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Abstract

The main contribution of this paper is to present an efficient GPU implementation of bulk
computation of eigenvalues for many small, non-symmetric, real matrices. This work is moti-
vated by the necessity of such bulk computation in designing of control systems, which requires
to compute the eigenvalues of hundreds of thousands non-symmetric real matrices of size up to
30× 30. Several efforts have been devoted to accelerating the eigenvalue computation including
computer languages, systems, environments supporting matrix manipulation offering specific li-
braries/function calls. Some of them are optimized for computing the eigenvalues of a very large
matrix by parallel processing. However, such libraries/function calls are not aimed at acceler-
ating the eigenvalues computation for a lot of small matrices. In our GPU implementation, we
considered programming issues of the GPU architecture including warp divergence, coalesced
access of the global memory, utilization of the shared memory, and so forth. In particular,
we present two types of assignments of GPU threads to matrices and introduce three memory
arrangements in the global memory. Furthermore, to hide CPU-GPU data transfer latency,
overlapping computation on the GPU with the transfer is employed. Experimental results on
NVIDIA TITAN X show that our GPU implementation attains a speed-up factor of up to 83.50
and 17.67 over the sequential CPU implementation and the parallel CPU implementation with
eight threads on Intel Core i7-6700K, respectively.

Keywords: GPGPU, CUDA, eigenvalue problem, bulk computation, QR algorithm

1 Introduction

Given an n× n matrix A, the eigenvalue problem is to find all eigenvalues λ satisfying

Ax = λx,

1The preliminary version of this paper has been presented at the First International Workshop on GPU Com-
puting and Applications (GCA16) held in conjunction with the Fourth International Symposium on Computing and
Networking (CANDAR16) [38].
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where x is a nonzero vector of size n. The computation of eigenvalues has many applications in the
field of science and engineering such as image processing, control engineering, quantum mechanics,
economics, among others.

In control system design, the computation of the eigenvalue problem is widely used, e.g. stability
analysis and Riccati equation. The numerical algorithm is well-developed and the eigenvalue problem
of a single matrix can be solved efficiently. The computation of the eigenvalue problem for single
matrix can be solved efficiently. However, the computation of eigenvalues for real matrices is a
time-consuming task. For example, such issue occurs in the parameter space design method with
volume rendering proposed in [34]. In this novel method, a scalar index for a design specification is
calculated for each grid point in 3D space to get volume data and the permissible set is visualized
as iso-surfaces in 3D space by volume rendering (Figure 1). The designer can visually select an
appropriate parameter using the result of the volume rendering. The black point in the figure shows
one of the parameter sets visually selected by the designer. The parameter meets a condition in
the target control system. This numerical method is expected to treat more practical specifications
than the previous analytical method in [4]. For further details of this method, the interested reader
may refer to [31] and the references within.

Control design problems are reduced to problems of finding a controller that satisfies design
specifications of pole assignment, transient response, and frequency response. In [34], the method
with rendering is studied for the specification of transient response. This method can also be adapted
for pole assignment. It requires calculation of the eigenvalues of non-symmetric, real matrices, for
all the grid points. The matrix size is small, e.g. 15 × 15, and the number of grid points is more
than ten-thousands, e.g. 503 = 125000. Therefore, the eigenvalue problem for many matrices needs
to be computed, and the computing time of the eigenvalue problems dominates the processing time
in the parameter space design with volume rendering. Thus, accelerating the computation of the
eigenvalue problem for large number of small, non-symmetric real matrices is of great interest.

��
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Figure 1: Volume rendering of the parameter space design in the pole assignment problems [34]
using eigenvalues obtained by the proposed method

In classical numerical linear algebra, to compute eigenvalues of a non-symmetric matrix, the
QR algorithm [10, 12] is usually employed. This algorithm is based on the factorization, called
the QR decomposition, of a matrix A by division as a product of an orthogonal matrix Q and an
upper triangular matrix R, that is, A = QR. To reduce the computing time of the QR algorithm,
variants have been proposed [11, 12]. Especially, in this work, we use the implicit double-shift QR
algorithm [11] used in modern computational practice. The implicit double-shift QR algorithm is
based on the implicit Q theorem. Instead of the iterative QR decomposition, in this algorithm, the
double-shift QR sweep is repeatedly applied.
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A GPU (Graphics Processing Unit) is a specialized circuit designed to accelerate computation for
building and manipulating images [17, 39]. Latest GPUs are designed for general purpose computing
and can perform computation in applications traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application developers [17, 20, 21, 30, 40]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Architecture) [28, 29], the
computing engine for NVIDIA GPUs. CUDA gives developers access to the virtual instruction set
and memory of the parallel computational elements in NVIDIA GPUs. In many cases, GPUs are
more efficient than multicore processors [22], since they have thousands of processor cores and very
high memory bandwidth.

The main contribution of this work is to propose a GPU implementation of bulk computation of
eigenvalues of small, non-symmetric, real matrices of maximum size 30× 30. Many works have been
devoted to accelerating the eigenvalue computation and countless computer languages, systems, and
environments supporting matrix manipulation offer libraries/function calls for this task. Some of
them are optimized for computation of the eigenvalues of a very large matrix by parallel processing.
However, such libraries/function calls are not aimed at accelerating the eigenvalues computation
for a lot of small matrices. In the eigenvalue computation, several parallel algorithms have been
proposed such as small bulge multi shift QR algorithm and two-tone QR sweep [6, 14]. These
methods are to concurrently perform the iteration, called QR sweep, not to destroy the order of the
iterations. Actually, in LAPACK [2], that is a linear algebra library, small bulge multi shift QR
algorithm is employed [7]. These parallel algorithms can be applied to any size of matrices. However,
the number of parallel executions for an n×n matrix is limited to at most n. Therefore, it is difficult
for small matrix efficiently to utilize all processing cores on the CPU and the GPU. Also, since the
computing time increases with the cube of n, the overhead cost of launching multiple threads cannot
be ignored when the size of a matrix is small. Thus, in the existing software libraries/function
calls, when the eigenvalue computation is executed for a small matrix, the sequential algorithm is
used or the parallel algorithm is performed inefficiently. On the other hand, several fundamental
operations in linear algebra that are often used for a large set of small matrices are supported by
recent libraries. For example, MAGMA [18] supports parallel computation of matrix multiplication,
LU factorization, and so forth. However, there is no libraries/function calls do not support eigenvalue
computation for many small matrices. In our GPU implementation, we considered programming
issues of the GPU architecture including warp divergence, coalesced access of the global memory,
utilization of the shared memory, and so forth. We focused on the thread assignment to obtain the
optimal parallel execution with many threads on the GPU. Apparently, running parallel threads
as much as possible is an easy way to achieve high performance computation. However, this is
not always correct due to various factors such as memory access latency and utilization of local
registers [41]. Additionally, the optimal parameters including the number of threads and utilized
shared memory differ among GPU architectures. To obtain optimal parameters automatically, auto-
tuning techniques have been proposed [15, 23, 36]. Consequently, in this work, we propose two
thread-assignment methods to perform the bulk execution of eigenvalues computation, single-warp-
based (SWB) method and multiple-warp-based (MWB) method. In our GPU implementation, the
optimal parameters have been obtained by evaluating the computation time for various parameters.
Also, to improve the memory access efficiency, we introduce memory arrangements in the device
memory on the GPU for each of the thread assignments. Furthermore, to hide CPU-GPU data
transfer latency, overlapping computation on the GPU with the transfer is employed. We evaluated
the performance of computing eigenvalues of 500000 matrices of size 5×5 to 30×30. The experimental
results on NVIDIA TITAN X show that our GPU implementation attains a speed-up factor of up
to 83.50 and 17.67 over the sequential CPU implementation and the parallel CPU implementation
with eight threads on Intel Core i7-6700K, respectively.

Additionally, for ease of use, we have built an execution environment of our proposed GPU
implementation in MATLAB. More specifically, we have made it possible for MATLAB users to
utilize the bulk computation of eigenvalues with our proposed GPU implementation. MATLAB
users who are not familiar with GPU computation can easily use it in a similar way to typical
function calls in MATLAB.

This paper is organized as follows. Related work is summarized in Section 2. Section 3 introduces
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the implicit double-shift QR algorithm for computing eigenvalues of a non-symmetric real matrix.
Section 4 briefly describes about GPUs and CUDA architecture. In Section 5, our GPU imple-
mentation of the bulk computation of the eigenvalue problem for many small matrices is proposed.
Experimental results are shown in Section 6. Finally, Section 7 concludes the paper.

2 Related work

Several works have been devoted to accelerate the computation for matrix calculations for many
small matrices using GPUs [5, 8, 9, 16]. Anderson et al. [5] presented implementations of parallel
computation of the LU decomposition and the QR decomposition for many small matrices on the
GPU. In this paper, two parallel implementations have been proposed. The first implementation
assigns one thread to each matrix and each thread performs the computation in a serial fashion.
The second implementation assigns one thread block to each matrix and threads in a block perform
the computation in parallel. In [16], a GPU implementation for the QR decomposition of many
small dense matrices is presented. The GPU implementation reduces the memory access latency by
increasing data locality. Dong et al. [9] proposed a GPU implementation of the LU decomposition
with pivoting for many dense matrices. Also, Cosnuau [8] proposed a GPU implementation of
computing eigenvalues for many small matrices. However, the GPU implementation can compute
eigenvalues only for Hermitian matrices.

Software libraries and tools for numerical linear algebra are widely available and can be used
to accelerate matrix multiplication. Indeed, GSL [1] and Intel MKL [19] are software libraries for
the CPU implementations. These libraries support the computation of matrix factorizations, mul-
tiplications, eigenvalues, and so forth. For GPU implementations, MAGMA [18] are cuBLAS [25],
cuSOLVER [26] are available. In cuBLAS, we can use to compute matrix factorizations and multi-
plications for a large matrix. Also, cuBLAS supports the bulk computation of matrix factorizations
for many matrices, where the bulk computation is to compute a problem for many different in-
puts in turn or at the same time. However, it does not include the computation of the eigenvalue
problem. Besides, cuSOLVER supports the computation of a pair of the maximum eigenvalue and
eigenvector for a sparse matrix. However, it cannot be used for dense matrices and the computa-
tion of all eigenvalues. MAGMA [18] is a software library for heterogeneous computing platforms
with multicore CPUs and GPUs. It supports the computation of eigenvalues for dense matrices
and bulk computation of the computation of matrix multiplications and the LU decomposition for
many matrices. Although it supports the bulk computation for many matrices, the computation of
eigenvalues is not included. We can also utilize MATLAB [37] to compute the eigenvalue problem
as a linear algebra software. MATLAB supports the computation of the eigenvalue problem for a
matrix, but it does not support the bulk computation of the eigenvalue problem. The Intel MKL,
MAGMA, and MATLAB that support eigenvalue computation. They select the optimum algorithm
and parameters including the number of threads in parallel computation depending on the size of
matrices.

3 Eigenvalues Computation of a Non-symmetric Real Matrix

This section reviews the QR algorithm to compute the eigenvalues of a matrix [12]. Especially, we
focus on the eigenvalues computation for a square, non-symmetric real matrix. There are several
algorithms of computing eigenvalues for non-symmetric matrices. In this work, we use the implicit
double-shift QR algorithm [11, 35]. This algorithm uses the double-shift QR sweep instead of the QR
decomposition to reduce the computation cost. For further details on this algorithm, the interested
reader may refer to [11, 12, 35] and the references within. The implicit double-shift QR algorithm
consists of three steps:

Step 1: Perform the Hessenberg reduction

Step 2: Repeat the following operations until the size of the matrices becomes 1× 1 or 2× 2

230



International Journal of Networking and Computing

– Iterate the double-shift QR sweep until a subdiagonal element is sufficiently small

– Split into two smaller matrices by deflation and apply Step 2 recursively

Step 3: Directly compute eigenvalues of the matrices of size 1× 1 or 2× 2

In Step 1, the Hessenberg reduction makes a square matrix to an upper Hessenberg form matrix.
An upper Hessenberg form matrix has zero entries below the first subdiagonal as shown in Figure 2.
In other words, an n × n matrix A = ai,j (1 ≤ i, j ≤ n) such that ai,j = 0 (i > j + 1) is upper
Hessenberg form.
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Figure 2: The Hessenberg reduction for a square matrix of size 6× 6

In Step 2, we repeatedly execute the iterative double-shift QR sweep and deflation. The double-
shift QR sweep consists of two steps: bulge-generating and bulge-chasing. Figure 3 shows the outline
of the double-shift QR sweep. Bulge-generating transforms a Hessenberg form matrix to a matrix
such that a bulge is added to the top left corner of a Hessenberg form matrix shown in Figure 3(a).
After that, bulge-chasing moves the bulge down and to the right until it disappears (Figure 3(b)-(e)).
By repeatedly performing the double-shift QR sweep, a value of a subdiagonal element converges
to zero. After converging, we split the matrix into the two smaller matrices by deflation. Deflation
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Figure 3: Bulge-generating and bulge-chasing in the double-shift QR sweep

is decomposing an upper Hessenberg form matrix into the two smaller upper Hessenberg form
matrices when a subdiagonal element converges to zero as illustrated in Figure 4. However, due to
a computational error, the value may not become zero exactly. Therefore, in general, we consider
a subdiagonal element converges to zero when the value is sufficiently small by comparing with the
two neighboring diagonal elements. More specifically, a subdiagonal element ak+1,k (1 ≤ k ≤ n− 1)
converges to zero when |ak+1,k| � |ak,k|+ |ak+1,k+1|.
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Figure 4: Matrix division by deflation

In Step 3, eigenvalues of the deflated matrices are computed one by one. Since the size of the
matrices is 1× 1 and 2× 2, the eigenvalues can be computed easily.
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Before the explanation in details about the above steps, we introduce Householder transformation
and similarity transformation to be used in matrix transformations in the Hessenberg reduction and
the double-shift QR sweep. Householder transformation is a linear transformation defined by a
Householder matrix Q in the following equations;

Q = I − 2vvT

v =
x− y

||x− y||

where x and y are two distinct vectors such that ||x|| = ||y||, I is a unit matrix, and v is called a
Householder vector. The Householder matrix obtained by the above is symmetric and orthogonal.
Namely, for a Householder matrix Q, we have Q = Q−1 = QT . On the other hand, similarity trans-
formation is a transformation such that a square matrix A is transformed by A← BAB−1, where B
is a regular matrix. The characteristic of this transformation is holding the eigenvalues before and
after the transformation. In the following, we use Householder transformation to transform a ma-
trix by multiplying the Householder matrix from left. However, the eigenvalues are changed by the
transformation. Therefore, after that, to hold the eigenvalues, similarity transformation is applied
to the matrix by multiplying the Householder matrix from right. We note that since a Householder
matrix is identical to its inverse matrix, it is not necessary to compute the inverse matrix to perform
similarity transformation. In the following, we explain the details of each step with Householder
transformation and similarity transformation.

3.1 The Hessenberg Reduction

The Hessenberg reduction transforms a square matrix A of size n× n to a Hessenberg form matrix
H. In the Hessenberg reduction, we change the values of elements below the subdiagonal to zero
from left to right as shown in Figure 2. More specifically, an input matrix A is reduced to the
Hessenberg form matrix H by Householder transformations from left and similarity transformations
from right:

H = Qn−2Qn−3 · · ·Q2Q1AQ
−1
1 Q−12 · · ·Q

−1
n−3Q

−1
n−2,

where each Qk (1 ≤ k ≤ n− 2) is a Householder matrix to change the values of elements below the
subdiagonal in k-th column to zero by Householder transformation and similarity transformation.
This transformation matrix Qk can be computed only from the elements in k-th column of A. The
reader can find that each Qk is identical to the identity matrix except the (n−k)×(n−k) sub-matrix
at the right-bottom elements.

Algorithm 1 shows the Hessenberg reduction by Householder transformation and similarity trans-
formation, where vk is a Householder vector for k-th column. Let Aa:b,c:d denote the sub-matrix
of A of which the top-left element is aa,c and the right-bottom element is ab,d. In the following,
for simplicity, if the range that denotes a sub-matrix is out of the size of the matrix, the range
is reduced to the size of the matrix. In this algorithm, we transform the input matrix such that
the values of elements below the subdiagonal are changed to zero from left to right as shown in
Figure 2. Since each Qk is identical to the identity matrix except the (n− k)× (n− k) sub-matrix
at the right-bottom elements in Qk, we apply a Householder vector v without directly multiplying
a Householder matrix Qk. In lines 2–4, a Householder vector v is computed. Using v, Householder
transformation and similarity transformation are performed in lines 5 and 6, by multiplying v from
left and right, respectively. In these two transformations, we compute only the elements of which
values have changed. After performing the above operations for k = 1, . . . , n − 2, we obtain the
Hessenberg form matrix of the input matrix.

3.2 The double-shift QR sweep

The double-shift QR sweep first makes an initial transformation that produces a bulge at the top
in a Hessenberg form matrix (bulge-generating). After that, it sweeps the matrix from the top to
bottom by chasing the bulge (bulge-chasing). Once the sweep is finished, the matrix is returned to
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Algorithm 1 The Hessenberg reduction

Input: n× n non-symmetric matrix A
Output: n× n Hessenberg form matrix H
1: for k = 1 to n− 2 do
2: v← Ak+1:n,k

3: v← v + sign(v1)||v||e1
4: v← v

||v|| . Householder vector

5: Ak+1:n,k:n ← Ak+1:n,k:n − 2v(vTAk+1:n,k:n) . Householder transformation
6: A1:n,k+1:n ← A1:n,k+1:n − 2(A1:n,k+1:nv)vT . Similarity transformation
7: end for
8: return H ← A

upper Hessenberg form. By repeating the sweep, some element in subdiagonal converges to zero.
However, due to a computational error, the value may not become zero exactly. Therefore, if a
subdiagonal element becomes sufficiently small, we divide the matrix by deflation.

In bulge-generating, first, a 2 × 2 sub-matrix from the lower-right corner of H is extracted and
its two eigenvalues σ1 and σ2 are computed. After that, we obtain a Householder matrix R0 such
that the first column of (H −σ1I)(H −σ2I) except the diagonal element is introduced to zero. This
operation is used to reduce the number of iterations of the sweeps. The Householder matrix R0 is
an n× n matrix such that

R0 =



r1,1 r1,2 r1,3
r2,1 r2,2 r2,3 O
r3,1 r3,2 r3,3

1

O
. . .

1



Since R0 is a Householder matrix, we have R−10 = R0. Therefore, we perform Householder transfor-
mation and similarity transformation to H by multiplying R0 from left and right, respectively. The
structure of B obtained by these transformations is Hessenberg form with three non-zero elements
in b3,1, b4,1, and b4,2, called a bulge, as shown in Figure 3(a). Algorithm 2 shows bulge-generating
by Householder transformation and similarity transformation, where v is a Householder vector. In
Algorithm 2, a Householder vector v is computed in lines 1–5. We directly compute only the values
to be used in the following computation without the computation of eigenvalues σ1 and σ2, and the
matrix multiplication (H−σ1I)(H−σ2I). We also apply the Householder vector v without directly
multiplying a Householder matrix R0 in the same way as Algorithm 1. After that, Householder
transformation and similarity transformation are performed in lines 6 and 7, by multiplying v from
left and right, respectively. After the above operations, we obtain the Hessenberg form matrix with
a bulge. We note that if the size of the input matrix is 3× 3, the range of the sub-matrix is beyond
the size of the matrix. The elements out of the matrix need not to be computed.

Bulge-chasing sweeps the matrix obtained by bulge-generating from the top to bottom by chasing
the bulge as shown in Figure 3. To chase the bulge, we perform Householder transformations from
left and similarity transformations from right:

H = Rn−2Rn−3 · · ·R2R1BR
−1
1 R−12 · · ·R

−1
n−3R

−1
n−2,

where each Rk (1 ≤ k ≤ n − 2) is a Householder matrix to move the bulge to the bottom one by

233



An Efficient GPU Implementation of Bulk Computation of the Eigenvalue Problem

Algorithm 2 Bulge-generating

Input: n× n Hessenberg form matrix H
Output: n× n Hessenberg form matrix with a bulge B
1: x1 ← (h1,1 − hn,n)(h1,1 − hn−1,n−1)− hn−1,nhn,n−1 + h1,2h2,1
2: x2 ← h2,1(h1,1 + h2,2 − hn−1,n−1 − hn,n)
3: x3 ← h2,1h3,2
4: v← x + sign(x1)||x||e1
5: v← v

||v|| . Householder vector

6: H1:3,1:n ← H1:3,1:n − 2v(vTH1:3,1:n) . Householder transformation
7: H1:4,1:3 ← H1:4,1:3 − 2(H1:4,1:3v)vT . Similarity transformation
8: return B ← H

one. Each Householder matrix Rk is a square matrix of size n× n such that

Rk =



1
. . . O O

1
rk+1,k+1 rk+1,k+2 rk+1,k+3

O rk+2,k+1 rk+2,k+2 rk+2,k+3 O
rk+3,k+1 rk+3,k+2 rk+3,k+3

1

O O
. . .

1


Since Rk is a Householder matrix, we perform Householder transformation and similarity transfor-
mation to B by multiplying Rk from left and right, respectively. Algorithm 3 shows bulge-chasing
by Householder transformation and similarity transformation, where v is a Householder vector. In
Algorithm 3, a Householder vector v is computed in lines 2–4. We also apply Householder vectors v
without directly multiplying Householder matrices Rk in the same way as bulge-generating. House-
holder transformation and similarity transformation in lines 5 and 6 are performed by multiplying v
from left and right, respectively. After the above operations, we obtain the Hessenberg form matrix
without the bulge. We note that when the size of the input matrix is 3 × 3 and/or k ≥ n − 3,
the range of the sub-matrix is beyond the size of the matrix. In such case, the computation of the
elements out of the matrix is skipped.

Algorithm 3 Bulge-chasing

Input: n× n Hessenberg form matrix with a bulge B
Output: n× n Hessenberg form matrix H
1: for k = 1 to n− 2 do
2: v← Bk+1:k+3,k

3: v← v + sign(v1)||v||e1
4: v← v

||v|| . Householder vector

5: Bk+1:k+3,k:n ← Bk+1:k+3,k:n − 2vk(vT
kBk+1:k+3,k:n) . Householder transformation

6: B1:k+4,k+1:k+3 ← B1:k+4,k+1:k+3 − 2(B1:k+4,k+1:k+3v)vT . Similarity transformation
7: end for
8: return H ← B

4 CUDA Architecture

NVIDIA provides a parallel computing architecture, called CUDA, on NVIDIA GPUs. Figure 5 il-
lustrates the CUDA hardware architecture. CUDA uses three types of memories: the global memory,
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the shared memory and the register file. The global memory is implemented as an off-chip DRAM of
the GPU, and has large capacity, say, 1.5-12 Gbytes, but its access latency is very long. The shared
memory is an extremely fast on chip memory with lower capacity, say, 16-112 Kbytes. The efficiency
usage of the global memory and the shared memory is a key for CUDA developers to accelerate
applications using GPUs. Also, the register file is on chip memory and the fastest memory among
them. Registers in the register file can be accessed to a processor core, and they can be accessed
only by a thread running on the processor core.

Streaming 
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Core Core 

Core Core 

Core Core 

Core Core 

Shared Memory

Streaming 

Multiprocessor

Shared Memory

Streaming 

Multiprocessor

Shared Memory

…

Global  Memory
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Core Core 

Core Core 

Core Core 

Core Core 

Core Core 

Core Core 

Figure 5: CUDA hardware architecture

CUDA parallel programming model has a hierarchy of thread groups, called grid, block, and
thread. A single grid is organized by multiple blocks, each of which has equal number of threads.
The blocks are allocated to SMs such that all threads in a block are executed by the same SM in
parallel. All threads can access to the global memory. However, as we can see in Figure 5, threads
in a block can access to the shared memory of the SM to which the block is allocated. Since blocks
are arranged to multiple SMs, threads in different blocks cannot share data in the shared memories.

In the execution, threads in a block are split into groups of threads, called warps. A warp is an
implicitly synchronized group of threads. Each of these warps contains the same number of threads
and is executed independently. When a warp is selected for execution, all threads execute the same
instruction. Any flow control instruction (e.g. if-statements in C language) can significantly impact
the effective instruction throughput by causing threads if the same warp to diverge, that is, to
follow different execution paths, called warp divergence. If this happens, the different execution
paths have completed, the threads go back to the same execution path. For example, for an if-else
statement, if some threads in a warp take the if-clause and the others take the else-clause, both
clauses are executed in serial. On the other hand, when all threads in a warp branch in the same
direction, all threads in a warp take the if-clause, or all take the else-clause. Therefore, to improve
the performance, it is important to make branch behavior of all threads in a warp uniform. When
one warp is paused or stalled, other warps can be executed to hide latencies and keep the hardware
busy.

There is a metric, called occupancy, related to the number of active warps on an SM. The occu-
pancy is the ratio of the number of active warps per SM to the maximum number of possible active
warps. It is important in determining how effectively the hardware is kept busy. The occupancy
depends on the numbers of threads and blocks and the size of the shared memory used in a block.
Namely, utilizing over utilizing resources per thread or block may limit the occupancy. To obtain
good performance with the GPUs, occupancy should be considered.

CUDA C extends C language by the programmer to define C functions, called kernels. By
invoking a kernel, all blocks in the grid are allocated in SMs, and threads in each block are executed
by processor cores in a single SM. The kernel calls terminate, when threads in all blocks finish the
computation. Since all threads in a single block are executed a single SM, the barrier synchronization
of them can be done by calling CUDA C syncthreads() function. However, there is no direct
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way to synchronize threads in different blocks. One of the indirect methods of inter-block barrier
synchronization is to partition the computation into kernels. Since continuous kernel calls can be
executed such that a kernel is called after all blocks of the previous kernel terminate, execution of
blocks is synchronized at the end of kernel calls. On the other hand, all threads of a warp perform
the same instruction at the same time. More specifically, any synchronizing operations are not
necessary to synchronize threads within a warp.

To accelerate the computation, the coalesced access to the global memory is a key issue. As
illustrated in Figure 6, when threads access to continuous locations in a row of a 2-dimensional array
(horizontal access), the continuous locations in address space of the global memory are accessed at
the same time (coalesced access). However, if threads access to continuous locations in a column
(vertical access), the distant locations are accessed at the same time (stride access). From the
structure of the global memory, the coalesced access maximizes the bandwidth of memory access.
On the other hand, the stride access needs a lot of clock cycles. Thus, we should avoid the stride
access (or the vertical access) and perform the coalesced access (or the horizontal access) whenever
possible.

t0

t7

2-dimensional array

horizontal access

vertical access

coalesced access

stride access

t0 t7 t0 t7

t0 t7

Figure 6: Coalesced and stride access

The shared memory is a sort of on-chip memory located within each SM. It has almost no access
latency and only visible to the thread block which is executed by the corresponding SM. Therefore,
the shared memory is often used as a cache to hide the access latency of the global memory.

In typical computation using the GPU, input data is transferred from the main memory on
the host PC to the global memory on the GPU. Also, the computation results are copied back
to the main memory. In general, the data transfer is performed via PCI Express. However, the
throughput of PCI Express is not sufficiently high compared with that of the global memory on the
GPU. For example, the throughput of PCI Express 3.0 (x16) that the recent GPUs support is up
to 15.75GB/s [31]. On the other hand, the throughput of the global memory is up to 480GB/s [27].
Therefore, the data transfer time cannot be ignored occasionally when computing time is shorter
than data transfer time.

To reduce CPU-GPU communication overhead, recent CUDA-enabled GPUs can perform an
asynchronous memory copy to or from the GPU concurrently with kernel execution [13, 32]. The
asynchronous memory copy is to hide CPU-GPU transfer latency by overlapping computation on
the GPU with the transfer. CUDA defines a stream as a sequence of operations that are guaranteed
to sequentially execute on the GPU. In general, a stream consists of memory copy of input data
from host to device (H2D), execution of kernels (Computation), and memory copy of the results
from device to host (D2H). Operations in different streams can be interleaved and concurrently
run whenever possible as illustrated in Figure 7. In our approach, described in the next section,
since eigenvalues of many matrices are computed, the data communication overhead is not small.
Therefore, to hide the overhead, we apply this idea to our GPU implementation.
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Figure 7: Overlapped execution on the GPU using multiple streams

5 GPU Implementation

This section presents the main contribution of this work, a GPU implementation of the implicit
double-shift QR algorithm for many small matrices. In the following, let N be the number of input
matrices and each size of matrix is n × n. Also, we use a 64-bit floating point number as a real
number and two 64-bit floating point numbers as a complex number. In our implementation, we use
only real numbers in Steps 1 and 2 during the computation. From Step 3, we use complex numbers.

Before the explanation about parallel execution on the GPU, we introduce three data arrange-
ments for many matrices in the memory, matrix-wise (MW), element-wise (EW), and row-wise (RW).
These three data arrangements show how to store multiple two-dimensional arrays in the memory
that is a one-dimensional memory. In the MW arrangement, each matrix is stored one by one and
elements of each matrix are stored in column-major order as shown in Figure 8(a). This arrangement
is generally used in numeric linear algebra tools and software libraries [18, 19, 37]. Therefore, in this
paper, the input data of matrices are stored to the main memory in the MW arrangement. In the
EW arrangement, each element picked from the matrices in row-major order is stored element by
element as illustrated in Figure 8(b). On the other hand, in the RW arrangement, each row taken
from the matrices is stored row by row as illustrated in Figure 8(c). Two arrangements EW and
RW are used in the global memory to make the memory access efficient.

Recall that according to Algorithms 1, 2, and 3, these algorithms mainly consist of Householder
vector generation, Householder transformation, and similarity transformation. We consider that
those computations are carried out on the GPU. A GPU can employ many threads working concur-
rently. Apparently, running parallel threads as much as possible is the easiest way to achieve high
performance computation. However, this is not always correct due to various factors such as memory
access latency and utilization of local registers [41]. Additionally, the optimal parameters such as the
number of threads differ among GPU architectures. To obtain optimal parameters automatically,
auto-tuning techniques have been proposed [15, 23, 36]. Consequently, in this work, we propose two
thread-assignment methods to perform the bulk execution of eigenvalues computation, single-warp-
based (SWB) method and multiple-warp-based (MWB) method. The idea of our approach is that the
better method is selected step by step, and the best number of threads that compute one matrix is
utilized by evaluating the computation time with various conditions. We explain these two methods
using the above three data arrangements as follows.

SWB method In the SWB method, every warp is used to compute eigenvalues of one or more
matrices as shown in Figure 9. More specifically, we allocate p (1 ≤ p ≤ n) threads to one matrix
and every warp works for b 32p c matrices in parallel. In this method, when 32

p is indivisible, 32−pb 32p c
threads in every warp are not employed. For example, when 7 threads are used to compute each
matrix, in each warp, b 327 c = 4 matrices are computed in parallel. In this case, the remaining 4
threads are not used.

In this method, the access to the global memory is made coalesced using the RW arrangement.
Since the number of matrices for each warp is smaller than the MWB method, only in this method,
all data of matrices can be located on the shared memory. Therefore, first of all the processes in
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Figure 8: Data arrangement for multiple matrices in the global memory

this method, the data of matrices are loaded from the global memory to the shared memory. To
make the access to the global memory coalesced, the matrix data loading from the global memory
to the shared memory is performed by multiple threads as illustrated in Figure 10. We note that
the eigenvalues computation of one matrix is performed by p threads. However, if the data loading
is performed for each matrix using p threads, the memory access is not coalesced when p 6= n.
Therefore, the data loading is performed regardless the number of p as shown in Figure 10. The
following computation is performed on the shared memory until the resulting eigenvalues are stored
to the global memory.

In Step 1, this method performs the computation as follows. To obtain ||v||, the sum of squared
values of v is computed. We use the parallel sum reduction method [24] on the shared memory.
After that, the Householder vector is computed by one thread and stored to the shared memory. In
Householder transformation, we assign p threads to one column each, and repeat it until all columns
are computed as illustrated in Figure 11(a). Namely, the computation of the transformation is
concurrently performed using p threads. In the parallel computation, each thread computes the
multiplication of the elements in the assigned column from top to bottom. In similarity transforma-
tion, we assign p threads to one row each, and repeat it until all rows are computed as illustrated
in Figure 11(b). Each thread computes the multiplication of the elements in the row from left to
right.

On the other hand, in Step 2, the sum of only three squared values is computed to obtain the
Householder vector. Therefore, the sum is directly computed instead of the parallel sum reduction
method unlike Step 1. After that, in Householder transformation and similarity transformation,
p threads are assigned to columns and rows, and work in the same way as Step 1. If a matrix
is divided into smaller matrices by deflation, bulge-generating and bulge-chasing are repeatedly
performed using p threads for each smaller matrix.

After all the matrices divided by deflation becomes 1 × 1 or 2 × 2, one thread computes eigen-
values of the matrices in serial. The resulting eigenvalues are temporarily stored to the shared
memory. After that, all the threads within the warp store them to the global memory with the MW
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ワープ内の複数スレッドを1行列に割り当てる場合の図
• 4つの行列に8スレッドを割り当てる場合
• 3つの行列に10スレッドを割り当て2スレッド余る場合

Warp ・・・ Thread

ܽଵ,ଵ ⋯ ܽଵ,

⋮ ⋱ ⋮

ܽ,ଵ ⋯ ܽ,

ܽଵ,ଵ ⋯ ܽଵ,

⋮ ⋱ ⋮

ܽ,ଵ ⋯ ܽ,

ଷଶ


matrices

・・・

32 − 
ଷଶ


threads

・・・

・・・

 threads  threads

Thread Thread ・・・Thread Thread Thread

Figure 9: Single-warp-based method (SWB)
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Figure 10: Matrix data loading from the global memory to the shared memory with coalesced access
in SWB

arrangement using coalesced access.

MWB method In the MWB method, p (1 ≤ p ≤ n) warps are used to compute eigenvalues of 32
matrices as illustrated in Figure 12. More specifically, we allocate p threads in p different warps to one
matrix computation. Each matrix is computed in parallel using p threads each of which is in p distinct
warps. Since only the number of warps is depended on p, all threads in a warp are employed for any
p unlike the SWB method. The parallel execution by p threads in the MWB method is the same
as that in the SWB method except that the execution is basically performed on the global memory.
Regarding the parallel execution with p threads, the thread-assignment and the computation are
the same as the SWB method illustrated in Figure 11. Also, since multiple warps are used, it is
necessary to synchronize the execution between warps using syncthreads() function. However,
although multiple warps cooperate, the function is not frequently called. The synchronization is
performed in Householder vector generation several times. After that, the execution needs to be
synchronized only at the end of Householder transformation and similarity transformation each.
Additionally, in this method, to access the global memory with coalesced access, we arrange data in
the global memory using the EW arrangement.

We assume that the input data of matrices are stored in the main memory on the host PC in the
MW arrangement. The data are transferred to the global memory on the GPU as it is. In the above
two methods, the data arrangement in the global memory needs to be rearranged for each utilized
method. Therefore, we implemented kernels that mutually rearrange between the MW, EW, and
RW arrangements on the global memory. In these kernels, we use the idea of the matrix transpose
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Figure 11: Thread assignment in SWB and MWB for n = 6 and p = 2
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Figure 12: Multiple-warp-based method (MWB)

technique proposed in [33]. The idea is to efficiently transpose a two-dimensional array on the global
memory with coalesced access using the shared memory. The rearrangements are not transposing,
but this technique can be applied with small modification. In the next section, we evaluate the
processing time of the rearrangement.

We note that in our preliminary work [38], we proposed another thread-assignment method,
called single-thread-based (STB) method. This method is to assign each thread to one matrix. Each
thread computes eigenvalues of the matrix in serial. Indeed, the STB method is the special case of
the MWB method for p = 1. Therefore, in this paper, the STB method is included in the MWB
method.

In our problem, the bulk computation of eigenvalues problem, we compute eigenvalues for a lot
of matrices. Since the matrices are independent from each other, we can easily compute eigenvalues
in parallel such that several streams are invoked and each stream computes eigenvalues of part of
the matrices. Using such parallel computation with multiple streams, we hide CPU-GPU transfer
latency by overlapping computation on the GPU with the transfer as described in Section 4.

6 Performance Evaluation

The main purpose of this section is to show the performance evaluation of the proposed GPU
implementation for the eigenvalues computation. We have used NVIDIA TITAN X, which has 3584
cores in running on 1.531GHz [27]. Also, we have used Intel Core i7-6700K running on 4.2GHz,
which has 4 physical cores each of which acts 2 logical cores by hyper-threading technology, on the
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host PC. In the following, the running time is average of 10 times execution of computing eigenvalues
for 500000 matrices of size from 5× 5 to 30× 30 that are dense matrices randomly generated.

First, we evaluate the performance of Step 1, the Hessenberg reduction, using the proposed
SWB and MWB methods. Figure 13 shows the computing time of the Hessenberg reduction. The
evaluation has been carried out for different values of p. We note that when p is small, the SWB
method cannot be executed due to the limitation of the shared memory. The computing time does
not include data transfer time between the main memory in the CPU and the device memory in the
GPU. Also, input matrices in the global memory are stored by the appropriate arrangement for each
method as shown in Figure 8. Namely, we use the EW arrangement for the MWB method and the
RW arrangement for the SWB method. Furthermore, in the SWB method, when p is small, the size
of utilized shared memory in a warp is large since the number of matrices in a warp is large. Hence,
for larger than 10 × 10 matrices, we could not evaluate the computing time due to the limitation
of size of the shared memory when p is small. This limitation is applied to the next evaluation of
Steps 2 and 3.

According to the graphs, the SWB method is faster for 15× 15 or larger matrices on the whole,
since the computation in the SWB method is carried out on the shared memory. On the other
hand, since the memory access is not performed frequently for small matrices, the benefit of the
computation on the shared memory is very small. Therefore, since the cost of the memory copy
to the shared memory cannot be ignored, the computing time of the SWB method is longer than
that of the MWB. In addition, when p is small in the SWB method, the number of matrices to be
computed in one warp is large. Due to the large amount of used shared memory, the occupancy
decreases. Therefore, the computing time of the SWB method is long when p is small.

Figure 14 shows the computing time of Steps 2 and 3 for 500000 matrices of size from 5 × 5 to
30× 30. Similarly, the computing time does not include data transfer time. Also, input data in the
global memory are stored by the appropriate arrangement in Figure 8 for each method.

According to the graphs, the MWB method is faster than the SWB in most cases. This is
because in Step 2, the number of active threads becomes small whenever matrices are divided by
deflation and their size becomes small. In the SWB method, although the number of active threads
is small, at least one thread in every warp is always active due to the assignment of threads. On
the other hand, in the MWB method, although the number of active threads assigned to one matrix
computation is small, it is possible that every thread in several warps becomes inactive, that is, no
warp divergence occurs in such warps. Therefore, the warp divergence in the SWB method occurs
more frequently than that in the MWB method. Thus, the MWB method is faster than the SWB
in Step 2.

Table 1 shows the computing time of our GPU implementation for 500000 matrices of size
n×n. We assume that all input data are stored in the main memory on the host PC using the data
arrangement in the MW arrangement. The input data are transferred from the main memory on the
CPU to the global memory on the GPU as it is. In Step 1 and Steps 2 and 3, according to the result
in the above, we select the fastest method for each size of the matrix. Therefore, we rearrange the
data in the global memory to the appropriate arrangement before launching the kernels if necessary.
We note that we select the methods by considering the computing time including the rearranging
time.

As regards the data transfer time between the CPU and the GPU, you can find that it is not small
from the table. Especially, when the size of matrix is small, the data transfer time accounts for more
than half of the total computing time. Therefore, we evaluate the overlapped execution by multiple
streams shown in Section 4. Table 2 shows the computing time of eigenvalues for 500000 matrices
using multiple streams when each stream computes eigenvalues of 1024 to 262144. According to the
table, the running time is long when the number of matrices per stream is both small and large.
This is because the overlapped execution is small since the computation time and the data transfer
time is larger than the other, respectively. On the other hand, if the optimal number of matrices is
selected, almost data transfer time can be hidden from Tables 1 and 2. According to the results, the
computation time is reduced by approximately 25% to 59% using multiple streams. In the following,
the GPU implementation selects the optimal number of matrices obtained by this evaluation.

To compare the performance of our method, we have evaluated the computation time of Intel
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Figure 13: The computing time of Step 1 for 500000 matrices of size 5× 5 to 30× 30
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Figure 14: The computing time of Steps 2 and 3 for 500000 matrices of size 5× 5 to 30× 30
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Table 1: The computing time (in milliseconds) of our GPU implementations of the eigenvalue
problem for 500000 matrices

size 5× 5 10× 10 15× 15 20× 20 25× 25 30× 30
data transfer

21.22 80.81 178.15 314.37 494.52 714.42
(host to device)

data rearrangement
time 0.64 2.54 5.89 10.03 15.00 21.65

arrange MW→EW MW→EW MW→RW MW→RW MW→RW MW→RW

Step 1
time 1.21 10.87 42.80 110.83 207.23 339.44

method MWB MWB SWB SWB SWB SWB

data rearrangement
time — — 6.27 10.39 15.36 22.03

arrange — — RW→EW RW→EW RW→EW RW→EW

Steps 2 and 3
time 16.35 95.20 269.98 580.21 1048.09 1767.47

method MWB MWB MWB MWB MWB MWB

data rearrangement
time 0.23 0.46 0.68 0.91 1.14 1.36

arrange EW→MW EW→MW EW→MW EW→MW EW→MW EW→MW
data transfer

9.65 17.60 27.30 35.99 44.37 59.74
(device to host)

total 49.30 207.48 531.07 1062.73 1825.72 2926.11

Table 2: The computing time (in milliseconds) of eigenvalues for 500000 matrices using multiple
streams each of which computes k matrices

k 5× 5 10× 10 15× 15 20× 20 25× 25 30× 30
1024 46.79 189.74 414.11 863.00 1498.60 2479.38
2048 33.16 156.94 369.96 804.59 1448.53 2350.33
4096 25.53 140.92 343.55 764.63 1337.03 2194.36
8192 22.64 132.22 338.79 758.22 1374.25 2191.16
16384 20.89 128.85 347.84 757.34 1367.70 2232.39
32768 20.01 126.85 350.80 751.42 1342.78 2215.02
65536 24.08 125.61 347.13 766.55 1568.12 2586.04
131072 27.00 150.85 406.32 870.03 1590.94 2627.18
262144 29.51 159.82 423.45 902.12 1649.10 2713.23

MKL 2017 Update 1 [19], MAGMA version 2.0.2 [18], and MATLAB version R2016b [37]. Table 3
shows the computing time of eigenvalues for 500000 matrices using existing tools and software
libraries. Intel MKL supports two types of implementation, sequential and parallel execution for

Table 3: The computing time (in milliseconds) of eigenvalues for 500000 matrices using existing
tools and software libraries

5× 5 10× 10 15× 15 20× 20 25× 25 30× 30
Intel MKL (sequential) 1670.56 5765.72 13610.48 22867.30 38025.77 53680.96
Intel MKL (parallel) 1867.66 6588.52 14953.56 25720.05 41688.86 59750.73
Intel MKL (sequential+OpenMP) 353.56 1214.61 2854.39 4875.80 7915.52 11442.21
MAGMA 192925.18 227177.54 236115.41 270104.45 270104.45 371107.56
MATLAB 2663.68 7026.19 30586.44 54662.29 90959.14 127717.43

computing eigenvalues of a matrix. In the sequential execution, one thread is invoked and the thread
computes eigenvalues in serial. On the other hand, the parallel execution, eigenvalues of one matrix
are computed using multiple threads. According to the table, the parallel execution is slower than
the sequential execution though multiple threads are used. This is because in the parallel execution,
whenever eigenvalues are computed for each matrix, threads are invoked. Since the size of matrices is
too small, the overhead caused by invoking threads cannot be ignored compared with the computing
time of eigenvalues. Due to the result, we have implemented another parallel execution using Intel
MKL and OpenMP 2.0 [3]. In the parallel execution, since a lot of matrices are computed, we have
parallelized the bulk execution such that multiple threads are invoked and each thread performs
the sequential execution in parallel using OpenMP. The behavior of each thread is equivalent to the
thread in the sequential implementation. In the table, Intel MKL (sequential+OpenMP) corresponds
to this parallel execution using OpenMP. In the evaluation, we have used 8 threads since the utilized
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CPU has 8 logical cores.
On the other hand, MAGMA and MATLAB support parallel computation of the eigenvalue

problem with multi-threads on the CPU. MAGMA also supports parallel computation on the GPU.
However, since the size of matrices is too small in this experiment, MAGMA automatically selected
the CPU execution without the GPU. Actually, since MAGMA basically expects computation on the
GPU, whenever functions of MAGMA are called, some overhead to the GPU is necessary. Therefore,
MAGMA is much slower than Intel MKL. Furthermore, since Intel MKL, MAGMA and MATLAB
do not support bulk computation of the eigenvalue problem, a procedure that computes eigenvalues
is called for each matrix. Due to such execution, multiple threads are launched and stopped before
and after each procedure call, respectively. Therefore, there is an overhead between each procedure
call and it is not negligible.

Table 4 shows the comparison between CPU sequential and parallel implementations and our
GPU implementation. In the GPU implementation, the appropriate parameters in Tables 1 and 2
have been selected. According to the table, our GPU implementation attains a speed-up factor of up
to 83.50 and 17.67 over the sequential CPU implementation and the parallel CPU implementation,
respectively.

Table 4: The total computing time (in milliseconds) of eigenvalues for 500000 matrices
5 × 5 10 × 10 15 × 15 20 × 20 25 × 25 30 × 30

CPU1 (Intel MKL sequential) 1670.56 5765.72 13610.48 22867.30 38025.77 53680.96
CPU2 (Intel MKL+OpenMP) 353.56 1214.61 2854.39 4875.80 7915.52 11442.21
GPU (proposed method) 20.01 125.61 338.79 751.42 1337.03 2191.16

speed-up (CPU1/GPU) 83.50 45.90 40.17 30.43 28.44 24.50
speed-up (CPU2/GPU) 17.67 9.67 8.43 6.49 5.92 5.22

7 Conclusions

In this paper, we have presented a GPU implementation of bulk eigenvalue computations for a
large number of small, non-symmetric, real matrices. The idea of our GPU implementation is to
consider programming issues of the GPU architecture including warp divergence, coalesced access
of the global memory and utilization of the shared memory. We proposed two assignments of GPU
threads to compute in parallel and data assignment in the global memory. Furthermore, to hide
CPU-GPU data transfer latency, overlapping computation on the GPU with the transfer has been
employed. The experimental results on NVIDIA TITAN X show that our GPU implementation
attains a speed-up factor of up to 83.50 and 17.67 over the sequential CPU implementation and the
parallel CPU implementation with eight threads on Intel Core i7-6700K, respectively. Additionally,
for ease of use, we have built an execution environment for our proposed GPU implementation in
MATLAB.
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