of selection becomes an important factor in running these
applications efficiently. Therefore, exploiting the availability and the power of multiprocessors to
speed up the filtering process is of considerable interest.

Recently, modern Graphics Processing Units (GPUs) have been increasingly used to accelerate
the execution of massively large, data parallel applications[9]. It is now much more convenient to
create application software that will run on current GPUs for processing large amounts of data,
without the need to write low-level assembly language code. NVIDIA provides a parallel com-
puting platform and programming model called CUDA (Compute Unified Device architecture).
Furthermore, there are a few accelerated, high performance libraries which enable an easy way of
adding GPU-acceleration to the broad class of applications. For example, programmers can get even
more flexibility and speed by writing their own GPU-accelerated programs using the CUDA Thrust
Library[6], which provides a comprehensive development environment for C and C++ developers.

The NVIDIA Kepler GPU(Compute Capability 3.0) consists of a scalable number of streaming
multiprocessors (SMXs), each containing 192 streaming processors (SPs) or cores to execute the
light-weighted threads. The kernel function, which is executed on the device, is composed of a grid
of threads. Note that a grid is divided into a set of blocks and each block contains multiple warps
of threads. Blocks are distributed evenly to the different SMXs to run. A warp, which has 32
consecutive threads bundled together, is executed using the Single Instruction, Multiple Threads
(SIMT) style (term coined by NVIDIA manufacturer). In addition to the main memory on the
CPU motherboard, the GPU device has its own off-chip device memory (i.e. global memory).
Furthermore, registers and shared memory in a SMX are on-chip memory and can be accessed very
fast. They are per-block resources and are not released until all the threads in the block finish
execution. Fancy warp shuffle functions are firstly supported in Kepler[11]. They permit exchanging
of variables (i.e. registers) between threads within a warp without use of shared memory. Note
that the NVIDIA’s newer model Maxwell(Compute Capability 5.0) has similar architecture. The
number of cores in each Maxwell streaming multiprocessor is reduced to 128 but with improved
energy efficiency. It also provides dedicated shared memory and faster shared memory atomic
operations [13].

In this paper, we focused on the design and implementation of two efficient stream compaction
algorithms on GPU. The first algorithm uses a multi-level prefix-sum approach and hence the relative
order of the input elements can be preserved. The second algorithm, which is non-order-preserving,
is based the hybrid use of the prefix-sum and the atomics approaches. Both algorithms also adopt the
new shuffle instructions to let threads within a warp have direct register-to-register data exchanges.
We compared the performance of our algorithms with other parallel selection methods on CUDA-
enabled GPUs. All tests were performed using CUDA Toolkit on a PC with a consumer grade
NVIDIA Quadro K620 GPU and also on the Ohio Supercomputer Center’s cluster Ruby, outfitted
with professional NVIDIA Tesla K40 GPUs. The former belongs to the NVIDIA Maxwell, while
the latter belongs to the NVIDIA Kepler architecture. The experimental results show that the
multi-level prefix-sum based algorithm and the hybrid algorithm can be 3.7 times and 5.6 times,
respectively, faster than the NVIDIA Thrust library. Furthermore, the hybrid method performs the
best among all existing stream compaction algorithms on GPU and can be more than 120 times
faster than the sequential selection on CPU.

The organization of this paper is as follows. Section 2 describes the background and the related
work. Section 3 goes into details of our algorithms and in Section 4, the experiments and the results
for performance evaluation are presented. We give a short conclusion in Section 5.
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2 Background and Related Work

To support heterogeneous parallel computing, the CUDA programming model extends the C/C++
language by adding a set of keywords, predefined variables, and functions. For example, The qualifier
keyword host , which is used in front of a function declaration, declares a CPU function that
is callable from the CPU only. Similarly, the qualifier device declares a GPU function that is
callable from the GPU only, and global declares a kernel function which can only be launched
from CPU and will be executed by all threads on the GPU device. As mentioned earlier, CUDA
threads are organized in a two-level hierarchy, grid and block. The dimension of the grid and the
dimension of each block are stored in the predefined variables gridDim and blockDim, respectively.
The coordinates of a thread are stored in the variables blockIdx and threadIdx, where blockIdx is
the block index in a grid and threadIdx is the thread index in a block. Hence, each thread can access
these built-in variables to identify themselves and then determine the data area it has to work on.

CUDA toolkit also provides a variety of functions. Described below in detail are the functions
which are relevant to our work.

• Intra-warp Voting: The ballot(int p) intrinsic function returns a 32-bit integer in which bit
k is set if and only if the predicate p provided by the thread with lane ID k is non-zero. Note
that the lane ID is the thread’s index within a warp, ranging from 0 to 31. In other words,
the ballot() function collects the predicates from all threads in a warp into a 32-bit integer
and returns this integer to every thread. The popc(int v) function returns the number of
bits which are set to 1 in the 32-bit integer v. Namely, it performs the population count
operation. By combining the ballot() and popc() functions, all threads can quickly get the
voting result, i.e., the number of true values within the warp.

• Atomic Operations: In CUDA, an atomic function enables a thread to perform a read-modify-
write atomic operation without interference from other threads. CUDA supports a collection
of functions which perform atomic operations, such as addition, subtraction, minimum, maxi-
mum, etc., in global or shared memory. For example, the function atomicAdd(&total, v) reads
the value of the variable total, add the value with v, and store the result back to total. All
these three operations are performed in an atomic way. The function returns the old value of
total.

• Warp Shuffles: The traditional way threads exchange data with each other is through the
shared memory. The new shuffle functions, which are available on the Kepler and later GPUs
(Compute Capability 3.0 and above), allow threads within the same warp to read each ether’s
registers. Using the function shfl(int v, int srcLane) as an example, the caller thread will
get the value of the variable v held by the thread with lane ID srcLane. It behaves the same
as broadcasting if every thread in the warp copies from the same source lane. For another
example, the function shfl up(int v, int d) will let the lane k thread read the variable v held
by the lane (k − d) thread.

The implementation of sequential stream compaction is straightforward. As shown in the code
below, we can use a variable k to keep track of the number of selected elements and store their
indices into the corresponding positions indicated by k in the target array.

int k = 0;

for(int i=0; i < DataSize; i++) {

if( Source[i] meets the criteria )

Target[k++] = i;

}

However, to implement the parallel stream compaction, the challenging is how to determine the
positions (i.e. indices) of the selected elements in the destination array. In general, the approaches
to performing the stream compaction on multiprocessors can be classified into two categories: one
is based on the prefix-sum algorithm, while the other is based on the atomic operation. The former
can let the output keep the relative order of the input elements, while the latter cannot guarantee
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the order will be preserved. Recent GPU-based parallel stream compaction approaches are described
below in detail.

2.1 Prefix-Sum based approaches

As shown in Figure 1(a), this approach firstly initializes an array with 1 for selected elements
(i.e. s[i] <= 5) and 0 for unwanted elements. Then, it calculates the prefix sums of the array in
parallel[15]. One such implementation is adopted by the Thrust library, specifically a method called
copy if()[8], which is a fairly good implementation, simple to use and may prove to be the best choice
for most GPU programmers needing this operation. By digging into its implementation details, we
found that it uses 2-level sums. First, it calculates the number of selected elements within the block
(using index counter inside the shared memory) and stores the result in an intermediate array of size
N / block size (N is the total number of input elements) in the global memory. Then it performs the
parallel prefix sum on this array and uses the outcome in the final phase to determine the indices of
output elements. As a result, the relative order of the input elements is also preserved. Furthermore,
as shown in the later section, Thrust algorithm execution time does not depend on the number of
passing elements.

Unlike the Thrust copy if() which needs several kernel calls, the InK-Compact approach pre-
sented in [7] uses only one kernel to maintain the input-output data ordering. In this method,
the data is divided into many sections where each section has 32 blocks. It computes the off-
set for a selected element by using: section offset+ block offset + warp offset + intra warp offset.
The intra warp offset can be determined by using the intra-warp voting functions ballot() and

popc()[2][5], while the warp offset can be computed by using the binary-bit scan operations[5]. It
uses the function syncthreads count() to get the total number of wanted elements within the block
and then writes the number to an intermediate block-count array. The block offset can be calcu-
lated by applying the prefix-sum operation on the block-count array. Each section has a controller
block which uses the wait/signal mechanism to let the sections be processed in order and hence the
section offset can be obtained. To let the shared offsets be visible to all threads in the block, the
functions threadfence() and syncthreads() are required.

Our new order-preserving algorithm adopts the multi-level prefix-sum approach. It used the
intra-warp scan (i.e. using ballot() and popc() ) to find the offset of a selected element in a warp
quickly. Each warp is responsible for handling a 1024-element sized group which contains 32 warp-
sized subgroups. That is, each warp iterates 32 times and then uses prefix-sum to get the offset of
each subgroup. The numbers of selected elements from each group are written into an intermediate
array and then apply the prefix-sum again on these numbers to calculate the offset of each group.

(a) (b)
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Figure 1: Parallel Selection using (a) Parallel Prefix-Sum (b) Atomic Operation
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2.2 Atomic operation based approaches

As shown in the sequential code earlier, the index counter k will be incremented by one for each newly
selected element. For parallel implementation on GPUs, it’s possible that there are many threads
which need to update the counter k simultaneously. To avoid the race condition, the increment to
the variable k has to be an mutually exclusive operation. This can be simply done by using CUDA
atomicInc() function, as shown in Figure 1(b). Note that a CUDA atomic function performs a read-
modify-write atomic operation on one 32-bit or 64-bit word residing in global or shared memory.

The main problem with this naive approach is that these atomic operations become a major
bottleneck when the input contains a large amount of elements that pass the selection criteria. This
is due to the very large number of threads competing to increment the single counter inside the
global memory.

One possible improvement is to use shared memory atomics. This will essentially decrease the
number of atomic collisions to a block size. Unfortunately, its performance still suffers from the
thread synchronization. Same as the naive approach, the execution time is still directly proportional
to the number of passing items[1].

The InK-Collate approach presented in [7] is a variation of the InK-Compact method without
using sections. It uses the same way as in the InK-Compact to get the warp offset and the in-
tra warp offset. However, to obtain the block offset, it simply invokes the atomicAdd() function.
Therefore, the number of calling atomicAdd() can be greatly reduced as compared with the naive
approach.

Another filtering approach is based on Warp-Aggregated Atomics[1]. It only computes the warp
offset and the intra-warp offset. The advantage is that it does not need shared memory and hence
avoids using memory fence and synchronization within a block. The voting functions ballot() and

popc() are used to perform the intra-warp scan and to find out the number of wanted elements
within a warp. This number will be added to the global counter via the atomicAdd() function to
get the warp offset. The shuffle intrinsic[11] is used to broadcast the warp offset to all of the threads
in a warp. Since each warp will issue at most one atomicAdd() request, its execution time is not be
proportional to the number of passing elements and hence can be reduced greatly.

Our second algorithm is focused on the hybrid use of the ideas in our multi-level prefix-sum
based algorithm and in [1]. A 1024-element sized group which contains 32 warp-sized subgroups will
be processed by a warp. In addition to using the voting functions to get the intra-subgroup offset,
the group offset is obtained via atomicAdd(), while the subgroup offset is calculated by the parallel
prefix sum. It does not need shared memory nor synchronization within a block.

3 New Algorithms

This section presents our new algorithms for stream compaction on GPUs. One is order-preserving
by using multi-level prefix-sum through three kernel calls, the other is non-order-preserving with
the hybrid use of prefix-sum and atomics inside one kernel function. Note that stream compaction
usually refers to stable filtering, i.e., the relative order of the input elements will be preserved in the
final output. However, this ordering constraint is not necessary for some applications. Using the
large-scale discrete-event simulations presented in [14] as an example, events are simply stored in an
unsorted array. The execution of simulation needs to select parallel events based on the timestamps
and then process these events. The order of the parallel events selected is not important because
they are independent of each other. This procedure will be repeated until certain criterion is reached.
Hence, the performance of the selection is a concern. This motivates us to design efficient stream
compaction algorithms, as described in detail below.

3.1 A New Algorithm based on Multi-Level Prefix-Sum

The order-preserving algorithm implementation consists of three major phases. Each phase is re-
quired a kernel call. The phase 1 kernel starts by evaluating a predicate for each subgroup of 32
elements and saving the result into a predicate array (see Figure 2). The number of passing elements
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in the subgroup is also determined (using popc() instruction) and saved inside the register variable
cnt for each thread in the warp. This operation is performed for 32 iterations. As a result, each
warp processes the total number of 1024 elements. When this loop completes, a parallel reduction
operation is performed on the cnt register values, resulting in the number of selected elements for
each 1024-element group (see Figure 3).

Figure 2: Phase 1a: fill predicate and counter arrays

Figure 3: Phase 1b: perform reduction on cnt values

Note that shfl down() instruction was used, that essentially allows passing down register values
from the lane with higher ID relative to the caller lane. The result is saved in the counter array.
The detail of the code for the Phase 1 Kernel can be found in Figure 4.
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1 #include <cuda.h>

2 #include "algorithms.h"

3 #include "err.h"

4

5 #define WARP_SZ 32

6

7 __device__ inline int lane_id(void) { return threadIdx.x % WARP_SZ; }

8

9 __global__ void parsel_kernel_phase1(float *input,

10 unsigned int *counter,

11 unsigned int *pred,

12 float percent,

13 const unsigned int num_items)

14 {

15 int tid = blockIdx.x * blockDim.x + threadIdx.x;

16

17 if (tid >= (num_items >> 5) ) // divide by 32

18 return;

19

20 int lnid = lane_id();

21 int warp_id = tid >> 5; // global warp number

22

23 unsigned int mask;

24 int cnt;

25

26 for(int i = 0; i < 32 ; i++) {

27 mask = __ballot(input[(warp_id<<10)+(i<<5)+lnid] <= percent);

28

29 if (lnid == 0)

30 pred[(warp_id<<5)+i] = mask;

31

32 if (lnid == i)

33 cnt = __popc(mask);

34 }

35 // para reduction to a sum of 1024 elements

36 #pragma unroll

37 for (int offset = 16 ; offset > 0; offset >>= 1)

38 cnt += __shfl_down(cnt, offset);

39

40 if (lnid == 0)

41 counter[warp_id] = cnt; // store the sum of the group

42 }

43

Figure 4: Phase 1 kernel

In phase 2, a prefix sum operation is applied to the counter array (Figure 5). As a result, there are
counter[k-1] valid elements before the group k. Note that for this operation we simply used Thrust
implementation thrust::inclusive scan(x), which was fast enough and sufficient for our purposes.
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Figure 5: Phase 2: perform inclusive scan operation on the counter array

Phase 3 produces the final result. The process begins by reading the predicate array that was
produced in the phase 1. The number of set bits is determined (using popc() instruction) for each
predicate value and saved into the cnt register for each lane inside the warp (Figure 6).

Figure 6: Phase 3a: get bit counts for the predicate values

To calculate the subgroup index, the prefix sum operation is performed on these cnt values
(Figure 7). After this operation, each cnt i (for thread i) holds the number of valid elements before
the ith subgroup. Note that for this operation, we used shfl up() instruction, which allows passing
register values form the lane with lower ID relative to the caller lane.
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Figure 7: Phase 3b: perform prefix sum on cnt values

As a result, three indexes were produced – one for the 1024-element group (i.e. global index),
an index for each 32-element subgroup and since we have saved all predicate values – individual
index within this 32- element subgroup can be calculated. This information essentially allows us
to determine the indices of the valid elements in the destination array (Figure 8). Note that both
kernels use grid configuration as follows: ”dim3 grid((N / 32 + block.x - 1) / block.”. The detail of
the code for the Phase 3 Kernel can be found in Figure 9.

Figure 8: Phase 3c: calculate the final indexes in the output array
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44 /* PHASE3: produce final result array */

45 __global__ void parsel_kernel_phase3(int *output,

46 unsigned int *counter,

47 unsigned int *pred,

48 const unsigned int num_items)

49 {

50 int tid = blockIdx.x * blockDim.x + threadIdx.x;

51 if (tid >= (num_items >> 5) ) // divide by 32

52 return;

53

54 int lnid = lane_id();

55 int warp_id = tid >> 5; // global warp number

56

57 unsigned int predmask;

58 int cnt;

59

60 for(int i = 0; i < 32 ; i++) {

61 if (lnid == i) {

62 // each thr take turns to load its local var (i.e regs)

63 predmask = pred[(warp_id<<5)+i];

64 cnt = __popc(predmask);

65 }

66 }

67 // parallel prefix sum

68

69 #pragma unroll

70 for (int offset=1; offset<32; offset<<=1) {

71 int n = __shfl_up(cnt, offset) ;

72 if (lnid >= offset) cnt += n;

73 }

74

75 int global_index =0 ;

76 if (warp_id > 0)

77 global_index = counter[warp_id -1];

78

79 for(int i = 0; i < 32 ; i++) {

80 int mask = __shfl(predmask, i); // broadcast from thr i

81 int subgroup_index = 0;

82 if (i > 0)

83 subgroup_index = __shfl(cnt, i-1); // broadcast from thr i-1 if i>0

84

85 if (mask & (1 << lnid ) ) // each thr extracts its pred bit

86 output[global_index + subgroup_index +

87 __popc(mask & ((1 << lnid) - 1))] = (warp_id<<10)+ (i<<5) + lnid ;

88 }

89 }

90

Figure 9: Phase 3 Kernel

3.2 A New Hybrid Implementation

Our idea originated from comparing the performance of the InK-Collate and the Warp-Aggregated
Atomics approaches. We found that the Warp-Aggregated approach performed faster than the InK-
Collate method. Note that the InK-Collate method has fewer calls to the atomicAdd() functions, but
it needs to synchronize threads within a block in order to access the shared memory. So we decided
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to pattern after the Warp-Aggregated Atomics approach to let the warp be the only computation
unit and hence no need to call syncthreads() or threadfence(). We also found that if we simply
apply the grid-stride loops optimizing technique to the Warp-Aggregated Atomics approach, the
performance can be improved. This motivated us to let each warp handle a larger number of input
elements.

As mentioned earlier, our algorithm divides the input elements into many 1024-element sized
groups. Each group will be further divided into 32 subgroups and each subgroup has 32 elements.
Furthermore, each group will be processed by a warp. As illustrated in Figure 10, there are four
processing stages, all done within one kernel function. In the first stage, a warp will iterate 32
times to deal with the 32 subgroups one by one. Within each iteration, each thread in a warp reads
an element from the input array and checks the element meets the selection criteria or not. The
evaluated predicate (true or false) will be cast into the ballot() function to get the whole subgroup
voting result back. Same as other approaches using the intra-warp voting functions, the number of
wanted elements can be obtained by calling the popc() with the voting result as the parameter.
The programming technique which we use here is that we save each subgroup’s ballot result and the
population count into two variables (i.e. registers) votes and cnt, respectively. These two variables
are stored in a specific thread which depends on the iteration number. That is, for each iteration
i, 0 <= i < 32, the thread with the lane ID i (i.e. thread ID % 32) will be the host of these two
variables. The population count for each subgroup is saved because we will use them to calculate
the subgroup offset in the next stage. The reason we also save the ballot result is because in the
last stage we do not need to evaluate the predicates again.

At the end of the iterations, we will have 32 population count values which are stored in the
variable cnt in each thread. Therefore, in the second stage we can apply the parallel prefix-sum
operation on the cnt variables to obtain the offset for each subgroup. This can be done efficiently
by using the CUDA Samples code [12] which uses the shfl up(val,i) instruction to pass a variable’s
value to the thread with i higher lane ID than the caller thread. After the parallel prefix-sum scan,
each cnt in the lane i holds the number of valid elements among the first i subgroups. Therefore,
the cnt variable in the last lane has the total number of selected elements for the whole group.

In the third stage, the last lane thread will call the function atomicAdd() to add the cnt value
to the global counter. The return value from atomicAdd() is the value of global counter before
addition, which is the offset of the group. Then, this group offset can be broadcasted to all of the
threads in a warp by using the shfl() function.

We will write the indices of the selected elements to the output array in the last stage. Same as
the first stage, we need to loop 32 times to process one subgroup at a time. During each iteration
i, the ballot result, which we saved in the votes variable hosted in the lane i, will be broadcasted
to every thread in the warp. So the intra-subgroup offset can be obtained by using bit-masking and

popc(). The subgroup offset calculated in the stage 2 can be also broadcasted from the thread with
lane ID i− 1. Adding the group offset, the subgroup offset, and the intra-subgroup offset together,
we can get the indices of the valid elements in the destination array.

4 Experimental Results

We compared our two new algorithms with the Thrust copy if() method, the InK-Compact[7], the
InK-Collate[7], and the method using the warp-aggregated atomics[1]. The experiments were con-
ducted on one of the nodes in the Ruby cluster provided by the Ohio Supercomputer Center. The
GPU used in this particular computing platform was the NVIDIA Kepler-based Tesla K40m, which
contains 15 streaming multiprocessors(2880 CUDA cores in total), 12GB GDDR5 memory and 745
MHz GPU clock rate. For comparison purpose, we also ran the experiments on our instruction lab
PC with the NVIDIA Maxwell-based Quadro K620, which contains 3 streaming multiprocessors(384
CUDA cores in total), 2GB DDR3 memory, and 1124 MHz GPU clock rate. Both of the GPU de-
vice programs use the CUDA driver/runtime version 7.5. The execution time we measured for each
method refers to kernel execution time, excluding the data transfer time between host and device.
In all experiments, we adopted uniform random distribution between [0,1] for our data source. We
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Figure 10: The Hybrid Approach

used another input parameter p to control the number of selected elements. That is, given the input
data size N , there will be (N ∗ p) wanted elements in the final output. For example, if p = 0.5, half
of the input elements will be selected.

In the first experiment, we measured the execution times for all of the algorithms by varying
the number of threads per block (see Figure 11 and Figure 12), where input data size N is set
to 128M (M: one million). This experiment allowed us to select the optimal kernel configuration
of the block size for our future experiments. We found that 128 threads per block work best on
both devices for all of the algorithms except the InK-Compact method which runs the best with 512
threads per block. The execution times for the Thrust copy if() remain the same because the Thrust
library hides the details of kernel launch configurations. Also note that the using smaller block sizes,
such as 32 or 64, causes the resources not to be fully utilized and also prevents creating sufficient
parallelism to hide memory access latency. In particular, the InK-Compact and the InK-Collate
methods perform much worse when using 32 as the block size. This is because the memory fence
and the cross-warp synchronization used in these two methods become totally unnecessary for a one-
warp sized block. Furthermore, the InK-Compact method adopts the busy waiting mechanism to

219



Efficient Algorithms for Stream Compaction on GPUs

synchronize the sections. A smaller block size will cause the InK-Compact method to have too many
sections to handle. Another interesting thing is that the running times in Figure 12 are probably
5-6 times longer than the times in Figure 11. This is because the consumer grade Quadro K620
has much less number of cores than the Tesla K40. Usually, the overall performance of a GPU can
be roughly estimated by using the number of cores times the GPU clock rate. So we can get the
performance ratio of the two GPUs:
TeslaK40/QuadroK620 = (2880 ∗ 745)/(384 ∗ 1124) ≈ 5 which is close to the experimental results.
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Figure 11: Performance metrics for various kernel block dimensions tested
(N = 128M, p=0.5, Tesla K40)
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Figure 12: Performance metrics for various kernel block dimensions tested
(N = 128M, p=0.5, Quadro K620)
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In the second experiment we measured the execution performance of these algorithms by varying
the number of selected items, which is controlled by an input parameter p (see Figure 13 and
Figure 14). The block size is set to 512 threads for the InK-Compact while 128 threads for the
rest methods. It can be seen that the running times of all methods do not depend on the selecting
ratio p (i.e. the number of valid elements) significantly. They are slightly increased when the ratio
becomes higher due to the increased number of writes to the output array. The Warp-Aggregated
Atomics approach can perform better when the selecting ratio is less than 5% because if there is no
element selected within a warp, this warp does not need to call the function atomicAdd(). Among
the six methods compared, the Thrust copy if() perform the worst because it does not use the voting
functions within a warp and has lots of intermediate data to write. The InK-Compact approach is
the second slowest due to its use of the busy waiting operation and its use of shared memory among
warps. Hence, memory fence and synchronization are needed within the block. These generate more
overhead. The InK-Collate method also uses memory fence and synchronization and has the same
problem. Our multi-level prefix-sum based algorithm and our hybrid algorithm can be 3.7 times and
5.6 times, respectively, faster than Thrust copy if() on the high-end GPU Tesla K40. Hence, our
methods suggest a feasible improved implementation for the future version of the Thrust copy if().
Note that all of the InK-Collate, the Warp-Aggregated Atomics, and our hybrid approach use the
atomicAdd() function, but our hybrid approach has fewer number of invocation of atomicAdd() as
compared with the Warp-Aggregated Atomics method, and does not need block-level synchronization
as compared with the InK-Collate approach.

To investigate more about the performance of our multi-level prefix-sum based algorithm, we
measured the execution breakdown times for its three phases (i.e. kernel calls). As shown in Table 1
and in Table 2, each row presents a breakdown of execution time as well as the corresponding
percentage for a particular input data size and a selecting ratio p. It can be seen that Phase 1 and
Phase 3 are the biggest contributors to overall performance of the algorithm, which is also why we
chose not to implement the inclusive scan operation for Phase 2 by ourselves. Furthermore, for a
fixed input data size, when the selecting ratio p increases, the Phase 3 execution time also increases,
while Phase 1 and Phase 2 execution times remain the same. The reason is that there will be
(N ∗ p)-write operations occurred in Phase 3 and hence for a larger ratio p, more write operations
to the output array are needed. This also justifies the result of the second experiment. In addition,
the increased write operations also cause that for a fixed ratio p, the larger the input data size, the
higher breakdown percentage for the Phase 3, especially on Tesla K40.
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Figure 13: Performance comparison with different number of selected items
(N = 128M, Tesla K40)
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Figure 14: Performance comparison with different number of selected items
(N = 128M, Quadro K620)

Table 1: The Breakdown Exec Time (in ms) of the Multi-Level Prefix-Sum based Algorithm
(Tesla K40)

Data Size p Phase 1 time Phase 2 time Phase 3 time

0.2 1.18 (51.8%) 0.29 (12.8%) 0.81 (35.4%)
32M 0.5 1.18 (51.3%) 0.29 (12.8%) 0.83 (35.9%)

0.8 1.17 (50.7%) 0.28 (12.3%) 0.86 (37.0%)

0.2 2.04 (52.0%) 0.29 (7.5%) 1.59 (40.5%)
64M 0.5 2.03 (51.4%) 0.29 (7.3%) 1.63 (41.3%)

0.8 2.03 (50.7%) 0.29 (7.2%) 1.68 (42.1%)

0.2 3.77 (52.2%) 0.30 (4.1%) 3.15 (43.7%)
128M 0.5 3.76 (51.6%) 0.30 (4.1%) 3.23 (44.3%)

0.8 3.76 (50.9%) 0.29 (3.9%) 3.34 (45.2%)

Table 2: The Breakdown Exec Time (in ms) of the Multi-Level Prefix-Sum based Algorithm
(Quadro K620)

Data Size p Phase 1 time Phase 2 time Phase 3 time

0.2 5.43 (57.5%) 0.21 (2.2%) 3.81 (40.3%)
32M 0.5 5.45 (57.5%) 0.21 (2.2%) 3.82 (40.3%)

0.8 5.45 (54.7%) 0.21 (2.1%) 4.32 (43.3%)

0.2 10.71 (57.7%) 0.22 (1.2%) 7.62 (41.1%)
64M 0.5 10.72 (57.1%) 0.22 (1.2%) 7.82 (41.7%)

0.8 10.83 (55.5%) 0.22 (1.1%) 8.49 (43.4%)

0.2 21.29 (57.9%) 0.24 (0.7%) 15.24 (41.4%)
128M 0.5 21.32 (57.5%) 0.24 (0.7%) 15.53 (41.8%)

0.8 21.26 (54.7%) 0.24 (0.6%) 17.34 (44.7%)
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In another experiment, we measured algorithm performance by varying the input size, while
using the fixed block size and fixed selecting ratio. As shown in Figure 15 and Figure 16, the
execution times of all tested algorithms were linearly proportional to the number of input elements.
That is, when the input size N is doubled, the running time is doubled. As mentioned before, the
InK-Collate approach will issue one invocation of atomicAdd() for each block, the Warp-Aggregated
Atomics method will call at most one atomicAdd() for each warp, while our approach will invoke
atomicAdd() once for each group. More precisely, the number of invocations of the atomicAdd()
function for each of the InK-Collate approach, Warp-Aggregated Atomics method, and our hybrid
approach will be (N/block size), (N/32), and (N/1024), respectively. Their execution times depend
majorly on the input number of elements, not the number of selected elements.
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Figure 15: Performance comparison with different number of elements in the source array
(p = 0.5, Tesla K40)
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Figure 16: Performance comparison with different number of elements in the source array
(p = 0.5, Quadro K620)
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We also ran the sequential stream compaction on CPU. The host of the Tesla K40 has an Intel
Xeon CPU E5-2670 with the clock rate 2.50GHz, while the host of the Quadro K620 uses the Intel
Xeon CPU E3-1231 with the clock rate 3.40GHz. The speed-up ratios, which are the ratios of the
sequential time to the parallel time, are shown in Figure 17 and Figure 18. It can be seen that for
large data size (N = 128M in our case), our hybrid approach can be more than 120 times faster
than running sequentially on the CPU using the machine in the Ohio Supercomputer center. This
implies that even if the 10 hardware cores in Intel Xeon CPU E5-2670 are used to speed up the
CPU execution, which can be at best 10 times faster, GPU still can be a better choice for some
large-scale, data-parallel applications which require stream compaction.
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Figure 17: Speed Up (p = 0.5, Tesla K40)
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Figure 18: Speed Up (p = 0.5, Quadro K620)
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5 Conclusion and Future Work

We presented two fast implementations of stream compaction on GPUs. The order-preserving one
is based on the multi-level prefix-sum approach, while the non-order-preserving one is based on the
hybrid use of the prefix-sum and the atomics operations. Both algorithms exploit the new warp
shuffle functions on GPUs to let each warp process more input elements in a group and exchange
data among threads efficiently. This results in increased computation-to-communication ratio and
removal of the memory fence and synchronization overheads within a block. In addition, because of
the larger group size, the multi-level prefix-sum algorithm has fewer number of reads/writes to the
intermediate array, and the hybrid algorithm can also have less number of atomicAdd() invocation.
The experimental results are encouraging, as both algorithms are able to achieve 3.7 and 5.6 times
faster performance than the Thrust implementation. Furthermore, the hybrid algorithm outperforms
the other stream compaction methods on GPUs and can be two orders of magnitude faster than
the sequential selection on CPU, especially when the data size is large. In the future, we will
integrate our fast stream compaction algorithms into the GPU-accelerated discrete-event simulation
tool developed in [14]. We also plan to extend the current compaction method by performing
one more dimensional parallel prefix-sum for a 32 times larger group and investigate any further
performance improvement or not.
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