
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 7, Number 2, pages 271–294, July 2017

Automated Dataset Construction from Web Resources with Tool Kayur

Alexander Kohan

Department of Mathematics and Informatics, Chiba University
Chiba, Japan

Mitsuharu Yamamoto

Department of Mathematics and Informatics, Chiba University
Chiba, Japan

and

Cyrille Artho

School of Computer Science and Communication, KTH Royal Institute of Technology
Stockholm, Sweden

Received: February 15, 2017
Revised: May 6, 2017

Accepted: June 2, 2017
Communicated by Akihiro Fujiwara

Abstract

Many text mining tools cannot be applied directly to documents available on web pages.
There are tools for fetching and preprocessing of textual data, but combining them with the
data processing tool into one working tool chain can be time consuming. The preprocessing task
is even more labor-intensive if documents are located on multiple remote sources with different
storage formats.

In this paper, we propose the simplification of data preparation process for cases when data
come from wide range of web resources. We developed an open-source tool, called Kayur, that
greatly minimizes time and effort required for routine data preprocessing steps, allowing to
quickly proceed to the main task of data analysis. The datasets generated by the tool are ready
to be loaded into a data mining workbench, such as WEKA or Carrot2, to perform classification,
feature prediction, and other data mining tasks.

Keywords: Automation, Information extraction, Natural language processing, Web mining

1 Introduction

Textual information located on the Internet is usually designated for a human reader, but as the
growth rate of available data is increasing, more and more automated tools are used to process
such data to get insight about its properties or discover trends and patterns. Although some web
resources are designed to facilitate machine processing by providing an Application Programming
Interface (API) to export data in structured formats, such as XML, CSV, or JSON, on many

271

Automated Dataset Construction from Web Resources with Tool Kayur

Database

Source 1

Statistics

Text
Processing

Information
Extraction

Export

WEKA

Carrot2

LDA / HDP

Source 2

Document Name (Title)

Contents (Text)
Comments
Date / Time
Metadata

Web Resources

Term Weight Method
Selection

with OpenNLP

JSON

CSV

Web Import Text Processing Export

Figure 1: Workflow of Kayur

web resources useful information is still available only in HTML format. This makes automated
processing more difficult, because, unlike XML, HTML tags do not describe the data they contain.

Web mining tools that extract data from HTML documents usually require a user to set up the
extraction rules for each data field; the navigation rules to define transition between documents; and
the integration rules to translate extracted data into the desired format. This configuration step
may be labor-intensive, especially when dealing with multiple web resources of different structure.
Partially because of that reason, there are web resources to which text mining has never been applied.

Although web resources are different, some common patterns can be found in structure of infor-
mation they provide. If we leverage these similarities, we may arrive at substantial simplification of
web mining application to a wide range of remote sources. In this work, we argue that by imposing
certain restrictions on web resources and data, web mining process can be simplified, so that dataset
construction step can be accomplished quickly and conveniently.

First, we suggest that data to be analyzed are a collection of texts written in a human language.
Such data can be stored in the uniform format that comprises fields common to all textual documents
(document’s title, content, comments, publishing date, and metadata). Storing the data in the same
format improves reusability, and makes possible to generate a dataset from subsets of documents
that span over multiple web resources.

Second, we focus only on web resources that provide a search engine to find documents, and
assign to each document a unique identifier. These conditions are met by many resources, because
a web resource that provides to a user a collection of documents usually provides means to locate
documents of interest as well. If these conditions are met, the access and navigation between
documents can be automated, so that extraction and navigation rules can be simplified and their
number can be substantially reduced.

We developed an open-source tool, called Kayur [11], to demonstrate these concepts. The tool
can be applied to web resources that satisfy the mentioned conditions. It fetches documents from the
Internet, translates them into the uniform format, and stores the results in a relational database.
Textual data of stored documents are converted using underlying OpenNLP library [22] into a
filtered list of normalized words that are then represented numerically according to the vector space
model [31] with specified weight method. The resulting vectors are converted into an input format
of a data mining tool (such as WEKA [35], Carrot2 [26], or LDA/HDP topic modeling tools by
J. Chang and C. Wang [34]).

The tool demonstrates a shortcut to quickly generate a dataset for text mining needs from
web resources that satisfy certain properties. Kayur requires minimum user input, has the most
commonly used settings preconfigured, and provides the intuitive user interface, which makes it
useful even for people unfamiliar with data preparation and preprocessing steps. By minimizing
routine work, Kayur allows to quickly proceed to the most important step of data analysis. The
tool itself and its source code is available on its home page [11].

This paper is an extended version from an earlier conference paper [12]. The earlier paper

272

International Journal of Networking and Computing

included only small examples of possible applications of the tool; this extended paper shows how
Kayur can be used in a larger context. We addressed this issue by including a large-scale application
example, namely, the identification of the most frequent Android defect types by the semi-automatic
analysis of a large bug report collection. Furthermore, we improved interoperability of the tool by
adding dataset export to popular formats JSON and CSV, so that the tool can be used in conjunction
with a wider range of software for data analysis.

The rest of this paper is structured as follows: Section 2 provides a brief theoretical background on
text mining concepts; Section 3 explains Kayur’s architecture and implementation; Section 4 presents
small examples of the use of our tool and its evaluation; Section 5 demonstrates the application of
the tool to a more complex and large-scaled task of identification of the most frequent Android
defect types; Section 6 discusses the related projects; Section 7 summarizes the obtained results and
presents directions for future work.

2 Background

2.1 Web mining and information extraction

Data mining is the process of automatic analysis of large stores of data to discover patterns and
trends. Classification, clustering, association learning, and numeric prediction are the main types of
information analysis in data mining [36]. The use of data mining techniques to extract and analyze
information in web documents is known as web mining.

Because document structure greatly differs between web resources, one of the straightforward
adopted approaches to extract information was to write a stand-alone program (script) for each
resource using programming language such as Perl [5]. However, better methods were developed
in web information extraction area, and such programs were superseded with extractors (wrappers)
that allow working with multiple web resources by describing unique properties of sources with
extraction rules [37].

However, not all the extracted data are immediately ready to be used by a data mining tool.
Numeric values and various identifiers (names, locations) can be used “as is” most of the time, while
texts written in human languages usually require additional processing using text mining methods.

2.2 Text mining and the vector space model

When data mining is applied to human-written texts, the term text mining is usually used instead.
Text mining has many important applications, including analysis of stock reports, product manuals,
business and normative documents [32]. It is also proved to be useful for bug report analysis,
including bug report classification [4, 39], detection of duplicates [30], and prediction of certain
properties of software flaws [13].

The standard approach for applying data mining techniques to textual data is to transfer the
textual data into the vector space model. This model represents texts as algebraic vectors in a
multidimensional space, to allow calculation of similarities between documents using linear algebra
operations. The dimension of the vector space equals the number of distinct terms (words) in a
document collection. Each document is represented as a vector with components reflecting the
frequency of a particular term in the document.

The values assigned to vector components depend on the term weighting method being used.
For the Boolean method, the value of a document vector component is zero if the corresponding
term does not occur in the document, and one otherwise. For the raw frequency method, the value
assigned to a component is the number of occurrences of the corresponding term in the document.

The term frequency method differs from the raw frequency method in that the assigned frequen-
cies are normalized by dividing on the maximum number of occurrences of a term in the document.
The most widely used term frequency / inverted document frequency (TF-IDF) method considers
both term frequency in the current document and its frequency in the whole document collection.
The TF-IDF method reduces the importance of terms that often occur in the collection, and em-

273

Automated Dataset Construction from Web Resources with Tool Kayur

pathizes the unique terms of a document, which improves precision of grouping similar documents.
There are several ways to calculate TF-IDF; Kayur uses the following formula [16]:

wij = tfij × log N
dfi

,

where tfij is the term frequency of the term ti in the document dj , dfi is the document frequency of
the term ti , and N is the number of documents in the whole collection.

3 Tool architecture and implementation

Kayur is an open-source cross-platform tool written in Java. It comprises: 1) the information
extraction (web import) component to fetch data from the Internet, translate them into the uniform
document format, and store the result in a database; 2) the text processing component to load
documents from the database and process their contents; and 3) the export component to convert
the results of text processing into formats of data mining workbenches. The complete workflow is
shown on Figure 1.

In this section, we first describe the uniform document format, and then proceed to the descrip-
tion of each mentioned component.

3.1 The uniform document format

The structure of textual data to extract differs between web resources. For example, bug reports con-
tain attributes such as “status” or “priority”, while a firm catalog has fields “firm name”, “location”,
and “phone”. Because of that, data from different sources are not usually stored uniformly.

To simplify the configuration, storage, and access to documents obtained from the web, we
propose the uniform format that describes a document as having the title, content, comments, date,
and metadata. These fields are chosen to be appropriate for most textual documents on the Internet.
The first three fields are designated to store textual data that need to be preprocessed before they
can be used in a data mining tool. The metadata field is a storage for all other parameters as
name/value pairs; it is designated for data that do not require processing and can be used as is. The
proposed format thus generalizes special-purpose uniform formats of tools that work with textual
data coming from a particular domain, such as bug reports or user messages in social networks.

The main benefit of such format is that configuration process is simplified by completely excluding
the step of defining the structure of the output data. Therefore, a user only needs to specify the
inputs in the form of extraction and navigation rules, as described in the following section. Another
benefit is that documents from multiple web resources are stored uniformly, and hence they can be
processed and analyzed together. Moreover, it becomes easier to share and reuse a selected set of
subsets of documents from different resources, as it can be stored in a single consistent file.

3.2 Information extraction

The information extraction from a web resource is the first step towards dataset construction. This
step often requires extensive configuration, as tools need to know the location and type of data to
extract, how to navigate between documents, and what the structure of results is.

We propose a simplification of this process in the case when a web resource has two properties:
a) every document in the collection has a Uniform Resource Locator (URL) that includes a unique
identifier, and b) the web resource has a search engine to locate documents. Many web resources
satisfy the second condition, as they are oriented for a human reader and hence provide convenient
means to find documents of interest. The first property is usually satisfied for web resources that
allow to view each document in a separate page.

If the mentioned conditions are satisfied, the number of extraction and navigation rules that
user is required to specify can be significantly reduced. Moreover, the format of rules can also be
simplified if the uniform format (discussed above) is being used.

274

International Journal of Networking and Computing

3.2.1 Navigation rules

Suppose that the first condition is satisfied, so that the URL of each document has the form
http://...id..., where id is a numeric or string identifier. For example, consider the follow-
ing URLs:

• https://code.google.com/p/Project/issues/detail?id=154684 (the identifier “154684”
is numeric),

• https://www.amazon.com/The-Name-Of-A-Commodity/dp/B00ZTK3JA0/ (the identifier “The-
Name-Of-A-Commodity/dp/B00ZTK3JA0” is a string),

• http://www.bbc.com/news/world-Region-Territory-38060919 (can use either a numeric
identifier “38060919” or a string identifier “world-Region-Territory-38060919”).

If an identifier is a number, then the navigation between documents can be simply defined by
getting next the document with an identifier incremented by some predefined value (usually, just by
one). No extraction rules are need to be provided, and a user only need to define one URL pattern
that leads to a document.

When identifiers are strings, the list of available identifiers can be obtained using a search engine
of the web resource. A typical search engine provides search results as a list of records that either
lead to the desired documents or contain their identifiers. These identifiers (links) can then be
collected automatically. The only parameters that user need to define is one extraction rule (to get
an identifier (a link) from a search result), and three URL patterns: for a document, the initial
search page, and a next page with search results. Table 1 summarizes the required user input for
both cases.

Table 1: The minimum number of parameters to define navigation
Navigation Type Extraction Rules URL patterns
Incremental 0 1
Search-based 1 3

3.2.2 Extraction rules

Extraction rules specify which part of a web document is to be extracted. The format of extraction
rules and the way they are set up varies between tools; the rules can be assigned manually or derived
(semi-)automatically from a set of training pages by generalization of repetitive patterns [5].

In case of manual rule setup, the popular choice is the use of XPath-based expressions, which
denote the full path inside the Document Object Model (DOM) tree of a document to a particular
node. XPath notation is especially useful for structured XML documents, as the names of tags give
hints on the type of data being stored; however, for generated HTML documents identification of
data by HTML attributes, such as id and class, is more common. We propose to use the following
notation that simplifies the manual input of extraction rules.

rule ::= ‘[’ token ‘]’ | ‘[’ token ‘]’ rule

token ::= name | name ‘,’ type | name ‘,’ type ‘,’ index

type ::= ‘id’ | ‘cls’ | ‘attr’ | ‘tag’

index ::= −32, 768 .. 32, 767 | ‘*’

The data to extract is identified by a rule consisting of one or multiple tokens. One token is
sufficient when the DOM element containing data has a unique property within the whole web
document (for example, the “id” attribute). Otherwise, a pair of tokens can be specified, where the
DOM element identified by the first token serves as a relative root for applying the second token.
As an example, consider a trivial web page shown on Figure 2. Suppose we want to extract data

275

Automated Dataset Construction from Web Resources with Tool Kayur

from the “p” tag located under the “div” element with the identifier “content”. The page contains
many “p” tags, but the “p” tag of interest can be unmistakably identified by the two-token rule
[content][p,tag]. If necessary, any number of tokens can be specified in such manner, where each
token, except the last one, serves as the relative root for the subsequent token.

1 <body>

2 <p>Some text</p>

3 <div id="titleSection">

4 <p>Other text</p>

5 <p>Comment </p>

6 </div>

7 <div id="content">

8 Some other data

9 <p>Article ...</p>

10 </div>

11 </body>

Figure 2: An example of an HTML page with multiple “p” tags

The type specifies how a DOM element is identified: by “id” attribute (id), by “class” attribute
(cls), by some other attribute (attr), or by an HTML tag (tag). In the most frequent case of
specifying a DOM element by its “id” attribute, the type can be omitted in the token. Therefore,
the tokens [name, id] and [name] are equivalent.

Index specifies the position of a DOM element among siblings. The default value of zero can be
omitted. A negative index specifies the position starting from the end of the sibling list. Thus, the
token [p,tag,-1] specifies the last “p” tag in the document. Finally, the asterisk symbol indicates
that the token denotes a set rather than a single element; all subsequent tokens are applied to every
DOM element in the set.

To demonstrate the application of a token that captures multiple elements, consider the HTML
page shown on Figure 3. The rule [comment,cls,*][p,tag,1] can be used to extract all comments
from the page. The first token denotes all elements that have the attribute “class” with the value
“comment”. There are three such elements, and each of them is set as a relative root for the second
token [p,tag,1]. The second token denotes the second “p” tag, and is computed against each of the
relative roots. As a result, the rule produces the list of three elements: “Comment 1”, “Comment
2”, “Comment 3”.

To extract the description at the bottom, we can use a simple rule [descr]. For a well-marked
HTML page with identifiers, the set of extraction rules can be much cleaner and more compact
comparing to the traditional XPath expressions. This simplifies the manual input, reduces the
number of possible input errors, and facilitates the maintenance of the rules over time.

An extraction rule may be accompanied by a filtering expression that allows omitting unneeded
part of the data extracted from a DOM element.

3.2.3 Information Extraction Algorithm

Once extraction rules are specified, the web import component fetches bug reports from a remote
source in the following way:

1. If numeric identifiers are being used, the identifier of the first document to get is read from
settings; otherwise, the list of all available identifiers is obtained by parsing search results.

2. The URL of the next document to fetch is determined by its identifier.

3. The web page with the given URL is parsed, and fields of a structure in the uniform document
format are filled according to the extraction rules of the current module.

4. The structure holding the document is stored in the database.

5. The process is repeated until all available documents are processed, or a user-defined limit is
reached.

276

International Journal of Networking and Computing

1 <body>

2 <div class="comment">

3 <p>2016/10/09 12:16</p>

4 <p>Comment 1</p>

5 </div>

6 <div class="comment">

7 <p>2016/10/09 13:08</p>

8 <p>Comment 2</p>

9 </div>

10

11 <div class="comment">

12 <p>2016/10/09 18:44</p>

13 <p>Comment 3</p>

14 </div>

15 <div>

16 <div>

17 <p id="descr">Description </p>

18 </div>

19 </div>

20 </body>

Figure 3: An example of an HTML page to demonstrate extraction rules

3.2.4 Example: Comparison of Information Extraction in Different Tools

In this subsection, we demonstrate the application of the described rules to an actual web resource.
We show how the same task can also be accomplished in two other information extraction tools:
Web Scraper [3] and Scrapy [1].

We selected a news portal as a typical web resource that serves textual documents and provides
functionality to perform a custom search for the data of interest. The content to extract is 13 articles
located on two pages. For each article, we extract its title, text, and the date of the publication.
The web page containing the list of selected articles and its structure are shown on Figure 4.

Extraction with Kayur To extract the title, text, and date from each article, we need three
extraction rules for data, and one navigation rule to obtain articles from the list of search results.
Because the data of interest have unique class identifiers within an article, each extraction rule can
be specified with only one token (see Table 2). In addition, we specify the date format to parse the
date of the publication, and store it in the database as a time stamp.

We also need to set up three URLs to locate 1) an article, 2) the initial search page, and 3) the
following search pages. The single navigation rule specifies the set of links to articles on each page
containing search results. Table 2 summarizes the necessary configuration to extract data from this
particular news portal.

Extraction with Web Scraper Web Scraper [3] is a browser extension for information extraction
from web resources. The extraction rules are specified by visual selection of entries of interest from a
web page. Navigation between pages is supported using pagination and other user interface elements
for content loading.

To configure Web Scraper for obtaining data from the news portal we selected, three layers of
element selectors are specified for: 1) navigation between pages containing search results, 2) selecting
articles from search results, and 3) extracting the title, text, and date from a particular article. The
latter selectors are shown on Figure 5.

Because the same HTML elements are selected, the extracted data is the same as when using
Kayur.1 Moreover, visual selection is easier than specifying the rules in the textual form, so for
many web resources the configuration of data extraction can be quicker with Web Scraper. However,

1The minor difference is that the version of Web Scraper used for experiments concatenated some words on the
boundaries of inner tags located inside the HTML element from which the text of an article is extracted. In such
cases, Kayur correctly separates the data by whitespace.

277

Automated Dataset Construction from Web Resources with Tool Kayur

Figure 4: The page containing custom search results on a news portal, and its HTML structure.

Figure 5: Page-level selectors (extraction rules) used by Web Scraper

278

International Journal of Networking and Computing

Table 2: Configuration of the information extraction component for a news portal

Data Value

Extraction

Title [node-title,cls]

Content [field-name-body,cls]

Date and Time [view-display-id-attachment 1,cls]

Date Format HH:mma, MMM dd, yyyy

Document URL https://www.sciencenews.org${id}
Navigation

Result Links [view-search-content,cls][views-row,cls,*][a,tag][href,attr]

Search URL https://www.sciencenews.org/search?st=virus%20mosquito&

published at 1[date]=09/01/2016&type=openpublish article

Search Page https://www.sciencenews.org/search?st=virus%20mosquito&

published at 1[date]=09/01/2016&type=openpublish article&page=${page}

visual selection is not possible for resources that provide Application Programming Interface (API)
to export data in a structured format, such as XML, which is treated by Kayur the same way
as HTML. The other difference with Kayur is that Web Scraper exports the data to files in CSV
format, while Kayur stores the results in a centralized database, which makes easier to search for
documents that match particular criteria, as well as select subsets that contain documents obtained
from multiple resources.

Extraction with Scrapy Scrapy [1] is a Python library for information extraction. Obtaining
data from a web resource is handled by a separate module, called a spider, which defines the extrac-
tion procedure in Python language. The extraction rules are specified using Cascading Style Sheets
(CSS) and XPath selectors. The navigation is performed by first extracting links from a web page
using extraction rules, and then adding the links to the list of the requests to process.

We have written a spider for the selected news resource, and verified that it produced the same
results as Kayur and Web Scraper. Because the spider configuration is actually program code,
it is extremely flexible, so that Scrapy can be configured to obtain data from web resources with
non-standard navigation mechanisms. However, this approach requires knowledge of the Python
programming language and CSS/XPath selectors to efficiently use the tool. The data is exported in
JSON format, which has the same limitations as CSV, described above.

Summary Information extraction from web resources requires substantial effort to configure the
extraction and navigation rules. The rules can be specified in a textual form (Kayur), using visual
aids (Web Scraper), or in a programming language (Scrapy). The information extraction component
of Kayur is designed to maximize usability by utilizing the straightforward syntax, so that knowledge
of XPath expressions or programming languages is not required to use the tool. Moreover, the
configuration is separated from the crawler’s logic in an XML file, so that it can be easily reused
and shared between different machines. However, use of stand-alone tools have the advantage
of flexibility, allowing to fetch more types of data (images, video) from resources with different
navigation mechanisms.

3.3 Storage

Documents obtained from different web resources are stored in the same database using the uni-
form format. This allows constructing datasets using arbitrary subsets of documents from multiple

279

Automated Dataset Construction from Web Resources with Tool Kayur

Figure 6: Screenshot of Kayur (Text Processing View)

sources. Documents from different sources can be selected for inclusion in a dataset based on a
module identifier, date range, or metadata.

To simplify initial configuration, Kayur uses the embedded Derby2 database, which is initialized
on the first usage. The tool can be configured to use another database, such as MySQL, instead;
the tables to store data will be generated automatically (provided that the database user specified
in the settings has all necessary privileges).

3.4 Text processing

The text processing component performs a sequence of operations on the textual data of selected
documents to remove irrelevant information and improve recognition of similar documents. Each
operation is optional and customizable. The complete processing sequence includes:

1. Initial filtering.

2. Sentence detection.

3. Tokenization and conversion to lower case.

4. Part-of-Speech (word class) tagging and application of stemming routines.

5. Word filtering.

6. Stop-word removal.

The core operations of tokenization, sentence detection, and Part-of-Speech tagging are per-
formed using OpenNLP [22]. This library relies on binary model files for English language that can
be obtained from the website of the OpenNLP project [23].

Kayur includes two types of customizable filters in the format of Java regular expressions. The
initial filters are applied to the whole text of a document to replace or remove structural elements
(such as “Bug description:”, “Steps to reproduce:” in bug reports) and non-alphanumeric symbols.
The word filters do not have replacement functionality, and simply remove words that match a

2https://db.apache.org/derby/

280

International Journal of Networking and Computing

predefined pattern. They are especially useful to remove measurement units, hexadecimal numbers,
hyperlinks, and file names.

The component includes custom stemming routines that are applied only to tokens that are
detected by Part-of-Speech tagger as:

• Noun, plural.

• Verb: third person singular present, gerund, present participle, past tense, or past participle.

The stemming is performed accordingly to English grammar rules; irregular verbs are converted
to dictionary form by the (customizable) list of such forms. Because the tagger can mistakenly
detect other parts of speech as verbs, the converted word is validated against the large list of all
possible verbs from libmind library [15]. If the result is not found in the list, the conversion for this
word is skipped.

The last step of text preprocessing operation is stop word removal. Stop words are common words
such as articles or pronouns. The tool uses the initial stop word list from MALLET project [18].
The list can be further expanded to include high-frequency words of no particular importance (e. g.,
“bug”, “problem”, or “issue”).

The tool builds a cache to speed up text processing. Each time a new word is processed, the
cache stores the mapping between the word and its final form (or an empty string in case when the
word is to be removed).

Once all text processing steps are finished, Kayur saves a corpus structure that contains pro-
cessed documents, and displays a statistics window that presents a short summary of the data.
The summary includes pie charts for metadata, the list of top keywords in the corpus, and length
distribution of processed documents.

3.5 Export

The export component uses a corpus structure prepared during the text processing stage to create
an output file in the selected format with a specified term weighting method. Kayur supports
two integer weighting methods: Boolean model and raw frequency, and two floating point weighting
methods: 1) term frequency and 2) term frequency / inverted document frequency (TF-IDF). Kayur
supports the following output formats:

1. Attribute-relation file format (ARFF) of WEKA.

2. Plain text format of LDA/HDP topic modeling tools by J. Chang and C. Wang (only integer
weights).

3. XML format of Carrot2 (only integer weights).3

4. CSV format, supported by wide range of applications, including Microsoft Excel and R [29].
An example of loading the exported file in R is shown on Figure 7.

5. JSON format, which is supported by web applications.

1 data <- read.csv("/path/to/exported/file/dataset.csv")

2 View(data)

Figure 7: Loading the exported CSV file in R

A user can also set a rare term threshold to exclude words that occur in less than a specified
number of documents in the corpus. This is important for all text mining tasks, as it greatly reduces
the dimension of the resulting vector space, increasing the performance of a data mining tool and
reducing resource usage.

3Vector space model is not used when exporting to Carrot XML format, because Carrot2 works directly with
textual data. The input file is created by composing documents from processed words.

281

Automated Dataset Construction from Web Resources with Tool Kayur

3.6 User interface and configuration

Kayur supports both a graphical user interface (GUI) and a command line interface (CLI) designed
as an interactive shell (read-eval-print loop). The capabilities of both interfaces are the same, except
that the latter supports scripts comprised of valid Kayur commands.

The GUI consists of a single window with five tabs for: 1) the web import component, 2) the
text processing component, 3) statistics, 4) program settings, and 5) the journal that contains log
messages for the current session (see Figure 6). The GUI is especially useful for initial calibration,
as it allows a user to quickly change and test different combinations of parameters.

Although the tool is preconfigured for typical usage scenarios, the GUI allows tuning almost every
step of the processing chain to suit particular needs. Web import modules can be freely adjusted
to produce desired results. The default internal Derby database can be replaced with a stand-alone
database such as MySQL or PostgreSQL. Text processing routines can be disabled or their behavior
can be changed by using an external library instead (a call to a library method must be wrapped
by a class that implements the interface provided by the tool).

4 Case Studies and Evaluation

In this section, we show two more examples of using Kayur for information extraction. The examples
cover two large classes of web resources: bug tracking systems and portals that store user opinions.
We also analyze the performance of the tool for both information extraction and text processing
stages.

4.1 Case Studies

4.1.1 Bug Tracking Systems

Bug reports are invaluable source of important information for software developers. Beyond a manual
analysis of bug reports, there is also a need to process sets of bug reports as a whole using text mining
techniques, such as clustering, to discover trends in software flaws.

Bug reports are usually available on web pages generated by bug tracking systems (BTS). While
most of BTS support exporting the data into structured formats (XML, JSON), there are also
resources that provide bug reports in HTML format only. In both cases, the pages containing bug
reports are often well-structured, so that each bug report element, such as the title, text, priority,
and status, are assigned unique identifiers or Cascading Style Sheets (CSS) classes. This greatly
simplifies extraction rules, so that they can usually be written using only one token. Moreover, as
BTS often use numeric identifiers for bug reports, the navigation rules can be omitted.

Table 3: Extraction rules for BTS based on Bugzilla

Data Field Extraction Rule

Title [short desc,tag]

Content [long desc,tag][thetext,tag]

Comments [long desc,tag,*][thetext,tag]

Date [creation ts,tag]

For example, the settings shown in Table 3 are sufficient to generate a dataset from the Gnome
bug tracker4 based on a popular BTS Bugzilla. Each bug report is assigned a number, so that we
can fetch a range of documents without the need for navigation rules. Furthermore, this BTS allows
accessing bug report data in the XML format,5 which simplifies the rules. In fact, because all BTS
based on Bugzilla have the same structure, we included in Kayur the BTS wizard that can generate

4https://bugzilla.gnome.org/
5https://bugzilla.gnome.org/show bug.cgi?ctype=xml&id={identifier of the bug report}

282

International Journal of Networking and Computing

extraction rules only by the domain name of the BTS. The wizard also supports JIRA, which is
another popular BTS.

4.1.2 Opinion Mining

Another popular topic that involves web mining is automatic analysis of user opinions. Such analysis
is useful, for example, for companies to understand how their products and services are perceived [27].
Kayur makes it easy to create a dataset from web documents that contain user opinions, as they
match the uniform format.

As an example of such a web resource, consider Amazon, which is one of the largest electronic
shopping portals. The documents on this resource are descriptions of products from the catalog,
which also contain the list of customer reviews. The main difference from regular documents is that
the extraction rule for reviews should contain an asterisk symbol to specify that it returns a set of
entries rather than a single piece of data. A sample configuration to obtain a product description
with customer reviews from a single page on Amazon is shown in Table 4.

Table 4: Extraction rules for customer reviews at Amazon
Data Field Extraction Rule
Title [productTitle]

Content [productDescriptionWrapper,cls]

Comments [revMHRL][a-section,cls,*]

[a-spacing-small,cls][a-section,cls]

4.2 Performance Evaluation

The performance of the tool in terms of processing speed is determined by download time and text
preprocessing time. The download time depends on external conditions, such as network speed,
bandwidth, and the responsiveness of web resources. Moreover, the tool cannot significantly reduce
the download time by opening large number of connections to the same resource, as recommended
by RFC 2616 [7]. Because the download time is the biggest factor affecting performance, which
happens outside the tool, we do not compare the performance of Kayur to other web scraping tools
described in Section 3.2.4.

Under normal conditions, for responsive resources and a network speed of 50 Mbps, the web
document preprocessing rate is expected to be between 2 and 3.5 documents per second. The rate
is significantly lower for resources that forbid automatic data fetching (such as Stack Overflow [2]),
because a delay of up to a few seconds must be set between subsequent accesses.

The performance of the text processing component on a test machine,6 with all processing steps
enabled and default OpenNLP library plugin, is 50–60 documents per second. The main performance
factor for text processing is the Natural Language Processing (NLP) plugin in use, which can be
replaced if for a particular task the processing speed is not satisfactory. In addition, the word cache
can be enabled to speed up stemming, which reduces the execution time on average by 20 %.

5 Application: Identification of the most frequent Android
defects

Above, we have shown several small examples, demonstrating the use of the tool for processing the
data from standalone web resources. In this section, we describe how Kayur can be used in a more
complex task of identifying the most frequent Android defects, using multiple data sources.

This particular topic has been chosen, as the reliability of Android platform is an important
issue due to its wide-spread use (86.8 % of the smartphone market share [9]) and the fact that it

6Intel Core i5-3210M CPU 2.50 GHz, 4.0 GB RAM, Windows 7 32-bit

283

Automated Dataset Construction from Web Resources with Tool Kayur

operates on sensitive, confidential user data. The information about frequent defect types may hence
be helpful to raise awareness among Android application developers, educators, and developers of
software analysis and test generation tools.

5.1 Methodology

We determine the most frequent defect types on Android by the semi-automatic analysis of a large
subset of bug reports maintained at Google Android Issue Tracker [8]. The Tracker is the main bug
report repository for issues related to the Android platform itself and its core applications. Although
the Tracker provides some metadata, such as bug status and priority, the most valuable information
about the nature and origin of occurred problems is not directly available.

The size of the selected collection of bug reports makes manual analysis inefficient. To identify
trends in Android defects, we use unsupervised clustering, a method to group similar bug reports
when the topics are not known a priori. To achieve a meaningful and correct list of bug categories,
we rely on better data preprocessing and selection of the most suitable clustering algorithm.

Better data preparation greatly affects the quality of obtained results [28]. In addition to the
default Kayur settings, we improve the preprocessing process by configuring additional filters and
adding stop words specific to the Tracker. The quality of filtering is assessed by monitoring the
output list of words in the whole document collection.

The clustering algorithm to be used is determined by evaluation of all suitable clustering algo-
rithms of WEKA and Carrot2. The evaluation is performed on another set of Android bug reports
with known classification from US National Vulnerability Database [20]. We evaluate each algorithm
on every supported term weighting method (see Section 3.5). We employ Kayur to quickly generate
the necessary number of datasets in different formats.

When the optimal algorithm and term weighting method are chosen, we perform unsupervised
clustering of the main set of reports from the Tracker. Each result cluster is thought of as representing
a single issue. We infer the information about each issue using the list of the most descriptive
keywords in the corresponding cluster. These keywords are words that appear often in a given cluster
but rarely in others. We further confirm or correct the description of each cluster by analyzing topics
of documents within the cluster, and, when necessary, by manual sampling of documents from the
cluster.

5.2 Dataset Generation

For our purposes, we need a collection of small control datasets for clustering algorithm evaluation,
and the main dataset for the analysis. As the main set of documents, we consider a subset of bug
reports published on the Tracker from January 1, 2014 to January 1, 2015. Using Kayur’s filtering
by metadata, we exclude the following irrelevant documents: (i) labeled as “spam”, “duplicate”,
“working as intended”, “user error”, or “declined”; (ii) related to Android Software Development
Kit (SDK) tools (such as Android Debug Bridge or Android Virtual Device manager) and documen-
tation; and (iii) questions and user suggestions. The remaining subset consists of 7,629 bug reports,
and includes both solved and actual problems. We use only the actual content of bug reports, and
omit comments, because for this particular dataset they often contain irrelevant information, such
as off-topic talks or discussions about status of a bug report. The output of the preprocessing of
this subset contains 6,878 non-empty documents with 6,034 distinct words, resulting in a sparse
document-term matrix with density 0.45 %.

As the control (training) set, we use a collection of reports on Android vulnerability issues from
the US National Vulnerability Database [20]. The collection consists of 1795 documents published
from November 17, 2006 to February 22, 2015. The documents are divided into six groups according
to Common Weakness Enumeration (CWE) classification. Each group contains documents of the
same CWE family, and includes one or more particular CWE classes, as shown in Table 5.

We use a search-based Kayur fetching module to locate and obtain this collection of documents,
and preprocess them using the default settings. Next, we generate 18 datasets in ARFF format
to test each of the six WEKA algorithms (see below) with three different term weighting methods

284

International Journal of Networking and Computing

(Boolean, raw term frequency, and term frequency / inverted document frequency (TF-IDF)). We
also generate three datasets in Carrot XML format to evaluate the clustering algorithms of Carrot2.

5.3 Evaluation of clustering algorithms

We first perform a cross-validation of various clustering algorithms and settings on a labeled dataset
containing vulnerabilities, and choose the best clustering algorithm to classify issues from the An-
droid bug database. The most suitable algorithm is chosen based on the standard set of metrics, such
as F-measure and accuracy, but the run time of the algorithm is also considered, as the unlabeled
bug report data set is much larger than the training set.

5.3.1 Evaluation of WEKA Clustering Algorithms

We evaluate six WEKA clustering algorithms: Farthest First, Simple K-Means, Hierarchical Clus-
terer, Sequential Information Bottleneck (sIB), Expectation Maximization (EM), and XMeans. The
remaining algorithms (CobWeb, CLOPE, DBScan, and OPTICS) are omitted as not being suitable
for our purposes. Each clustering algorithm is executed with each input file, forming 18 possible
combinations. Additionally, for some algorithms, such as Simple K-Means and Hierarchical Clus-
terer, experiments are performed with different input parameters. For all experiments, the number
of clusters to generate is set to 6, equal to the number of groups in the control document collection.

The output of clustering is used to calculate accuracy, precision, recall, and F-measure of the
algorithm. The calculated measures are presented in Table 6 (measures for individual classes are
omitted).7 In case when an algorithm is executed with different parameters, only the best acquired
results are shown.

5.3.2 Evaluation of Carrot2 Clustering Algorithms

We evaluate all three Carrot2 clustering algorithms (Bisecting K-Means, Lingo, and Suffix Tree
Clustering (STC)) using the same training set as for WEKA. However, Carrot2 algorithms work
directly with text, so we use Kayur to export preprocessed data as text, but the term weights are
calculated by Carrot2 itself.

7Three columns that contain precision are omitted for brevity. For Simple K-Means, the results are presented for
the seed that minimizes sum of squared errors within cluster. Other WEKA algorithms were executed with default
seeds.

Table 5: Input dataset for evaluation of clustering algorithms

Group Documents Family/Class Name

total per class

1 1412 1412 CWE-310 Cryptographic Issues

2 140 140 CWE-119 Buffer Errors

3 99 92 CWE-264 Permission, Privileges, etc.

7 CWE-287 Authentication Issues

4 70 38 CWE-20 Input Validation

13 CWE-22 Path Traversal

11 CWE-79 Cross-Site Scripting

8 CWE-94 Code Injection

5 46 46 CWE-200 Information Leak / Disclosure

6 28 28 CWE-189 Numeric Errors

285

Automated Dataset Construction from Web Resources with Tool Kayur

Table 6: Evaluation of WEKA clustering algorithms on the training set

Algorithm Time Boolean Model Raw Frequency TF-IDF

(sec.) Acc. Recall F1 Acc. Recall F1 Acc. Recall F1

Farthest First 0.1 84.18 % 0.818 0.818 79.94 % 0.762 0.762 81.11 % 0.811 0.743

Simple K-Means 1.7 87.74 % 0.877 0.880 88.75 % 0.888 0.870 88.64 % 0.886 0.877

sIB 180 89.58 % 0.896 0.884 89.97 % 0.890 0.893 85.07 % 0.859 0.839

EM 16 87.41 % 0.874 0.880 81.06 % 0.811 0.829 78.38 % 0.784 0.819

XMeans 0.7 88.47 % 0.885 0.870 88.58 % 0.886 0.869 88.69 % 0.887 0.869

HC (Ward) 314 86.57 % 0.866 0.859 87.63 % 0.876 0.862 87.52 % 0.875 0.864

Table 7: Evaluation of Carrot2 clustering algorithms on the training set.

Algorithm Accuracy Precision Recall F-Measure

Lingo (average) 85.6 % 0.866 0.856 0.854

Lingo (max F1) 86.2 % 0.878 0.862 0.864

Lingo (min F1) 84.7 % 0.851 0.847 0.846

STC (average) 82.2 % 0.771 0.822 0.793

STC (max F1) 83.2 % 0.791 0.832 0.809

STC (min F1) 81.3 % 0.752 0.813 0.778

Bisecting K-Means 87.9 % 0.873 0.879 0.861

Measures calculation for Bisecting K-Means is straightforward, but Lingo and STC require mod-
ified approach for the following reasons. First, Lingo produces more clusters than requested, and we
observed that small clusters are often contained entirely in larger clusters. To reduce the number of
clusters closer to the number of classes (6), we remove all such “inner” clusters.

Second, both Lingo and STC produce overlapping clusters. We transform them to non-overlapping
clusters by assigning every document that belongs to clusters c1, ..., cN to only one randomly chosen
cluster ck, 1 ≤ k ≤ N . Because measures depend on document assignments, we calculate maximum,
minimum, and averages of values obtained in 1000 executions.

Unlike Bisecting K-Means and WEKA algorithms, Lingo and STC may leave some documents
unassigned to a cluster. In particular, both algorithms leave 75 % of documents from the training
set unassigned if term weights are not TF-IDF, so that we perform measure calculations for TF-IDF
case only. The results of evaluation are presented in Table 7.

5.3.3 Results of Algorithms Evaluation

To achieve better results in clustering bug reports from the Google Android Issue Tracker, we are
particularly interested in algorithms with high F-measure and accuracy. According to Table 6, for
WEKA these are sIB and Simple K-Means. Considering the size of Google dataset, we choose
Simple K-Means for performance reasons. As the difference in F-measure for Boolean and TF-IDF
model is negligible for this algorithm, we will use TF-IDF as the more commonly used term weight
method.

According to Table 7, we achieved relatively high F-measure for both Bisecting K-Means and
Lingo (w.r.t. Simple K-Means, −0.019 and −0.026 respectively). We omit Bisecting K-Means,
because it is an iterative clustering algorithm similar to Simple K-Means that is already selected
for experiments. On the other hand, Lingo could be a good candidate for clustering bug reports
from the Google dataset, because it is designed to produce descriptive cluster labels, so that the
labeling step could be simplified [25]. However, it is recommended to limit the size of the input to be

286

International Journal of Networking and Computing

 0 0.2 0.4 0.6 0.8 1

Normalized score

device

app

download

view

work

run

code

happen

bug

application

show

time

find

screen

update

call

correct

set

file

open

Figure 8: Top keywords among all clusters.

no more than 1000 documents to achieve meaningful results [26]. The preliminary tests confirmed
the problem: on the Google dataset, Lingo leaves absolute majority of documents unassigned to
any cluster. Although Lingo cannot be applied to Google dataset directly, we use it for cluster
subdivision during the labeling phase to reveal inner structures of clusters.

5.4 Bug Reports Clustering

We used Kayur to export the processed Google bug report dataset using the chosen TF-IDF term
weight model into WEKA’s ARFF input format. The minimum document frequency of words was
set to 3 (i.e. the words that occur in only one or two documents in the collection are ignored), as it
offers a good compromise between quality and performance of clustering.

We loaded the generated file into WEKA, and executed Simple K-Means on the prepared dataset
100 times, varying the seed, to find partitioning such that sum of squared errors within cluster was
minimum. Multiple executions were feasible due to relatively short run time of Simple K-Means
on the dataset (approximately 30 minutes on our machine). The partitioning with minimum error
comprised 22 clusters of size greater than 50, and 15 smaller clusters. For each of 22 clusters of
medium and big size, we generated lists of the most frequent 500 keywords, and used them for cluster
labeling.

To label the clusters, we first identified the cumulative score Skwd for each keyword k among all
N clusters c1, ..., cN :

Skwd(k) =

N∑
i=1

Skwd(k, ci),

where Skwd(k, ci) is the number of occurrences of keyword k in cluster ci. This allowed us to see the
top overall keywords (see Figure 8) and also the average score of each keyword across all clusters.
In the figures, we normalized the score so the top score in each plot equals 1.

Within each cluster, we subtracted the average score of that keyword from each score, to see
how distinctive a keyword is. Some keywords, like “app”, occur frequently in many documents of
most clusters. We are interested in keywords that occur frequently in a given cluster, compared to
the average occurrence/score of a keyword across all clusters. We used normalized scores Snorm by
setting the maximal keyword score in each cluster to 1, by dividing scores in each clusters by the

287

Automated Dataset Construction from Web Resources with Tool Kayur

maximal raw score:

Snorm(k, c) =
Skwd(k, c)

max
∀k∈keywords(c)

Skwd(k, c)

We used the relative frequency of keywords in each cluster so large clusters do not automatically
have a high score for most keywords. Based on these normalized scores we calculated the difference
in scores Sdiff between each keyword in a given cluster c, compared to the average normalize scores
in all clusters:

Sdiff(k, c) = Snorm(k, c)− 1

N

N∑
i=1

Snorm(k, ci)

Using this formula, we obtained the most distinctive keywords for each cluster; in the plots, we
again normalized the values for easier comparison (see Figures 9 – 10). We can see that the top
keywords for the first cluster are quite generic, so about one third of the bugs cannot be classified
easily. For all the other reports, we can assign each cluster to a topic relatively well based on the
top keywords, although there is some overlap between smaller clusters.

A further analysis of each cluster is performed by its subdivision using Lingo and Bisecting K-
Means algorithms from Carrot2 workbench. Additionally, adjustments to initial labels were made
based on the title and sometimes full text of random samples. As shown in Table 8, we can obtain a
meaningful label for each cluster except for the first, largest one. The largest cluster contains about
38 % of all issues, and it cannot be readily labeled because it contains bug reports related to many
different issues.

5.5 Results

Using the initial labeling, we combined the reports into 12 groups of issues. On a high level, there
are two kinds of issues: ten classes of problems affecting an application or end user directly, and two
types of problems (Application Programming Interface (API) usage, testing) affecting developers
(see Table 8). While user-related problems seem to make up the bulk of the bug database (54 %
of all issues), problems in libraries tend to affect many applications, so that group should not be
neglected solely based on its small size. Our results show that software updating and handling
unreliable network connectivity are the two key concerns, which is not surprising as much research
is dedicated to these difficult topics (for example, [14, 38]). We think these two issues deserve more
attention in the context of the Android system.

The other important class of problems contains issues related to the user interface (UI). Subdi-
vision and sampling from the corresponding cluster revealed that this class includes the following
problems: overlapping, missing, or inactive UI elements; UI design flaws that adversely affect user
experience; and improper or misleading translation for languages other than English.

Finally, issues related to phone calls handling and operation of screen and device buttons (Home,
Back, Menu, Volume, Power) make the forth and fifth class of important Android issues. These
problems are unique to mobile devices such as smartphones/tablets, and therefore require special
treating, as traditional bug detection techniques for desktop applications cannot be applied directly.

5.6 Application: Summary

We demonstrated the use of the tool for a real-world example of identification of the most frequent
Android bug types, which involved the large-scale document processing and unsupervised clustering.
Kayur has been useful for automatic document fetching, as it allowed us to obtain a large set of bug
reports; for document preprocessing, as it helped to improve the detection of similarities between
documents by a clustering algorithm; and for generation of a large number of datasets in different
formats. The quality of the preprocessing is further confirmed by obtaining the meaningful bug type
categories.

288

International Journal of Networking and Computing

 0 0.2 0.4 0.6 0.8 1

Normalized score

code

work

time

set

device

happen

app

change

bug

error

(a) Cluster 1 (size 2398)

 0 0.2 0.4 0.6 0.8 1

Normalized score

app

open

install

store

recent

close

user

apps

play

crash

(b) Cluster 2 (size 517)

 0 0.2 0.4 0.6 0.8 1

Normalized score

download

view

attach

screenshot

byte

picture

attachment

png

image

space

(c) Cluster 3 (size 479)

 0 0.2 0.4 0.6 0.8 1

Normalized score

device

connect

bluetooth

connection

network

reboot

wifi

pair

request

disconnect

(d) Cluster 4 (size 435)

 0 0.2 0.4 0.6 0.8 1

Normalized score

call

incoming

receive

make

answer

number

hear

dial

speaker

headset

(e) Cluster 5 (size 325)

 0 0.2 0.4 0.6 0.8 1

Normalized score

update

battery

drain

ota

recently

day

hour

yesterday

restart

fix

(f) Cluster 6 (size 317)

 0 0.2 0.4 0.6 0.8 1

Normalized score

screen

lock

turn

unlock

swipe

home

black

pin

pattern

time

(g) Cluster 7 (size 247)

 0 0.2 0.4 0.6 0.8 1

Normalized score

show

connect

wifi

network

3g

watch

moto

setting

connection

mobile

(h) Cluster 8 (size 226)

 0 0.2 0.4 0.6 0.8 1

Normalized score

play

music

store

song

app

service

player

services

audio

speaker

(i) Cluster 9 (size 199)

 0 0.2 0.4 0.6 0.8 1

Normalized score

test

fail

run

code

ct

pass

follow

attach

download

class

(j) Cluster 10 (size 197)

 0 0.2 0.4 0.6 0.8 1

Normalized score

tools

template

archive

forget

bugreport

form

mention

develop

adb

describe

(k) Cluster 11 (s. 193)

 0 0.2 0.4 0.6 0.8 1

Normalized score

application

keyboard

type

input

open

press

key

bug

work

back

(l) Cluster 12 (s. 183)

Figure 9: Top distinctive keywords in clusters 1 – 12.

289

Automated Dataset Construction from Web Resources with Tool Kayur

 0 0.2 0.4 0.6 0.8 1

Normalized score

email

account

exchange

sync

server

delete

gmail

mail

send

add

(a) Cluster 13 (s. 152)

 0 0.2 0.4 0.6 0.8 1

Normalized score

notification

sound

setting

bar

receive

mode

set

priority

volume

vibrate

(b) Cluster 14 (s. 151)

 0 0.2 0.4 0.6 0.8 1

Normalized score

button

press

back

screen

home

power

click

volume

turn

open

(c) Cluster 15 (s. 144)

 0 0.2 0.4 0.6 0.8 1

Normalized score

contact

sync

number

list

save

people

display

dialer

gmail

add

(d) Cluster 16 (s. 143)

 0 0.2 0.4 0.6 0.8 1

Normalized score

public

override

void

view

activity

class

oncreate

id

int

bundle

(e) Cluster 17 (s. 134)

 0 0.2 0.4 0.6 0.8 1

Normalized score

method

native

dalvik.system.nativestart.main

crash

null

exception

error

reference

object

fatal

(f) Cluster 18 (s. 123)

 0 0.2 0.4 0.6 0.8 1

Normalized score

video

play

audio

stream

record

youtube

camera

browser

player

buffer

(g) Cluster 19 (s. 91)

 0 0.2 0.4 0.6 0.8 1

Normalized score

card

sd

file

write

external

ability

remove

move

memory

protection

(h) Cluster 20 (s. 71)

 0 0.2 0.4 0.6 0.8 1

Normalized score

library

support

appcompat-v7

support-v4

file

crash

trace

latest

stack

reference

(i) Cluster 21 (s. 61)

 0 0.2 0.4 0.6 0.8 1

Normalized score

view

download

screen

attach

screenshot

shot

camera

show

light

bar

(j) Cluster 22 (s. 52)

Figure 10: Top distinctive keywords in clusters 13 – 22.

290

International Journal of Networking and Computing

Table 8: Summary of the 12 classes of Android bugs

Topic Clusters Issues Cluster labels of individual clusters
1 Software update 2, 6 834 Recently installed app crashes, software update
2 Networking 4, 8 661 Connectivity, networking
3 UI 3 479
4 Phone calls 5, 16 468 Phone call handling, contact list
5 Lock/unlock, buttons 7, 15 391 Screen lock/unlock, hardware buttons
6 Media playback 9, 19 290 Music playback, video playback
7 Keyboard input 12 183
8 E-mail 13 152
9 Notifications 14 151

10 SD cards 20 81
a API 2, 3, 17, 18 257 API usage, exception/crashes in API
b Testing 10 197

Others 1, 11 2591 Miscellaneous; original report is removed

6 Related work

Nayrolles and Hamou-Lhadj point at the problem of automatic data extraction from diverse web
resources. They introduce the BUMPER environment [19], which has different purpose than Kayur,8

but also leverages the idea to store information from multiple web resources into a single database
in the uniform format. Similar to Kayur, BUMPER provides the ability to export data from the
database into JSON, XML, and CSV formats, but not in data mining tool’s formats such as ARFF
or Carrot XML. BUMPER exports the data as is, and does not perform any preprocessing, such as
stemming or converting the data into the vector space model.

TraceLab [10] is a highly customizable general-purpose framework for setting up experiments in
the form of a data processing tool chain composed of components that are either built-in or created
by a user. Compared to Kayur, TraceLab offers richer text processing and visualization capabilities
and is more flexible, as it allows to arrange the components in arbitrary way to obtain desired
data flow. Although the functionality of TraceLab and Kayur overlap on the text processing stage,
Kayur offers the following benefits: 1) uniform access to any web resources that store documents in
HTML/XML formats; 2) a persistent storage for fetched documents; 3) a simpler user interface with
predefined settings that minimizes time and effort for preparing a dataset from an arbitrary web
resource, even if it does not provide API to get data in a structured format; 4) support of popular
data mining workbench formats.

There is also a variety of stand-alone tools to perform subtasks corresponding to those of Kayur’s
components. For example, the task of information extraction can be handled by Web Scraper [3],
Apache Nutch [21], or Scrapy [1]. The stand-alone tools provide greated flexibility to handle wider
range of types of web resources; however, Kayur have the advantage in easier and more straight-
forward configuration, provision of the centralized data storage, and interconnection with text pre-
processing routines that minimizes the time to generate datasets for analysis with data mining
workbenches.

Text processing can also be performed by stand-alone tools based on powerful toolkits, such as
NLTK [17] and GATE [6], or even directly in some data mining workbenches, including Carrot2,
which implements tokenization, stemming, and stop-word and rare-term removal. Input files for
WEKA and Carrot2 can be generated by conversion utilities from other formats such as CSV or
XML. The mentioned tools can be arranged to work together to generate results similar to Kayur’s,
but this can be time-consuming, especially when dealing with multiple data sources.

8BUMPER is a platform for software developers that facilitates bug fixing and reasoning about software quality
based on the information from bug report repositories and version control systems of open source projects.

291

Automated Dataset Construction from Web Resources with Tool Kayur

7 Conclusion and future work

We developed our tool Kayur to speed up laborious fetching and preprocessing steps that are often
necessary for raw data obtained from web resources before they can be used in data mining work-
benches. The tool is aimed at a broad audience of data mining researchers, as it allows them to
obtain real-world data sets relatively easily. It also can be useful for software maintainers that wish
to analyze bug reports or user feedback using text mining. As far as we know, Kayur is the only tool
that spans the whole sequence of steps needed for textual data processing, ranging from retrieving
data from semi-structured documents, over processing it, to exporting it to data mining tools.

For future work, we plan to make extraction rule input easier by implementing semi-automatic
rule generation based on sample documents. We are also working on extending the range of available
export formats by supporting Orange’s formats [24], and including more term weight methods (such
as ConfWeight [33]). Another goal is to provide more ready templates for bug tracking systems
and other resources, and examples of plugin usage to better demonstrate the functionality of the
tool. We hope that Kayur’s modular design and its scripting interface will inspire novel uses and
extensions by its users as well.

References

[1] Scrapy – a fast and powerful scraping and web crawling framework. https://scrapy.org/,
2017. [Online; accessed 25-April-2017].

[2] Stack overflow. http://stackoverflow.com/, 2017. [Online; accessed 11-June-2017].

[3] Web Scraper. http://webscraper.io/, 2017. [Online; accessed 25-April-2017].

[4] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-Gaël
Guéhéneuc. Is it a bug or an enhancement?: A text-based approach to classify change requests.
In Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds, CASCON ’08, pages 23:304–23:318, New York, NY, USA, 2008.
ACM.

[5] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled F. Shaalan. A survey of
web information extraction systems. IEEE Trans. on Knowl. and Data Eng., 18(10):1411–1428,
October 2006.

[6] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, and Yorick Wilks.
Experience of using GATE for NLP R&D. In Proceedings of the COLING-2000 Workshop on
Using Toolsets and Architectures To Build NLP Systems, pages 1–8, Stroudsburg, PA, USA,
2000. Association for Computational Linguistics.

[7] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach, and
Tim Berners-Lee. Hypertext transfer protocol – HTTP/1.1. https://www.ietf.org/rfc/

rfc2616.txt, 1999. [Online; accessed 11-June-2017].

[8] Android open source project – issue tracker. https://code.google.com/p/android/issues/
list, 2016. [Online; accessed 15-August-2016].

[9] Smartphone OS Market Share, Q3 2016. http://www.idc.com/prodserv/

smartphone-os-market-share.jsp, 2016. [Online; accessed 12-February-2016].

[10] Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin, Evan Moritz,
Malcom Gethers, Denys Poshyvanyk, Jonathan Maletic, Jane Huffman Hayes, Alex Dekhtyar,
Daria Manukian, Shervin Hossein, and Derek Hearn. Tracelab: An experimental workbench for
equipping researchers to innovate, synthesize, and comparatively evaluate traceability solutions.
In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages
1375–1378, Piscataway, NJ, USA, 2012. IEEE Press.

292

International Journal of Networking and Computing

[11] Alexander Kohan. Kayur. http://kayur.net, 2016. [Online; accessed 11-February-2017].

[12] Alexander Kohan, Mitsuharu Yamamoto, and Cyrille Artho. Automated dataset construction
from web resources with tool Kayur. In Proceedings of the Fourth International Symposium on
Computing and Networking, pages 98–104, 2016.

[13] Ahmed Lamkanfi, Serge Demeyer, Quinten David Soetens, and Tim Verdonck. Comparing
mining algorithms for predicting the severity of a reported bug. In Proceedings of the 2011 15th
European Conference on Software Maintenance and Reengineering, CSMR ’11, pages 249–258,
Washington, DC, USA, 2011. IEEE Computer Society.

[14] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, M. Yamamoto, and K. Takahashi.
Modular software model checking for distributed systems. IEEE Transactions on Software
Engineering, 40(5):483–501, 2014.

[15] Libmind library repository. https://github.com/neuromancer/libmind/blob/master/data/
pos/verbs/, 2015. [Online; accessed 24-January-2015].

[16] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-Centric
Systems and Applications). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[17] Edward Loper and Steven Bird. NLTK: The natural language toolkit. In Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Pro-
cessing and Computational Linguistics - Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg,
PA, USA, 2002. Association for Computational Linguistics.

[18] Machine learning for language toolkit. http://mallet.cs.umass.edu/index.php, 2002. [On-
line; accessed 24-January-2015].

[19] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. Bumper: A tool for coping with natural
language searches of millions of bugs and fixes. In Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, pages 649–652. IEEE, 2016.

[20] National vulnerability database. https://nvd.nist.gov/, 2015. [Online; accessed 22-
February-2015].

[21] Apache Nutch. http://nutch.apache.org/, 2015. [Online; accessed 22-February-2015].

[22] Apache OpenNLP. https://opennlp.apache.org/index.html, 2015. [Online; accessed 24-
January-2015].

[23] OpenNLP tools models. http://opennlp.sourceforge.net/models-1.5/, 2015. [Online;
accessed 24-January-2015].

[24] Orange – loading and saving data. http://docs.orange.biolab.si/reference/rst/Orange.
data.formats.html, 2015. [Online; accessed 24-January-2015].

[25] Stanislaw Osinski, Jerzy Stefanowski, and Dawid Weiss. Lingo: Search results clustering algo-
rithm based on singular value decomposition. pages 359–368. Springer, 2004.

[26] Stanislaw Osinski and Dawid Weiss. Carrot2 – user and developer manual. http://download.
carrot2.org/head/manual/, 2016. [Online; accessed 15-August-2016].

[27] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Found. Trends Inf. Retr.,
2(1-2):1–135, January 2008.

[28] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999.

[29] The R project for statistical computing. https://www.r-project.org/, 2016. [Online; ac-
cessed 2-November-2016].

293

Automated Dataset Construction from Web Resources with Tool Kayur

[30] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate defect reports
using natural language processing. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 499–510, Washington, DC, USA, 2007. IEEE Computer
Society.

[31] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1986.

[32] Guoliang Shi and Yanqing Kong. Advances in theories and applications of text mining. In
Proceedings of the 2009 First IEEE International Conference on Information Science and En-
gineering, ICISE ’09, pages 4167–4170, Washington, DC, USA, 2009. IEEE Computer Society.

[33] Pascal Soucy and Guy W. Mineau. Beyond tfidf weighting for text categorization in the vector
space model. In Proceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI’05, pages 1130–1135, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[34] Chong Wang and David Blei. Topic modeling software. https://www.cs.princeton.edu/

~blei/topicmodeling.html, 2015. [Online; accessed 22-February-2015].

[35] WEKA 3: Data mining software in Java. http://www.cs.waikato.ac.nz/ml/weka/, 2015.
[Online; accessed 22-February-2015].

[36] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

[37] Tao Xie, Shengsheng Shi, Fuliang Quan, and Chunfeng Yuan. Research on complex structure-
oriented accurate web information extraction rules. In Proceedings of the 2010 IEEE Interna-
tional Conference on Progress in Informatics and Computing, pages 312–316. IEEE, 2010.

[38] Zhihong Xu, Myra B. Cohen, Wayne Motycka, and Gregg Rothermel. Continuous test suite
augmentation in software product lines. In Proc. 17th Int. Softw. Product Line Conf., SPLC
’13, pages 52–61, Japan, 2013.

[39] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining text mining and data
mining for bug report classification. In Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution, ICSME ’14, pages 311–320, Washington, DC, USA,
2014. IEEE Computer Society.

294

