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Abstract

What is computable with limited resources? How can we verify the correctness of compu-
tations? How to measure computational power with precision? Despite the immense scientific
and engineering progress in computing, we still have only partial answers to these questions.
To make these problems more precise and easier to tackle, we describe an abstract algebraic
definition of classical computation by generalizing traditional models to semigroups. This way
implementations are morphic relations between semigroups. The mathematical abstraction also
allows the investigation of different computing paradigms (e.g. cellular automata, reversible
computing) in the same framework. While semigroup theory helps in clarifying foundational
issues about computation, at the same time it has several open problems that require extensive
computational efforts. This mutually beneficial relationship is the central tenet of the described
research.

1 Introduction

The exponential growth of the computing power of hardware (colloquially known as Moore’s Law)
seems to be ended by reaching its physical and economical limits. In order to keep up technological
development we should continue improving the efficiency of software. Producing more mathematical
knowledge about digital computation is one way to achieve this goal, since many breakthroughs in
computing (and in many scientific and engineering fields) have their origins in mathematics.

Computational complexity studies the asymptotic behavior of algorithms. Complementing that,
here we suggest focusing on small theoretical computing devices, and studying the possibilities
of limited finite computations. Instead of asking what resources we need in order to solve bigger
instances of a computational problem, we restrict the resources and ask what can we compute within
those limitations. This is of course an immense mathematical task, but results of this type can easily
be turned into practical applications. For instance, knowing the lowest number of states required to
execute a given algorithm and having the minimal examples are useful for low-level optimizations.
Another example of such a reversed question is asking what is the total set of all possible solutions
for a problem instead of looking for the single right solution. The mathematical formalism turns
this into a well-defined combinatorial question, and the payoff could be that we will find solutions
we had never thought of.
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Of course, there is a gap between the mathematical side of theoretical computer science and
practical computing and software engineering problems. We are able to survey all 4-state computing
devices with mathematical precision, but real world applications often require more resources. While
staying at the mathematical side, this paper aims to bridge this gap by asking mathematical questions
that are direct translations of engineering problems. Interestingly, the mathematical side has several
open problems too. Many of them are difficult enough that working towards the solutions require
computational experiments. This may look like an ironic remark (mathematics, when trying to
find the properties of computers, itself requires software tools), but it is more like a bootstrap
process. The promise of computational mathematics is that we can explore enough examples of
certain structures that mathematical reasoning can proceed by formulating, proving and refuting
conjectures based on the raw data.

The paper consists of two main parts. Section 2 defines semigroups as computational structures
and their structure preserving relations. It systematically goes through the intuitive aspects of
computation and shows how they are represented in the algebraic framework. Section 3 formulates
concrete research questions about finite computation, describes the available software packages and
summarizes the current state of computational experiments.

2 Computational structures

What is classical computation? Dictionary definitions are somewhat circular, e.g. computation is
what a computer does and a computer is a device that performs computation. A quick look at actual
computing devices reveals that computation is

1. a mapping from inputs to outputs;

2. a sequence of state transitions;

3. described by mathematical models;

4. implemented by physical systems;

5. a hierarchical structure;

6. potentially universal.

We will follow this intuitive characterization; Section 2.x corresponds to item x.

The first two points seem to be opposites What to compute? versus How to compute?, high
versus low-level descriptions, declarative versus imperative programming paradigms, λ-calculus ver-
sus Turing-machines. However, as it turned out historically, these are only different aspects of the
same phenomenon. We will show in Section 2.2.1, that they are just the two extremes of the same
computation spectrum.

Our computers are physical devices and the theory of computation is abstracted from physical
processes. Mathematical models clearly define the notion of computation, but mapping the abstract
computation back to the physical realm is often considered problematic. We argue that structure-
preserving maps between computations work from one mathematical model to another just as well as
from the abstract to the concrete physical implementation, easily crossing any ontological borderline
one might assume between the two. The former needs mathematical thinking, the latter engineer-
ing, but the underlying problem is the same: find relations between computing structures that do
not change the computed function. Since abstract algebra provides the required tools, we suggest
further abstractions to the models of computations to reach the algebraic level safe for discussing
implementations. It is also suitable for capturing the hierarchical structure of computers. Finiteness
and the abstract algebraic approach paint a picture where universal computation becomes relative
and the ‘mathematical versus physical’ distinction less important.
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2.1 Computation as a function: input-output mappings

First we attempt to define computations and implementations purely as abstract functions, then the
need for combining functions leads us to definition of computational structures.

Starting from the human perspective, computation is a tool. We want a solution for some
problem: the input is the question, the output is the answer. Formally, the input-output pairs are
represented as a function f : X → Y , where X is a set of input questions and Y is a set of output
answers. Computation is the act of evaluating a function, f(x) = y, x ∈ X, y ∈ Y . Then, as
an implementation of f , we need a dynamical system whose behavior can be modeled by another
function g, which is essentially the same as f .

X Y

A B

f

ϕ1 ϕ2

g

We have three ingredients, the function f (specification), the dynamical system g (in the sense of
initial conditions and laws of motions, thus whenever a ∈ A is present then g will naturally take it
to b = g(a)), and the pair of mappings ϕ1, ϕ2 establishing the implementation relation. As in the
abstract theory of functions (category theory, see for instance [3,34]), the above diagram commutes:
ϕ2 (f(x)) = g(ϕ1(x)). This means that if the value of the abstract function is y = f(x) at x,
then after finding the ‘physical’ representation of x, namely ϕ1(x), the dynamics of g will produce
g(ϕ1(x)). This has to be the same as the physical representation of y, namely ϕ2(f(x)). In order to
make the implementation useful, we require ϕ1, ϕ2 to be one-to-one. This ensures, that f and g are
the same, up to some relabeling.

Functions can be composed by feeding the output of one function into the the input of another,
mirroring the way how computational steps can be combined together in algorithms.

X Y Z
f1

f1◦f2

f2

In the theory of computable functions we start from a set of primitive functions and build composite
functions by combining them [9]. Thus, function composition is a fundamental way of constructing
computations.

In a faithful implementation, the decisive properties of the functions are preserved. For instance,
an invertible function can only be implemented by another invertible function. This seemingly con-
tradicts the fundamental theorem of reversible computing, that any finite function can be computed
by an invertible function [44]. There is a way to sidestep function isomorphism by using more general
functions for extracting semantic content. Getting closer to real computations, we need to fill the
elements of the abstract sets for input and output with some content. The content can be repre-
sented by bit-strings. Thus, computation can be described by a mapping from an m-bit sequence to
an n-bit sequence,

f : {0, 1}m → {0, 1}n, m, n ∈ N.

With this we can have a closer look at the seemingly contradicting case of reversible computing.

Example 1. Embedding XOR

00 7→ 0 0

01 7→ 1 1

10 7→ 1 0

11 7→ 0 1

and FAN-OUT
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0 0 7→ 00

0 1 7→ 11
10 7→ 10
11 7→ 01

into the same bijective function. By putting information into the abstract elements, any function
can ‘piggyback’ even on the identity function. The ‘trick’ works by implicitly composing the actual
computation with special input and output functions. The underlying function is reversible, but the
readout operation is not bijective. In the XOR example both 00 and 01 are interpreted as 0.

Another example of this sidestepping is generating pseudo-random numbers, producing random-
ness from a non-random deterministic process. One method involves multiplying big numbers and
cutting some digits out from the middle. Again, the readout function does not preserve all the
information contained in the result.

The examples show that there is a sharp distinction between a computer emulating another
computer and some arbitrary functions used for extracting the ‘semantic content’ of the calculation.
The structure preserving transformations of computations will be discussed in Section 2.4 in detail.

2.2 Computation as a process: state transitions

Focusing on the process view, what is the most basic unit of computation? A state transition: an
event changes the current state of a system. A state is defined by a configuration of a system’s
components, or some other distinctive properties the system may have. In classical computing, the
assumption is that the states are well-defined and easily distinguishable, discrete entities. A real
computer’s state is defined by a long string of bits, a snapshot of its memory storage and the content
of the processor registers. In analog computing state varies along a continuum, while in quantum
computing states are in superposition.

Let’s say the current state is x, then event s happens changing the state to y. We might write
y = s(x) emphasizing that s is a function, but it is better to write

xs = y

meaning that s happens in state x yielding state y. Why? Because combining events as they happen
one after the other, e.g. xst = z, is easier to read following our left to right convention.

Though it is more intuitive to distinguish between states and events, it is not a fundamental
distinction. We can think of number 4 as a discrete quantity and also as an operation for increasing
other quantities, namely by adding 4. The idea of blurring the difference between data and pro-
cedures is a familiar one in programming: Lisp-like languages can treat code as data and data as
code [1]. In the computation as state transition way of thinking, we can grasp this concept by the
following principle.

Principle 2 (State-event abstraction). We can identify an event with its resulting state: state x is
where we end up when event x happens.

According to the action interpretation, xs = y can be understood as event s changes the current
state x to the next state y. But xs = y can also be read as event x combined with event s yields
the composite event y, the event algebra interpretation.

We can combine abstract events into longer sequences. These can also be considered as a se-
quence of instructions, i.e. an algorithm [20]. These sequences of events should have the property of
associativity

(xy)z = x(yz) for all abstract events x, y, z,

since a given sequence xyz is required to be a well-defined algorithm. This also shows that we can
reason about algorithms using equations.

We can put all event combinations into a table. These are the rules describing how to combine
any two events.
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Definition 3 (Computational Structure). A finite set X and a rule for combining elements of X that
assigns a value x′ for each two-element sequence, written as xy = x′, is a computational structure if
(xy)z = x(yz) for all x, y, z ∈ X.

In mathematics, a set closed under an associative binary operation is an abstract algebraic
structure called semigroup [7, 8, 28, 37]. The mildly belittling term is used because of historical
reasons. Group theory advanced first, so semigroups are considered as broken groups, and not the
other way around, groups as (very important) special cases of semigroups.

Example 4 (Flip-flop). An abstract semigroup for storing 1-bit information.

r s0 s1
r r s0 s1
s0 s0 s0 s1
s1 s1 s0 s1

The read-operation is r. Events s0 and s1 correspond to destructive storage of bit values. Alge-
braically these are right zero elements, or simply resets.

Example 5 (Counter). An abstract semigroup realizing a modulo-3 counter.

+0 +1 +2
+0 +0 +1 +2
+1 +1 +2 +0
+2 +2 +0 +1

The +1 operation can be considered as the act of counting, increasing a value by one. According to
the state-event abstraction, the operations double as numbers. Since +2+1=+3=+0, the counter
has a finite capacity. Note that the composition table is a Latin square. This is always true for
groups [2], that are semigroups with an identity and a unique inverse for each element.

Computation is a process in time – an obvious assumption, since most of engineering and com-
plexity studies are about doing computation in shorter time. Combining two events yield a third one
(which can be the same), and we can continue with combining them to have an ordered sequence
of events. This ordering may be referred as time. However, at the abstraction level of the state
transition table, time is not essential. The table implicitly describes all possible sequences of events,
it defines the rules how to combine any two events, but it is a timeless entity. This is similar to
some controversial ideas in theoretical physics [4].

2.2.1 The computation spectrum

How are the function and the process view of computation related? They are actually the same.
Given a computable function, we can construct a computational structure capable of computing the
function. An algorithm (a sequence of state transition events) takes an initial state (encoded input)
into a final state (encoded output). The simplest way to achieve this is by a lookup table.

Definition 6 (Lookup table semigroup). Let f : X → Y be a function, where X∩Y = ∅. Then the
semigroup S = X ∪ Y ∪ {`} consists of resets X ∪ Y and the lookup operation ` defined by x` = y
if f(x) = y for all x ∈ X and u` = u for all u ∈ S \X.

Is it associative? Let v ∈ X ∪ Y be an arbitrary reset element, and s, t ∈ S any element. Since the
rightmost event is a reset, we have (st)v = v and s(tv) = sv = v. For (sv)` = v` = s(v`) since v` is
also a reset. For (v`)` = v`, since ` does not change anything in S \X and v(``) = v` since ` is an
idempotent (`` = `). Separating the domain and the codomain of f is crucial, for functions X → X
we can simply have a separate copy of elements of X. When trying to make it more economical
associativity may not be easy to achieve [32].

Turning a computational structure into a function is also easy. Pick any algorithm (a composite
event), and that is also a function from states to states.
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Why do we have different approaches then? Different computations can realize the same func-
tion. In software engineering, for optimization purposes we often use pre-calculated data, and just
look the value up in a table when it is needed, thus saving time. Another technique computes the
value on demand, but stores it for later queries (caching, memoization). This observation motivates
the following questions. How much processing is done in a computation? How many state transi-
tions? Based on this we have a whole spectrum of computation, from mere storage and retrieval
to computations producing data from little input. Information storage and retrieval are forms of
computation. By the same token computation can be considered as a general form of information
storage and retrieval, where looking up the required piece of data may need many steps. We can
say that if computation is information processing, then information is frozen computation. For in-
stance, when calculating logarithms were slow and difficult, one had to use tabulated values in a
printed book. Combinatorial (stateless) circuits are another example of lookup table computations.
Arithmetic calculations (by humans) are somewhere in the middle of the spectrum. We add and
multiply single digit numbers with lookup table method, but using a cascade algorithm for longer
numbers. The other extreme consists of computations that do not rely on any input data, though
they may fill the memory up for later usage. For instance, busy beaver Turing-machines [6], or the
hypothetical shortest program that generates the sequence of bit-strings describing the consecutive
states in the evolution of our observable universe [40].

2.3 Traditional mathematical models of computation

By defining computers as semigroups, the algebraic approach may look different from the mainstream
models of computation [38]. Algebraic automata theory [27] seems to be a half-forgotten sub-field of
theoretical computer science. We argue that semigroups are not a different model of computation,
just a more abstract one. Abstraction in the sense that we remove details unnecessary for the
investigation. Therefore, the algebraic view is even more fundamental and has an even wider scope.

The theory of finite state automata (FA) is closely tied together with formal language theory [41].
We consider language recognition as an application of automata. Therefore, we abstract away the
initial and accepting states, since those special states are needed only for recognizing languages.
We do not need to define an output function, we can use the resulting state as the output of the
automaton if needed. Simply defined, we consider FA to be discrete dynamical systems.

Definition 7. By a finite state automaton, we mean a triple (X,Σ, δ) where

1. X is the finite state set,

2. Σ is the (finite) input alphabet,

3. δ : X × Σ→ X is the transition function.

How is this a definition of a semigroup? For each state x ∈ X an input symbol σ ∈ Σ gives
the resulting state δ(x, σ). If we fix an ordering (x1, x2, . . . , xn) on X, then we can extend δ to the
whole set by δ(X,σ) = (δ(x1, σ), δ(x2, σ), . . . , δ(xn, σ)). Therefore, input symbols of a finite state
automaton are fully defined transformations (total functions) of its state set.

Definition 8. A transformation is a function f : X → X from a set to itself, and a transformation
semigroup (X,S) of degree n is a collection S of transformations of an n-element set closed under
function composition.

If we focus on the possible state transitions of a finite state automaton only, we get a transformation
semigroup with a generator set corresponding to the input symbols. These semigroups are very
special representations of abstract semigroups, where state transition is realized by composing func-
tions. It turns out that any semigroup can be represented as a transformation semigroup (Cayley’s
Theorem for semigroups, see e.g. [28]).

Example 9. Transformation semigroup realization of the flip-flop semigroup. The set being trans-
formed is simply X = {0, 1}, also called the set of states.
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0 1

0 1

s0 =

0 1

0 1

s1 = r =

0 1

0 1

The diagrams show how an individual state is changed by the event. The events can be denoted
algebraically by listing the images s0 = [0, 0], s1 = [1, 1], r = [0, 1]. They can be composed by
stacking the diagrams, connecting the points in the middle and finally following the arrows through
both diagrams. This is simply a visual representation of function composition. The table of all
possible compositions is in Example 4.

A Turing-machine [45] without the infinite tape is also a finite state automaton. A finite length
tape can always be incorporated into the state set of the automaton. In general, if we take those
models of computation that describe the detailed dynamics of computation, and remove all the
model specific decorations, we get a semigroup.

2.4 Computers: physical realizations of computation

Intuitively, a computer is a physical system whose dynamics at some level can be described as a
computational structure. For any equation xy = z in the computational structure, we should be
able to induce in the physical system an event corresponding to x and another one corresponding to
y such that their overall effect corresponds to z. This informal description can be made algebraically
precise.

2.4.1 Morphic relations of computational structures

First we give an algebraic definition of computational implementations, then we justify the choices
in the definitions by going through the alternatives.

Definition 10 (Emulation, isomorphic relation of computational structures). Let S and T be com-
putational structures (semigroups). A relation ϕ : S → T is an isomorphic relation if it is

1. homomorphic: ϕ(s)ϕ(t) ⊆ ϕ(st),

2. fully defined: ϕ(s) 6= ∅ for all s ∈ S,

3. lossless: ϕ(s) ∩ ϕ(t) 6= ∅ =⇒ s = t

for all s, t ∈ S. We also say that T emulates, or implements S.

Homomorphism is a fundamental algebraic concept often described the equation

ϕ(s)ϕ(t) = ϕ(st),

where the key idea is hidden in the algebraic generality. We have two semigroups S and T , in
which the actions of computations are the compositions of elements. In both semigroups these are
denoted by juxtaposition of their elements. This obscures the fact that computations in S and in
T are different. Writing ·S for composition in S and ·T for composition in T we can make the
homomorphism equation more transparent:

ϕ(s) ·T ϕ(t) = ϕ(s ·S t).

This shows the underlying idea clearly: it does not matter whether we convert the inputs in S to
the corresponding inputs in T and do the computation in T (left hand side), or do the computation
in S then send the output in S to its counterpart in T (right hand side), we will get the same result
(Fig. 1). In the above definition, ϕ(s) and ϕ(t) are subsets of T (not just single elements), and
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S s st

T ϕ(s) ϕ(s)ϕ(t) = ϕ(st)

ϕ

t

ϕ

ϕ(t)

ϕ

Figure 1: The underlying idea of a homomorphism of algebraic structures is that it does not matter
in which structure we do the actual calculation (indicated by the horizontal arrows).

ϕ(s)ϕ(t) denotes all possible state transitions induced by these subsets (element-wise product of two
sets).

Fully defined means that we assign some state(s) of T for all elements of S, so we account for
everything that can happen in S. This is just a technical, not a conceptual requirement, since we
can always restrict a morphism to a substructure of S.

Being lossless excludes loosing information about state transitions. In general, homomorphic
maps are structure-forgetting, since we can map several states to a single one. In case of s1 6= s2
and both s1 and s2 are sent to t in the target, the ability of distinguishing them is lost. For lossless
correspondences we need one-to-one maps. For relations this requires the image sets to be disjoint.
Varying these conditions we can have a classification of structure preserving correspondences between
semigroups (Fig. 2).

lossy (many-to-1) lossless (1-to-1)

relation(set-valued) relational morphism division
function (point-valued) homomorphisms isomorphism

In semigroup theory, isomorphic relations are called divisions, a special type of relational morphisms
[35, 37]. This a bit unfortunate terminology from computer science perspective, emulation instead
division, and morphic relation instead relational morphism perhaps would be slightly better. In
semigroup theory, relational morphisms are used for the purpose of simplifying proofs, not for any
deep reasons. However, for describing computational implementations relations are necessary, since
we need to be able to cluster states (e.g. micro versus macro states in a real physical settings).

#relational morphisms #homomorphisms #divisions #isomorphisms

Z2 → Z2 3 2 1 1
Z2 → Z3 2 1 0 0
Z2 → Z4 5 2 2 1

S3 → S3 16 10 6 6
S3 → Z4 5 2 0 0
S3 → T2 34 4 0 0

T2 → T2 120 7 2 2
T2 → S3 22 1 0 0

Table 1: These are total numbers, no symmetry (conjugacy) classes are taken into account. Numer-
ical results were calculated by SubSemi [13] and Kigen [19].

A few numerical examples in Table 1 show that the number of relational morphisms are prone
to combinatorial explosions. Since the image sets may overlap, these morphisms are not suitable for
transferring computational structures. In fact, an always valid relational morphism is to send all
elements of S to the set of all elements of T . For homomorphic functions it is possible to send whole
S to an idempotent element (i.e. e2 = e). We conclude that lossy morphisms are always possible
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relational morphism

division homomorphism

isomorphismrelation

function lossless

lossy

⊆ ⊆∗

⊆∗ ⊆

Figure 2: Relationships between different types of structure preserving correspondences of com-
putational structures. Set inclusion is defined for the set of all instances of a particular type of
correspondence (e.g. all isomorphisms are homomorphisms). The ⊆∗ symbol denotes the need for
identifying singleton sets with elements (e.g. {s} with s).

between semigroups. Clearly, respecting composition is not a sufficient condition for computational
implementations.

2.4.2 Computational models

What happens if we turn an implementation around? It becomes a computational model.

Definition 11 (Modelling of computational structures). Let S and T be computational structures
(semigroups). A function µ : T → S is a modeling if it is

1. homomorphism: µ(u)µ(v) = µ(uv) for all u, v ∈ T ,

2. onto: for all s ∈ S there exists a u ∈ T such that µ(u) = s.

We also say that S is a computational model of T . In algebra, functions of this kind are called
surjective homomorphisms.

The case of Z2 → Z4 in Table 1 shows that there are strictly more divisions than isomorphisms.
Z2 is a quotient of Z4, so Z4 has a surjective homomorphism to Z2. The division here is exactly that
surmorphism turned around. Exactly this reversal of surjective homomorphisms was the original
motivation for defining divisions [37].

A modeling is a function, so it is fully defined. A modeling µ turned around µ−1 is an implemen-
tation, and an implementation ϕ turned around is a modeling ϕ−1. This is an asymmetric relation,
naturally we assume that a model of any system is smaller in some sense than the system itself.
Also, to implement a computational structure completely we need another structure at least as big.

According to the mathematical universe hypothesis [43], the physical world is just another math-
ematical structure, we have nothing more to do, since we covered mappings from one mathematical
structure to another one. In practice, we do seem to have a distinction between mathematical models
of computations and actual computers, since abstract models by definition are abstracted away from
reality, they do not have any inherent dynamical force to carry out state transitions. Even pen and
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00 11 01 10

r0

0

r1

1

t t

t

t

Figure 3: Hierarchical, transformation semigroup construction of reversible XOR function (see
Example 1). We combine two transformation semigroups into a composite one. The independent
component (4 states at the top) is a reversible permutation group with state transition t defining
the dynamics, while the dependent component (2 states at the bottom, the readout part) has reset
operations r0, r1. State transitions in the bottom component are chosen based on the state of the
top component. These are indicated by the dashed line. If the top level component is in state 00 or
11, then the bottom component resets to 0 by state transition r0. Otherwise, r1 is carried out. The
input is set in the top level component (by choosing a state), and the output is the resulting state
in the bottom component.

paper calculations require a driving force, the human hand and the pattern matching capabilities of
the brain. But we can apply a simple strategy: we treat a physical system as a mathematical struc-
ture, regardless its ontological status. Building a computer then becomes the task of constructing
an isomorphic relation.

Definition 12 (Computer). An implementation of a computational structure by a physical system
is a computer.

Finding such a relation to a physical system is highly non-trivial. Charles Babbage failed to
establish the correspondence between arithmetical operations and the mechanisms of cogwheels
[42]. However, the key point is to see that it is just another mapping. Maybe more difficult for a
physical implementation, but it is not different from establishing emulation relation between abstract
computational models.

Anything that is capable of state transitions can be used for some computation. The question is
how useful that computation is? We can always map the target system’s mathematical model onto
itself. In this sense the cosmos can be considered as a giant computer computing itself. However,
this statement is a bit hollow since we do not have a complete mathematical model of the universe.

Every physical system computes, at least its future states, but not everything does useful calcula-
tion. Much like entropy is heat not available for useful work. The same way as steam and combustion
engines exploit physical processes to process materials and move things around, computers exploit
physical processes to transfer and transform information.

2.5 Hierarchical structure

Huge state transition tables are not particularly useful to look at; they are like quark-level descrip-
tions for trying to understand living organisms. Identifying substructures and their interactions is
needed. Hierarchical levels of organizations provide an important way to understand computers. In-
formation flow is limited to one-way only along a partial order, thus enabling functional abstraction.
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Natural Numbers Computational Structures

Building Blocks Primes 1-bit memory, reversible computations
Composition Multiplication Cascade Product
Precision Equality Emulation
Uniqueness Unique Non-unique

Figure 4: A comparison of the prime decomposition of integers and computational structures. Cas-
cade decompositions are ways of understanding systems modeled by finite state automata. This
type of modeling is used increasingly for biological systems (e.g. [31]).

This simple feature makes hierarchical decompositions applicable to a wide range of problems [36].
Another way to look at these hierarchical decompositions of automata is the idea of coarse-graining:
selectively throwing away information for getting simplified models [10].

According to Krohn-Rhodes theory [29], any computational structure can be built by using
destructive memory storage and the reversible computational structures in a hierarchical manner
(Fig. 4). The way the components are put together is the cascade product [21], which is a substructure
of the algebraic wreath product. The distinction between reversible and irreversible is sharp: there
is no way to embed state collapsing into a permutation structure. Reversible computing [44] seems
to contradict this. The trick there is to put information into states and then selectively read off
partial information from the resulting states. This selection of required information can be done
by another computational structure. We can have a reversible computational structure on the top,
and one at the bottom that implements the readout. We can have many state transitions in the
reversible part without a readout (Fig. 3). Reversible implementations may prove to be decisive in
terms of power efficiency of computers, but it does not erase the difference between reversible and
irreversible computations.

Important to note that hierarchical decompositions are even possible when the computational
structure is not hierarchical itself. One of the research directions is the study of how it is possible to
understand loop-back systems in a hierarchical manner. Fortunately, now we have computer algebra
tools available for generating these decompositions [18].

As an important connection, abstract state machines [5, 25] are generalizations of finite state
machines. They are used for verification and validation of software systems. These models can be
refined and coarsened forming a hierarchical succession, based on the same abstraction principles as
in Krohn-Rhodes theory.

2.6 Universal computers

What is the difference between a piece of rock and a silicon chip? They are made of the same
material, but they have different computational power. The rock only computes its next state (its
temperature, all the wiggling of its atoms), so the only computation we can map to it isomorphically
is its own mathematical description. The silicon chip admits other computational structures, all
possible computations within its size limit. General purpose processors are isomorphic images of
universal computers.

Universality is a fact of everyday computing (programs run other programs, computers emulate
other type of computers). It is also a central concept in computability theory [33,45]. The universal
Turing machine U takes a program P , i.e. a dedicated computer, and the input x of the program.
Then by recreating each step of P it computes the result of P on x. Formally, U(P, x) = P (x).
Unfortunately, this only makes sense for Turing machines with infinite tape. With finite resources
universal becomes relative, i.e. universal relative to some kind of representation and size. A universal
semigroup for size n abstract semigroups would be the semigroup that can implement all size n
semigroups. There is a trivial construction, a huge direct product of everything of size maximum n.
What are the minimal examples of these? – that is indeed an interesting mathematical question.

For a concrete representation it is easier to find relatively universal structures. For instance,
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the full transformation semigroup of degree n (denoted by Tn) consists of all nn transformations of
an n-element set [23]. These can be generated by compositions of three transformations: a cycle
[1, 2, 3, . . . , n− 1, 0], a swap [1, 0, 2, 3, . . . , n− 1], and a collapsing [0, 0, 2, 3, . . . , n− 1]. Leaving out
the state collapsing generator, we generate the symmetric group Sn, which is the universal structure
of all permutations of n points.

3 Finite computation – research questions and results

We use computers more and more for extending our knowledge in many scientific fields. We showed
that semigroups are the underlying mathematical structures of computers. Semigroup theory is
a mature field of mathematics [8, 28] and its connection to automata has been explored [27, 35].
However, there are still many open questions in semigroup theory (see the open problem listing
of [37]). Here we describe those that are relevant to practical problems of finite computation. Not
surprisingly these are the difficult ones, that were not really in the focus of mathematical research.

1. What are the possible computational structures and implementations?

2. How to measure the amount of computational power?

3. How can we trust computers?

These problems also differ from the traditional mathematical research style, since they require a more
data-driven approach. In order to answer mathematical questions we use computers to generate
data. Then by extracting and analyzing the salient features of the data set we proceed to general
mathematical theorems and proofs. In principle, this methodology differs little from the traditional
mathematical work-cycle. It ‘only’ scales up the experimental phase from pen and paper calculations
to producing gigabytes of data. However, previous research results showed that the newly available
data takes mathematics to the next level: completely new conjectures can be formulated and more
information is available for constructing proofs, or finding counterexamples.

The software packages related to this research are Semigroups [30] for general algorithms for
working with semigroups of different representations; SubSemi [13] for enumerating subsemigroups;
SgpDec [22] for hierarchical decompositions – these are all packages for the GAP [24] computer
algebra system; and the Kigen [19] system written in Clojure [26].

3.1 Enumeration and classification of computational structures

Cataloging, stocktaking are basic human activities for answering the question What do we have
exactly? For the classification of computational structures and implementations, we need to explore
the space of all computational structures and their implementations, starting from the small ex-
amples. Looking at those is the same as asking the questions What can we compute with limited
resources? What is computable with n states? This is a complementary approach to computational
complexity, where the emphasis is on the growth rate of resource requirements.

Due to the effect of combinatorial explosion, an exhaustive enumeration of computational struc-
tures is doomed to fail eventually. But we need to produce raw data to think about, so we have to
push the boundaries of exploration in order to formulate and prove general mathematical results.
Strategy is the following: take a relatively universal structure and enumerate all of its substruc-
tures. For example, finding all transformation semigroups on n states is the same as finding all
subsemigroups of Tn. Subsemigroup is a subset of a semigroup, also closed under the composition.
i.e. semigroups inside another one. Algorithmically, this is a graph search problem: the nodes are
subsemigroups and the directed edges are labeled by adding an additional element to a subsemi-
group (source) generating another bigger subsemigroup (target). This strategy led to the successful
enumeration of all 132 069 776 transformation semigroups with 4 states [12]. As a first step towards
a classification of these we can draw the size distribution (Fig. 5). For the time being we have no
algebraic, combinatorial or number theoretical explanation for this shape. Further analysis of the
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Figure 5: The main bulk of the size distribution of transformation semigroups of degree 4. Currently
we have no explanation for the six peaks of the distribution, or any information about the asymptotic
behavior of the distribution when the number of states increases.

data set is needed. Studying their cascade decompositions by the holonomy method [18] is under
way.

The method of enumerating certain types of semigroups by enumerating all subsemigroups of
relatively universal semigroup of that type has been applied to a wider class of semigroups, called
diagram semigroups [14]. These generalize function composition to other combinatorial structures
(partial functions, binary relations, partitions, etc.), while keeping the possibility of representing the
semigroup operation as stacking diagrams. These can be considered as ‘unconventional’ mathemati-
cal models of computations (e.g. computing with binary relations or partitions instead of functions).
The existence of different types of computers leads to the problem of comparing their power.

3.2 Measuring finite computational power

Given an abstract or physical computer, what computations can it perform? The algebraic descrip-
tion gives a clear definition of emulation, when one computer can do the job of some other computer.
This is a crude form of measuring computational power, in the sense of the ‘at least as much as’
relation. This way computational power can be measured on a partial order (the lattice of all finite
semigroups). Extending the slogan, “Numbers measure size, groups measure symmetry.” [2], we can
say that semigroups measure computation.

A very crude approach to measuring computational power is the comprehensive enumeration
mentioned in 3.1. Given a computational structure S we can check whether it is on the list of all
4-state automata. If yes, we can say it is a “4-state” powerful computer.

A more sophisticated method is establishing isomorphic relations to some universal structure. We
do not have the list of all 5-state finite computers, but we can easily check whether a given S embeds
into T5 or not. Algorithmically, the simplest solution is a backtrack search, systematically trying to
match source elements with targets while keeping the homomorphic property. The basic algorithm
can be significantly improved by classifying semigroup elements on both sides by properties that
are invariant under isomorphisms [15]. This partitioned backtrack algorithm is capable of finding
embeddings into semigroups with millions of states (e.g. T8 with 88 = 16777216 elements).

For an abstract semigroup, finding the minimal number of states n such that it embeds into the
full transformation semigroup Tn is the same of finding the minimal number of states such that the
given computation can be realized. This state minimization is an important engineering problem.
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It is not to be mistaken with the finite state automata minimization problem, where the equivalence
is defined by recognizing the same regular language, not by isomorphic relation.

Another problem of measuring computational power is bringing some computation into the com-
mon denominator semigroup form. For example, if we have a finite piece of cellular automata (CA)
grid, what can we calculate with it? If the CA is universal and big enough we might be able to
fit in a universal Turing machine that would do the required computation. However, we might be
able to run our computation directly on the CA instead of a bulky construct. Like given a desktop
computer, there is a choice between a high-level interpreted and slow programming language, and
the machine-code level. Here, we are interested in native computation, but for cellular automata it
is not obvious how to measure it. There are different ways to think about this problem.

1. Fixed initial conditions: We start the CA from a fixed configuration. The only event is the
clock-tick. Algebraically this structure is way too simple. This also resonates with constructor
theory, which says that initial conditions and laws of motion have restricted explanatory power
[11].

2. I/O mappings: Take all runs from initial configurations and record the (class of) final config-
urations. Lookup table style computation.

3. Interaction, perturbation: The events of the modeling automaton are small changes in the
grid, acting on stable states or cycles.

4. Piggybacking: Similar to the piggybacking trick of reversible computation, we can use some
patch of the CA for input and another (possibly) overlapping patch for the output. Physical
universality [39] is also defined this way.

3.3 Algorithmic solution spaces and computational correctness

Even in mathematics, we increasingly rely on creating knowledge by computers. It is impractical
to fully check the isomorphic relation between the computational structure and the implementing
physical system. We do not actually have the complete computational structure, only a set of
generators. In a way computation can be viewed as generating computational structures from a
partial description. But how can we be sure that the relation works for combined operations? A
physical system does more, not just the mapped computation. How can we make sure that nothing
leaks into the abstract computation from the underlying physics? The actual paths of computation,
the sequences of events may interact more than what is described in the abstract state transitions.

In practice, we do test hardware and software on several hierarchical levels. For instance, if
feasible, formal verification of programs, file-systems with integrity checks, error-correcting codes in
memory, and so on. However, it is not possible to verify the whole computing stack. Instead, we
build up confidence by solving the same problem repeatedly by using several different methods and
many different computers with varying platforms and architectures. The idea behind these attempts
is solving the same problem by different methods.

The simplest definition of a computational task is that we want to produce output from some
input data. How many different ways are there for completing a particular task? The answer
is infinity, unless we prohibit wasteful computations and give a clear definition of being different.
Computational complexity distinguishes between classes of algorithms based on their space and time
requirements. This is only one aspect of comparing solutions, since there might be different algo-
rithms with very similar performance characteristics (e.g. bubble sort and insertion sort). Therefore,
we propose to study the set of all solutions more generally.
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When are two solutions really different? The differences can be on the level of implementation or
of the algorithm specification. Informally we can say that computations can differ by their

1. intermediate results,

2. applied operations,

3. modular structure,

4. or by any combination of these.

Programs that solve the same problem are shaped by the language primitives, by the performance
constraints and by the programmers’ experience level and style.

Definition 13. An algorithmic solution space is a set of computer programs solving a computational
problem, i.e. realizing a function described by input-output mappings.

The existence and the comparison of different solutions for a computational task are crucial in
two seemingly different domains.

1. When learning a new programming language, we are often not content with finding a single
solution for a coding exercise. It is a helpful exercise to re-implement existing functions, and
compare the different solutions. Note that this learning style is the opposite of the traditional
way of teaching mathematics, where the idea of a single right solution is often emphasized.

2. In mathematics, we increasingly rely on creating knowledge by computers. For instance, when
no closed formula for counting some combinatorial objects is available, we need exploratory
computational enumeration. Due to the complexity of software implementations formal verifi-
cation is often not (yet) feasible. For establishing correctness it is expected that results need to
be reproduced by different software implementations. Compare for instance software packages
SgpDec [22] and Kigen [19].

Algorithmic solution spaces can be studied on two different levels.

1. Practical level – functional programming: Analyzing algorithmic solutions for practice
problems written by learners of functional programming languages (e.g. the Lisp-like Clo-
jure). This will yield practical insights into the learning and teaching process of programming.

2. Theoretical level – abstract algebra: Developing methods for finding and classifying all
distinct, minimal computational processes realizing the same function. We model these as
transformation semigroups (generalized finite state automata), study their embeddings (the
precise notion of emulation) and Cayley-graphs (combinatorial and visual structures to repre-
sent how complex calculations are built up from elementary steps).

The key goal of this research is to combine these two approaches into a unified theory of algorithmic
solution spaces (Fig. 6). Algebraic solution spaces in semigroups are a generalization of permutation
groups as genome spaces [16, 17], which could be an interesting and potentially fruitful connection
to exploit.
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Figure 6: Theoretical roots of algorithmic solution spaces and the two directions of research.

4 Conclusion

We suggest that generalizing existing models of computation to semigroup theory will help in solving
open problems in software and hardware engineering. In turn, the mathematical investigation relies
on the tools of high-performance computing, forming a positive feedback loop between computer
science and abstract algebra The systematic study of finite computation is supported by powerful
software packages and the already available data sets. Therefore, despite the current gap between
the practical computing problems and the scale of the exact mathematical results, this research is
bound to produce groundbreaking results.

The directions of investigation outlined here form a research program, which should be viewed
as an open invitation. It is not easy to tie down the beginning of theoretical computer science to a
particular date, but we have accumulated results from several decades of research, thus it might be
time to investigate the big and fundamental questions directly.
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