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Abstract

In this paper, we present a self-optimizing routing algorithm using only local information, in
a three-dimensional (3D) virtual grid network. A virtual grid network is a well-known network
model for its ease of designing algorithms and saving energy consumption. We consider a 3D
virtual grid network which is obtained by virtually dividing a network into a set of unit cubes
called cells. One specific node named a router is decided at each cell, and each router is connected
with the routers at adjacent cells. This implies that each router can communicate with 6 routers.

We consider the maintenance of an inter-cell communication path from a source node to a
destination node and propose a distributed self-optimizing routing algorithm which transforms
an arbitrary given path to an optimal (shortest) one2 from the source node to the destination
node. Our algorithm is executed at each router and uses only local information (6 hops: 3 hops
each back and forward along the given path). Our algorithm can work in asynchronous networks
without any global coordination among routers.

We present that our algorithm transform any arbitrary path to a shortest path in O(|P |)
synchronous rounds, where |P | is the length of the initial path, when it works in synchronous net-

works. Moreover, our experiments show that our algorithm converges in about |P |
2

synchronous
rounds and the ratio becomes lower as |P | becomes larger.

Keywords: Routing Algorithm, Self-Optimizing, Local Optimization, Grid Networks

1The preliminary version of this paper appeared in the proceedings of the Fourth International Symposium on
Computer and Networking (CANDAR) 2016, which entitled A Self-optimizing Routing Algorithm in a 3-dimensional
Virtual Grid Network.

2Note that, in 2D/3D (virtual) grid network, a shortest path between two nodes is not unique.
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1 Introduction

Recently, wireless networks, such as MANET (Mobile Ad-hoc NETworks)[2, 3] or WSN (Wireless
Sensor Networks)[4], become popular because of widespread use of wireless devices. Therefore a
study of the wireless networks becomes important in the distributed systems. In the typical wireless
networks, nodes are deployed on a two-dimensional plane, and each node can directly communicate
only with nodes within its communication range. If the destination node (the node receives the
message) is outside of the communication range of the source node (the node sends the message),
the message should be relayed to the destination node. The topology of wireless networks can be
changed frequently because of moving of nodes. Multi-hop routing algorithms for wireless networks
have been proposed [6, 7, 8, 9, 10, 11].

A virtual grid network is a well-known topology model for designing algorithms of dynamic
networks. A typical virtual grid network on a two-dimensional plane, which is obtained by virtually
dividing a wireless network into a grid of geographical square regions are called cells of the same size.
Figure 1 shows an example of the virtual grid network. Note that the size of the cells is determined
by the communication range of each node.

Figure 1: A typical virtual grid network (on 2D plane)

In this paper, we consider a virtual grid network on the three-dimensional (3D) space. Nodes are
deployed in the 3D space, each node can communicate with nodes within its communication range
same as the case of 2D plane. In a 3D virtual grid network, each cell’s shape becomes a unit cube
like Figure 2. Each node in the 3D space has a spherical communication range instead of a circular
one on a 2D plane and the size of each cell (unit cube) is determined by the communication range of
each node. A specific single node called a router is selected at each cell (the marked node in Figure
2) and each router communicates with routers in neighbor cells. Figure 3 illustrates an example of
a 3D virtual grid network.

Figure 2: A cell (unit cube) in the virtual grid network

Each node can communicate with other nodes that exist outside of the communication range
using routers in a 2D/3D virtual network. We suppose two specific nodes, one named a source node
and the other named a destination node in virtual grid networks, and we allow that each node can
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Figure 3: A virtual grid network on the 3D space

move from its current cell to the neighbor cell freely. And we assume that there is a path, which is
represented by the sequence of the routers (details will be introduced in Section 3), from a source
node to a destination node. When a node moves to a neighbor cell (there are 6 neighbor cells in a
3D virtual grid network), the path is updated by extending itself to the next (neighbor) cell.

In this paper, we consider the maintenance of the given path from a source node to a destination
node. The power consumption is one of the important issues in wireless sensor networks, therefore,
we consider that our goal is to construct a shortest path from a source node to a destination node.
Thus we propose a self-optimizing protocol which can transform an arbitrary given (initial) path
from a source node to a destination node to a shortest path in a 3D virtual grid network.

The rest of this paper is organized as follows: Section 2 presents related works and we introduce
the system model we consider and explain the definition of the problem in Section 3. Our proposed
self-optimizing algorithm for constructing a shortest path from a source node to a destination node
in a 3D virtual grid network is represented in Section 4. We theoretically analyze the time complex-
ity and practically evaluate the convergence time (synchronous rounds) of our proposed algorithm
through some experiments in Section 5. Finally we conclude our work and present some future works
in Section 6.

2 Related works

Xu et al. proposed a routing algorithm which is named GAF (Geographic Adaptive Fidelity)[5].
GAF reduces energy consumption in ad hoc wireless networks by identifying nodes that is necessary
for a routing and turning off unnecessary nodes, keeping a consistent level of routing fidelity. To
realize GAF protocol, each node associates itself with a virtual grid so that the entire area is
divided into several square regions called cells. When each node has the communication (radio)
range R, the length of each side of each grid r is set as r ≤ R√

5
. Herewith all nodes in the cell

can communicate with its adjacent cells. In a virtual grid network, a single node is selected as a
router and it has responsibility for communication with its adjacent cells for routing and the other
nodes can communicate with the router in the same cell when they need to communicate outside of
their communication range (when no communication is needed, they can sleep for saving energy).
A virtual grid network makes a routing problem simple because a grid architecture is simple and
regular.

Takatsu et al. proposed a local-information-based self-optimizing routing algorithm in virtual
grid networks which is named Zigzag[1]. The system model of Zigzag is as follows:

• Asynchronous Network. Each node in the network can operate freely at any time.

• No global information. Each node does not know where a source node and a destination
node are. There is no coordination system, this means that each node does not have any
location information.
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• Labeled Links. Each router maintains four communication links because it communicates
with four routers in its adjacent cells. Each router labels its four communication links as UP,
RIGHT, DOWN, and LEFT. All the routers have a common sense of direction. This means
that if a sender sends a message through the link labeled RIGHT, a receiver receives it through
the link labeled LEFT.

• Local information within constant distance. Each router maintains the subsequence of
the routing path that contains 6 hops (directions) which consists of 3 hops back and forward
along the path.

Zigzag uses only three rules to locally update a path. When a router finds a condition of these
three rules, it locally update the subsequence of the path around it. Figure 4 simply shows the three
rules of Zigzag.

(a) Zigzag Rule 1 : Shortcut1

(b) Zigzag Rule 2 : Shortcut2

(c) Zigzag Rule 3 : Zigzag

Figure 4: Three rules of Zigzag protocol

Zigzag protocol ensures to construct a shortest path within reasonable convergence time (O(|P |),
where |P | is the length of the initial given path) using only these three rules. Zigzag also guarantees
the preservation of the connection between a source node and a destination node during the execution
of the algorithm.

3 System model and problem definition

In this section, we introduce our system model and define our problem.

352



International Journal of Networking and Computing

3.1 System model

We suppose all nodes in the system are deployed in 3D space. Each node has the sphere-shaped
communication range with radius R, and it can communicate with the nodes within R. A 3D virtual
grid network is obtained by virtually dividing an entire network into 3D grid (unit cube) cells. One
node is selected as a router in each cell, each router can communicate with 6 routers in its adjacent
cells. This implies that each vertex has 6 edges in a 3D virtual grid network. If there is no node
in a cell, no router exists in the cell. In this case, inter-cell communication among cells cannot be
guaranteed, and this causes that any communication path through this non-router cell may not be
constructed. Therefore, we assume that at least one node exists in every cell.

There are two nodes, a source node vs and a destination node vt, in the system and we assume
that some messages are periodically transferred from vs to vt. A message is sent from vs to the
router ps which is the router in the same cell. The message is relayed by some routers to pt which is
the router in the same cell with vt. Finally, the message is delivered to vt. Note that vs and ps may
be the same node, and vt and pt also may be the same. Each non-router node always communicates
with the router in the same cell for routing, thus we consider only routers (ignore non-router nodes)
in the 3D virtual grid network for ease of designing algorithms. The entire 3D virtual grid network
is represented as an undirected graph NG = (PG, EG) (where, PG is a set of routers and EG is set
of links). A Router pj is neighbor to pi, this implies that pi and pj share a face of the cell, if and
only if a link (pi, pj) ∈ EG.

Each router pi has 6 links because all cells are cube-shaped in a 3D virtual grid network. Each
router has no knowledge of its global location, e.g. (x, y, z)-coordinates, however all the routers have
a common sense of 6 directions, and they are labeled on these 6 links of each router. Figure 5 shows
labels of all 6 links of pi. Each router has 6 links which are labeled with T (Top), B(Bottom), U(Up),
D(Down), L(Left) or R(Right) consistently. For example, if a router sends a message through
the link labeled R, a receiving router receives the message through the link labeled L, because of
common sense of direction.

T

B

RL

U

D

��

�

�

��

�

�

��

Figure 5: A direction label of each link of the router pi

A routing path P to a destination node pt from a source node ps can be represented by the
sequence of routers as follows: P = (ps = p0, p1, p2, . . . , pn = pt). In this case, P consists of
(n + 1) routers and the length of P becomes n. We represent the length of the routing path with
|P |, therefore |P | = n implies that n-hops are required to deliver a message from ps to pt and
(n − 1) routers exist between ps and pt. Due to common sense of direction, each edge in P can
be represented by a direction label. For example, if pi sends a message through its link labeled
R, p(i+1) receives it through its link labeled L inevitably. Therefore we can represent the edge
of P between pi and p(i+1) as a single direction label R which is pi’s outgoing link’s direction.
Thereafter P also can be represented by the sequence of edges or direction labels as follows: P =
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(−−−→p0, p1,
−−−→p1, p2,

−−−→p2, p3, . . . ,
−−−−−−→p(n−1), pn) = (Out(p0), Out(p1), Out(p2), . . . , Out(p(n−1)) (where Out(pi) is

the direction label of pi’s output edge).

�� ��

����

��

����

�� �	

Figure 6: An example of a routing path P

Figure 6 shows an example of the representation of P . In the case of Figure 6, |P | consists of
10 routers, therefore |P | = 9. Note that the router p4 and p8 are considered as the different routers
even though p4 and p8 are the same router. P can be represented by the sequence of the direction
labels as follows: P = (R,U ,L, T ,U ,L,D,R,R). In this paper, we mainly use this notation (using
direction labels) unless specifically mentioned. In addition, we use the notation Di which means the
direction label of pi’s output edge Out(pi).

Each router which belongs to the routing path from ps to pt maintains its routing table. A
routing table consists of some records which is notated by the pair of input direction and output
direction like (In,Out). For instance, p2 in Figure 6 has the record (D,L) in its routing table
because p2 should forward a message received through the link labeled D to the link labeled L in
order to transfer a message from a source node to a destination node. p4(= p8) stores two records
in its routing table, (B,U) for p4 and (L,R) for p8.

We assume that each router knows routing records of preceding and following 2 routers (total 6
hops). For example, a router pi maintains additional routing records of p(i−2), p(i−1), p(i+1), and
p(i+2). A router pi maintains P pi which is the subsequence of the current routing path P , P pi

= (Out(p(i−3)), Out(p(i−2)), Out(p(i−1)), Out(pi), Out(p(i+1)), Out(p(i+2))) and |P pi | becomes 6
obviously (except some routers like ps or pt). Note that Out(p(i−3)) can be derived from p(i−2)’s
routing record.

3.2 Problem definition

A valid path P from ps to pt is initially given in a 3D virtual grid network. We say P is valid if
and only if P = (p0, p1, p2, . . . , pn) fulfills the following conditions: (1) p0 is the router in the same
cell with vs (i.e. p0 = ps), (2) pn is the router in the same cell with vt (i.e. pn = pt), and (3) Each
pi (except p0 and pn) is the router in the neighboring cell of p(i−1) and p(i+1). These conditions
guarantee the connectivity of the path P .

The path optimization problem is, from any given initial valid path P in the 3D virtual grid
network NG, to construct a shortest path from ps to pt in NG.

4 Our proposed algorithm

In this section, we introduce our algorithm which solves the path optimization problem, using each
router’s local information only.

354



International Journal of Networking and Computing

In the previous section, we introduced the notation of P using each router’s direction label:
P = (Out(p0), Out(p1), Out(p2), . . . , Out(p(n−1))).

Now we define an operation ”?” of 6 directions Di = {U ,D,R,L, T ,B} (see Figure 5) as follows.
For ease of explanation, we call directions {U ,D,R,L} the horizontal directions, and directions
{T ,B} the vertical directions. Note that this operation is not commutative.

1. Straight Line : When Dj is the same direction as Di, Di ? Dj = 1 (e.g. Di = Dj = R).

2. Retrace : When Dj is the opposite direction of Di, Di ?Dj = −1 (e.g. Di = U and Dj = D).

3. Bend on a Plane : When both Di and Dj are the horizontal directions and they are orthog-
onal, Di ? Dj = 0 (e.g. Di = L and Dj = U).

4. Horizontal Bend : When Di is the vertical direction and Dj is the horizontal direction,
Di ? Dj = 2 (e.g. Di = T and Dj = U).

5. Null OP : In the other case than listed above, Di ? Dj = ø. (e.g. Di = R and Dj = B).

This operation ”?” is basically the same as inner product of two vectors when both vectors are on
a plane surface. However in the case of the bending from vertical direction to horizontal direction,
we assign a new value 2 in our algorithm. Now we introduce our local update rules in the following
subsection.

4.1 Local update rules

Let P = (D0, D1, D2, . . . , D(n−1)) be the path to pt from ps (Di means Out(pi)). We define four
rules of the local update on each pi from some i as follows.

1. Shortcut1 : If D(i−1) ? Di = −1, D(i−1) and Di are removed from P .

2. Shortcut2 : If D(i−1) ?Di = 0 and D(i−1) ?D(i+1) = −1, D(i−1) and D(i+1) are removed from
P .

3. ZigZag : If D(i−1) ?Di = 1 and Di ?D(i+1) = 0, Di and D(i+1) are exchanged their sequence
in P .

4. V-Shift : If D(i−1) ? Di = 2, D(i−1) and Di are exchanged their sequence in P .

Figure 7 shows the examples of four local update rules of our proposed algorithm. Note that
Shortcut2 and ZigZag are updated on a plane surface only. Each router pi always checks the relation
between p(i−1)’s output direction ,which is the counter direction of pi’s input direction, and its
output direction (i.e. D(i−1) ?Di). Figure 8 represents the flow chart of checking local update rules
of pi.

In this paper, we abbreviate how each local update is implemented. We consider each local
update can be executed pseudo-atomically. To help to design atomicity, our algorithm ensures that
an edge is never targeted by two or more local updates. This implies that each local update is spared
the intrusion of the other local updates. Details will be mentioned in the next subsection.

4.2 Collision handling of local updates

Some edges may be targeted for two local updates at the same time. Figure 9 shows an example of
some local update rules’ collision.

In Figure 9, pi detects the local update V-Shift, p(i+1) detects the local update Shortcut1, and
p(i+2) detects the local update Shortcut2 at the same time. In this case, some edges may be removed
or moved (exchanging its sequence) by two local updates at the same time. For example, Di is moved
by pi’s local update (V-Shift) and removed by p(i+1)’s local update (Shortcut1) simultaneously. On
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(d) V-Shift

Figure 7: Four rules of our proposed algorithm
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Figure 9: Some local update rules’ collision
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the other hand, D(i+1) is removed by p(i+1)’s local update (Shortcut1) and removed by p(i+2)’s local
update (Shortcut2) simultaneously.

These collisions (conflictions), which mean the situation of which some edges are targeted by two
or more local updates, may cause the disconnection of the routing path to pt from ps. Therefore,
some exclusion rules are required to avoid disconnection of the path. A router pi never detects
two or more local update rules at the same time because the definition of local update rules. As
presented in Figure 8, a router pi detects one local update rule or not (do nothing) at some instant.
Hence we only consider two different routers pi and pj trying to remove (or move) the same edge. To
realize the mutual exclusion of local update rules, we set one simple rule: When a router pi detects
a local update rules, pi checks some other update rules including D(i−1). If pi detects some other
local update rules including Di, pi ignores its local update rule detected. Figure 10 shows some
examples of the collision (confliction) between two local update rules. In Figure 10(a), pi detects a
local update Shortcut1 because of D(i−1) = U and Di = D. However, pi knows D(i−2) = D and it
finds that p(i−1) detects a local update Shortcut1. Thus, pi does not execute its local update. In a
similar fashion, pi in Figure 10(b) and pi in Figure 10(c) do not execute their local update neither.

Algorithm 1 represents the pseudocodes of our proposed algorithm with a confliction handling.

Algorithm 1 Pseudocodes for pi: Local-information-based routing algorithm in a 3D virtual grid
network

Require: Subset of P pi = (D(i−3),D(i−2),. . .,D(i+2))
Ensure: Local update type of pi

1: procedure CheckLocal(pi)
2: var update ← ⊥
3: if D(i−1) ? Di = −1 then
4: update ← Shortcut1
5: else if D(i−1) ? Di = 0 & D(i−1) ? D(i+1) = −1 then
6: update ← Shortcut2
7: else if D(i−1) ? Di = 1 & Di ? D(i+1) = 0 then
8: update ← ZigZag
9: else D(i−1) ? Di = 2

10: update ← V − Shift
11: end if
12: if CheckLocal(p(i−1)) 6= ⊥ then
13: update ← ⊥
14: else if CheckLocal(p(i−2)) = Shortcut2
15: | CheckLocal(p(i−2)) = ZigZag then
16: update ← ⊥
17: end if
18: if update 6= ⊥ then
19: Execute Local Update
20: end if
21: end procedure

Figure 11 show an example of the execution of our proposed algorithm. Our algorithm can
be operated asynchronously, but this example shows the synchronous execution (each router which
detects a local update rule executes it at the same time) in order to help to understand.

The initial given path P = (R,R,U , T ,D,L,U ,U ,L,D) is illustrated in Figure 11(a). And three
gray routers in Figure 11(a) detect local update rules by Algorithm 1. p1, p4 and p7 detect ZigZag,
V-Shift and ZigZag, respectively. Note that p5 ignores its local update Shortcut2 because p5 knows
p4 will execute the local update V-Shift from its local-information. Likewise, p8 also ignores its local
update.

Figure 11(b) shows the updated path after the executions of three gray routers. And three new
gray routers in Figure 11(b), p2, p5 and p9, execute their local updates.
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(c) V-Shift precedes Shortcut1

Figure 10: Examples of confliction between two local updates
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(f) Final Path

Figure 11: Examples of executions of our algorithm
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Finally, our algorithm constructs a shortest path like Figure 11(f) and is terminated. This implies
that there is no more local update in this path.

To help to understand, in this example, we assume that the destination node is on above side
of the source node in the initial given path. That is, it is the same assumption when we described
the local rule V-Shift in Section 4.1 (Figure 7(d)). However, four local update rules of our proposed
algorithm ensure to construct a shortest path correctly regardless of the location of the destination
node. We present the correctness of our algorithm in the next section.

4.3 Correctness of proposed algorithm

In this section, we discuss the correctness of our proposed algorithm briefly. We introduce some
definitions and we simply give an explanation that our proposed algorithm can construct a shortest
path from ps to pt.

As we mentioned in the previous section, a routing path P can be represented by the sequence
of each routers output link’s direction like P = (D0, D1, . . . , D(n−1)) where Di = Out(pi). Let P be

a path from ps to pt and assume two (relaying) routers pa and pb in P (0 ≤ a ≤ b ≤ n). P can be
divided into 3 parts, the path from p0(= ps) to pa (meaning (D0, D1, . . . , D(a−1))), from pa to pb,

and from pb to pn(= pt). We notate these parts P sa, P ab, and P bt respectively. Certainly, P sa, P ab,
or P bt can be an empty sequence.

Now we define the converged path P which is constructed by our proposed algorithm.

Definition 1. Converged Path P of our algorithm. P is the converged path if and only if:

1. P sa is alternating with two horizontal directions Di and Dj, where Di ? Dj = 0.

2. P ab consists of all the same horizontal direction (a horizontal line) which appears in P sa.

3. P bt consists of all the same vertical direction (a vertical line).

Figure 12 shows an example of P . pb becomes the orthogonal projection onto the same plane
with ps due to its definition.

�� � ��

�� � ��

��

��

Figure 12: An example of converged path

Lemma 1. No local update will be executed in converged path P .

Proof. At first, at any i (1 ≤ i < a), all D(i−1) ? Di becomes 0 in P sa. However, D(i−1) ? D(i+1)

will never be −1 in P sa. Hence there is no local update in P sa of P .
Secondly, at any i ((a + 1) ≤ i < b), all D(i−1) ? Di becomes 1 in P sa because P ab consists of

only one direction. Thus there is no local update in P ab of P .
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Finally, there is no local update in P bt of P due to the same reason of P ab.

To prove that our algorithm constructs a converged path, firstly we present the following Lemmas
2 and 3.

Lemma 2. If there is one or more vertical directions which precede any horizontal directions, one
or more local updates will be executed.

Proof. Assume a vertical direction Di is included in P , which is the last vertical direction preceding
some horizontal directions. This implies D(i+1) is a horizontal direction. Because of Algorithm 1
(line 9–10), a local update V-Shift is detected by p(i+1). Even though there is some local updates
preceding p(i+1), V-Shift is eventually executed after the other local updates are terminated.

Lemma 3. If both T and B are included in P , one or more local updates will be executed.

Proof. From Lemma 2, no vertical directions preceding any horizontal directions. We consider that
Di is the last horizontal direction in P , thus, D(i+1) becomes the first vertical direction in P . From
the presumption of Lemma 3, there is Dj in P , where (i + 1) < j ≤ n and D(i+1) 6= Dj . In this
case, pj detects a local update Shortcut1 because of D(j−1) ? Dj = −1.

Therefore, if there is no more local update’s execution, either T or B, but not both, is included
in P . (or neither of them).

From Lemmas 2 and 3, we have the following corollary.

Corollary 1. If no more local update is executed in P , the subsequence P bt = (pb, . . . , pn) =
(Db, . . . , D(n−1)) (where b ≤ n), which consists of either T or B, can be determined in P (Db is the
first vertical direction in P ).

From Corollary 1, pb can be obtained by the orthogonal projection of pn onto the same plane
with ps (refer to Figure 11).

To make it easier to discuss the convergence of our algorithm, now we only consider the subse-
quence of P , P sb = (ps(= p0), . . . , pb) = (D0, . . . , D(b−1)) which consists of only horizontal directions.

Lemma 4. If 3 or more kinds of directions are included in P sb, one or more local updates will be
executed.

Proof. Assume Di is the first (horizontal) direction with two kinds of different preceding directions
in P sb. We show that pi detects a local updates and eventually executes it.

As the assumption, D(i−1) has the different directions with Di. If D(i−1) ? Di = −1, pi detects
a local update Shortcut1. Thus, we consider D(i−1) ? Di = 0.

In this case, D(i−2) has also different direction with Di. If D(i−2) is the same direction as D(i−1),
a local update ZigZag is detected by pi. If D(i−2) is the opposite direction as Di, pi detects a local
update Shortcut2. If D(i−2) is the opposite direction as D(i−1), a local update Shortcut1 is detected
by p(i−1).

Therefore, if two kinds of different horizontal directions precede Di, p(i−1) or pi detects a local
updates thus Lemma 4 hold.

From Lemma 4, if two kinds of directions are in P sb and no local update is detected, the directions
are orthogonal. Because if not, a local update Shortcut1 is detected.

Before the introduction of the next lemma, we define a segment representation of P as follows.

Definition 2. Segment representation of P . A segment representation of P is expressed by the
subsequence of P . Each subsequence Si of P consists of the consecutive same directions. SR(P ) is
a segment representation of P , and becomes SR(P ) = (S1, S2, . . . , Sm) (1 ≤ m ≤ (n− 1)).

A segment representation combines the consecutive same directions in P into a subsequence of
P named Si. For example, if P = (U ,U ,D,L, T , T , T ,R), the segment representation of P becomes
SR(P ) = ((U ,U), (D), (L), (T , T , T ), (R)). In this example, there are five segments in P (m = 5),
and lengths of segments are |S1| = 2, |S2| = |S3| = |S5| = 1, and |S4| = 3.
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Lemma 5. When a segment representation of P sb = (S0, S1, . . . , Sm), unless |Si| = 1 at any i
(0 ≤ i < m), one or more local updates will be executed.

Proof. Lemma 5 implies that only Sm (the last segment of P sb) has a length of two or more
(|Sm| ≥ 2).

Assume |Si| > 1 (0 ≤ i < m) in P sb and no more update is detected in P sb. There is S(i+1), and
the last direction of Si and the first direction S(i+1) become orthogonal (from Lemma 4). In this
case, because |Si| > 1, the last two directions of Si have the same directions. This causes the first
router to detect a local update ZigZag and this is a contradiction.

From Lemmas 4 and 5, we obtain the following corollary.

Corollary 2. If no more local update is executed in P , which consists of only horizontal directions,
P includes only two directions which are orthogonal. Moreover, |Si| = 1 at any i (0 ≤ i < m) holds
in the segment representations of P = (S0, S1, . . . , Sm).

From Corollaries 1 and 2, unless P is a converged path, our algorithm retains to detect local
updates and transforms P . And if P is a converged path, our algorithm stops (is terminated). Now
we show our algorithm eventually makes P a converged path, this implies that the infinite executions
of our algorithm never occurs. To prove this, we introduce the following definitions using a segment
representation.

Definition 3. Potential function f . Let P be a path and its segment representation SR(P ) is
(S1, S2, . . . , Sm). The potential function f assigns a sequence f(P ) = (|Stotal|, |S1|, |S2|, . . . , |Sm|),

where |Stotal| =
m∑
i=1

|Si|.

Definition 4. Weighted Potential function fw. Let SR(P ) = (S1, S2, . . . , Sm) be a segment
representation of P . The weighted potential function fw assigns a sequence fw(P ) which is obtained
by changing f(P ) with the follow rules: If a segment Si consists of vertical directions (T or B) in
SR(P ), a value α (defined later) is added to the length of Si (|Si|) in fw(P ).

To help to understand f(P ) and fw(P ), we present the examples of these functions. In the above
case P = (U ,U ,D,L, T , T , T ,R), f(P ) becomes (|Stotal|, |(U ,U)|, |(D)|, |(L)|, |(T , T , T )|, |(R)|) =
(8, 2, 1, 1, 3, 1). Note that the first element of f(P ) is equal to the length of the path P . However,
the weighted potential function fw(P ) becomes ((8 + α), 2, 1, 1, (3 + α), 1), because S4 of SR(P )
consists of vertical directions T .

We consider that the sequences constructed by potential function are totally ordered by the
lexicographic order. In the case of the weighted potential function, we assume that α is large enough
(e.g. α > |P |). And we call the sequence, constructed by (weighted) potential function, (weighted)
potential value.

Now we show that the weighted potential value becomes the minimum value when P is the
converged path. And our algorithm eventually decreases the weighted potential value of the given
P .

Lemma 6. If P is a converged path, fw(P ) has the minimum value.

Proof. Obviously, the minimum weighted potential value is (|Pmin|, 1, 1, . . . ,m), where |Pmin| is
the length of the shortest path from ps to pt and m ≥ 1 when there is no vertical directions in P .

In the weighted potential function, each vertical segment is weighted by α, which is a large value,
thus it is important to reduce the number of the vertical segments for constructing the minimum
weighted potential value, that is, there is only one vertical segment in SR(P ) when the minimum
fw(P ). More specifically, the vertical segment is positioned as the last segment of SR(P ).

As a result, the minimum weighted potential value becomes (|Pmin| + α, 1, 1, . . . , 1,m, v + α),
vertical directions are included the last segment only. And this becomes a converged path.

Lemma 7. The weighted potential value is eventually decreased by our algorithm.

363



A Self-optimizing Routing Algorithm in a 3D Virtual Grid Network and its Analysis

Proof. Local updates Shortcut1 and Shortcut2 decrease the length of the given P , thus, the weighted
potential value is decreased because the first element of fw(P ) decreases.

Secondly we consider the local update ZigZag. If ZigZag is executed by the router pi, Di (output
direction of pi) is included in Si of SR(P ). In this case, |Si| ≥ 2 due to Di ? D(i−1) = 1, and
|S(i+1)| ≥ 1. After executing ZigZag on pi, Si is decreased by 1. Hence, fw(P ) decreases.

However, local update V-Shift sometimes increases fw(P ). For example, if |Si| = l, |S(i+1)| =
1 + α (vertical direction), and |S(i+2)| = 1 of SR(P ) (refer to Figure 13(a)), local update V-Shift
transforms it to |Si| = l+ 1 and |S(i+1)| = 1 + α (refer to Figure 13(b)). This causes the increasing
of fw(P ). Though local update V-Shift moves each vertical direction to backward of the sequence
SR(P ), and this shift is required for constructing the converged path to minimize the weighted
potential value (Lemma 6). There is no local updates moving vertical directions to forward of
the sequence SR(P ), thus, local update V-Shift is executed finite number of times (no infinite
execution).
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Figure 13: Example of increasing the weighted potential value

Our algorithm continues to transform P , which is not converged path, using local update rules,
and it convergs after the construction of the converged path P within finite executions of local
updates (no livelock is guaranteed by Lemma 7).
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We obtain the following theorem using Lemmas 1–7 and Corollaries 1 and 2.

Theorem 1. If P is not a converged path, one or more local updates will be executed in P . And
our algorithm constructs the converged path from P within finite number of executions.

Finally, we show the converged path P is a shortest path from ps to pt using the following
Lemma.

Lemma 8. A converged path P ensures a shortest path from ps to pt.

Proof. We can determine pb which has the first vertical directions as Db in P . pb becomes the
orthogonal projection onto the same plane with p0, P bt = (pb, p(b+1), . . . , pt) becomes a shortest
path from pt to the plane.

From Lemma 4, P sb = (ps(= p0), p1, . . . , pb) consists of two directions which are orthogonal,
hence there is no redundancy path in P sb. This also implies a shortest path from ps to pb.

Therefore a converged path P guarantees a shortest path.

5 Theoretical analysis and experimental evaluation

In this section, we analyze the time complexity of our proposed algorithm. Moreover, we present
our experimental results to show the practical performance of our algorithm.

5.1 Time complexity of our algorithm

In this subsection, we theoretically analyze our algorithm. Note that we evaluate the time complexity
of our algorithm when our algorithm is executed on the synchronous environment. Our proposed
algorithm correctly works even in asynchronous environment, however, in asynchronous environment
(e.g. asynchronous networks), it is impossible to predict the timing of each node’s execution, thus,
in order to compute the time complexity of our algorithm, we assume that our algorithm works
synchronously and we evaluate the time complexity of synchronous executions (rounds). This means
that each node detected an enabled local update (refer Figure 9 or Algorithm 1) always executes its
local update at each synchronous round.

We also assume that each local update works atomically: each update of the path is executed
instantaneously. In our algorithm, the set of routers which detect the valid (without any conflictions)
local update are determined deterministically for any given path, thus, the other routers than this
set of routers never execute the local update until the one or more updates of the current path
are terminated. Therefore these local updates are implemented as atomic actions and require the
constant number of rounds.

As a result, the time complexity analysis under the above assumption is asymptotically equivalent
to that analyzed assuming finer atomicity.

In this subsection, we use the time complexity of the previous algorithm Zigzag: O(|P |), where
|P | is the length of the initial given path. Using this time complexity, we can present the following
lemma.

Lemma 9. If no vertical direction precedes any horizontal directions in P , our algorithm transforms
P to a shortest path in O(|P |) synchronous rounds.

Proof. If there is no vertical direction in P , a shortest path can be constructed inO(|P |) synchronous
rounds, because the local update V-Shift is never executed in P and this implies that our algorithm
uses only 3 rules which are the same as the algorithm Zigzag.

Even if there are some vertical directions in P , the local update V-Shift is never executed because
the local update V-Shift is enabled when a vertical direction precedes a horizontal direction. In our
proposed algorithm, no rule makes a vertical direction precede a horizontal direction. Thus, the
path P can be divided into two disjoint sub-path (subsequence) Pp and Pv which consist of only
horizontal directions and vertical directions respectively. Pp trivially precedes Pv and this order is
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never changed. Note that Pp or Pv can be a empty sequence. Therefore, the time complexity of our
algorithm under this assumption becomes the longer one between the convergence time (the number
of synchronous rounds required) that takes to construct a shortest path from Pp and Pv. There is
no local update enabled on the border of two sub-path Pp and Pv.

The time complexity of our algorithm in the case of Pp becomes O(|P |) because there is no
vertical direction in Pp.

Each router in Pv can detect the local update ShortCut1 only, due to the conditions of the local
update rules: ShortCut2 and Zigzag is enabled by only horizontal directions, and V-Shift is enabled
by a horizontal direction precedes a vertical direction. ShortCut1 makes the path shorten by 2,

hence, ShortCut1 can be executed at maximum |Pv|
2 times. This implies the time complexity of our

algorithm in the case of Pv becomes O(|P |), because |Pv| ≤ |P |.
As a result, our algorithm transforms a path P to a shortest path O(|P |) if no vertical direction

precedes any horizontal directions in the path P .

Now we estimate the time complexity to transform any arbitrary path into the path in which no
vertical direction precedes any horizontal directions.

In our algorithm, even if a router pi detects a local update rule, this local update can not executed
if p(i−1) detects a local update rule or p(i−2) detects either ShortCut2 or Zigzag (refer line 12 to 17
in Algorithm 1). From the conditions of local update rule in our algorithm, the following lemma can
be hold if pi detects the local update rule V-Shift.

Lemma 10. If a router pi detects the local update rule V-Shift, this local update is never interrupted
by the other local update rules except ShortCut1.

Proof. From our algorithm, when a router pi detects the local update rule V-Shift, D(i−1) is a
vertical direction and Di is a horizontal direction. The local update rules ShortCut2 and Zigzag can
be detected only when all D(i−1), Di and D(i+1) are horizontal directions. This means that if pi
detects V-Shift, both p(i−1) and p(i−2) detect neither ShortCut2 nor Zigzag. Moreover, p(i−1) never
detects V-Shift because D(i−1) is a vertical direction.

As a result, V-Shift detected by pi can be interrupted by ShortCut1 detected by p(i−1).

Using Lemma 10, we can also present the following lemma as follows.

Lemma 11. If a router pi detects the local update rule V-Shift, D(i−1) moves to the behind Di or
removed from the path in constant synchronous rounds.

Proof. If a router pi detects the local update rule V-Shift, pi executes this local update unless p(i−1)
detects ShortCut1 by Lemma 10.

If p(i−1) detects ShortCut1, pi executes local update in the next synchronous round (after p(i−1)’s
local update). Certainly p(i−1)’s local update can be interrupted by the other local update rules
detected by p(i−2) or p(i−3). However, in this case, D(i−2) a vertical direction, because pi detects
V-Shift and p(i−1) detects ShortCut1. This implies that p(i−1)’s local update can be interrupted by
only ShortCut1 detected by p(i−2). As the same manner, p(i−2)’s local update can be interrupted by
only ShortCut1 detected by p(i−3). As a result, the local update V-Shift can be only interrupted by
the chain of preceding ShortCut1.

Since the length of the path is finite, the local update ShortCut1 in the lead of the chaining
ShortCut1 (consists of vertical directions) can be executed repeatedly in each synchronous round.
Therefore, V-Shift is executed or removed by the local update ShortCut1 by p(i−1) after the finite
number of the synchronous rounds because the length of the path is finite. Trivially, whether
the execution (of V-Shift) or remove will be occurred depends on the number of the preceding
ShortCut1.

From Lemma 11, if a vertical direction immediately precedes a horizontal direction in the path,
the vertical direction changes its position into the behind of the horizontal direction or removed from
the path within the finite number of the synchronous rounds. In other words, a vertical direction
immediately followed by a horizontal direction disappears after the finite number of synchronous
rounds from the behind of the horizontal direction. Now we consider the number of rounds to make
no vertical direction precede any horizontal directions.
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Lemma 12. Let P be an arbitrary initial given path, our proposed algorithm make no vertical
direction precede any horizontal directions in P within O(|P |) synchronous rounds.

Proof. Let Di be the last vertical direction which precedes any horizontal directions. p(i+1) detects
V-Shift because Di is a vertical direction and D(i+1) is a horizontal direction (line 9 and 10 in
Algorithm 1).

From Lemma 11, Di is removed by pi’s ShortCut1 or moved to the behind of D(i+1) (a horizontal
direction) by p(i+1)’s V-Shift within the finite number of synchronous rounds. As a result, Di is
no longer the last vertical direction preceding any horizontal directions. We denote the number
of synchronous rounds required to be moved or removed Ti: pi can execute ShortCut1 or p(i+1)

can execute V-Shift after Ti synchronous rounds. This implies that Di becomes no longer the last
vertical direction preceding any horizontal directions after (Ti + 1) synchronous rounds.

Because the length of the path is finite, the last vertical direction preceding any horizontal
direction no longer exists by repeating (Ti + 1) synchronous rounds. Assume that the execution of
(Ti+1) synchronous rounds is repeated k times, to make no vertical direction precede any horizontal

directions,
∑k

i=1(Ti + 1) synchronous rounds are required. Thus,

k∑
i=1

(Ti + 1) = k + (

k∑
i=1

Ti)

< |P |+ (

k∑
i=1

Ti) (∵ k < |P |)

< |P |+ |P |
2

(∵
k∑

i=1

Ti <
|P |
2

)

= O(|P |)

(1)

Note that every synchronous round of Ti makes P shorten by 2 (Lemma 11), hence the total number

of Ti rounds becomes less than |P |
2 . As a result of (1), our algorithm make no vertical direction

precede any horizontal directions within O(|P |) synchronous rounds.

The following Theorem holds by Lemmas 9 and 12.

Theorem 2. Our proposed algorithm transforms any given path P in a 3D grid network to a shortest
path in O(|P |) synchronous rounds.

5.2 Experimental evaluation

Our proposed algorithm guarantees a construction of a shortest path from any initial given path
in 3D virtual grid networks. And we analyze our algorithm in the previous subsection. In this
subsection, we present our experimental results to show the practical performance of our proposed
algorithm.

5.2.1 Overview of experiment

We implement the simulator which constructs a 2D/3D virtual grid network and executes our pro-
posed algorithm. The simulator initially positions the source node and the destination node at the
same coordination in the virtual grid network, and moves the destination node n times in a random
direction. n is the length of the initial given path and it can be freely decided. In this simulator,
the scale of the grid network is finite but large enough (enough means that the path does not arrive
the end of the virtual grid network).

In this evaluation, we perform an experiment using our simulator while changing the length of
the initial path, and we measure the number of synchronous rounds until the termination (no more
local updates) of our algorithm. The goal of this evaluation is to clarify the actual number of the
synchronous rounds which is required to construct a shortest path.
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The time complexity of our algorithm is the same as the previous algorithm Zigzag for 2D virtual
grid networks. Thus we compare the actual number of synchronous rounds between our proposed
algorithm and the previous algorithm Zigzag.

5.2.2 The actual number of the synchronous rounds

In this experiment, we evaluate the number of synchronous rounds to construct a shortest path when
an arbitrary path of length n is given. We count the number of synchronous rounds 10 times while
changing the length of the path from 10 to 100 in increments of 10. And we repeat this experiment
1000 times on each length n and calculate the average number of the synchronous rounds to construct
a shortest path.
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Figure 14: The number of synchronous rounds required to construct a shortest path

Figure 14 represents the average number of the synchronous rounds to construct a shortest path
when an arbitrary path of length n is given. From this result, the average number of rounds increases
linearly as the length of the path increases. This result is consistent with our analysis in the previous
subsection. To easy to check that the average number of rounds is linear, we calculate the ratio of
the number of synchronous rounds to the length of the initial path n like as Figure 15.

In Figure 15, although the ratio of the number of rounds slightly decreases according to the
length n, it keeps a substantially constant ratio. If the length of the initial path becomes longer,
the ratio of the synchronous rounds to the length n to construct a shortest path is slightly reduced
because our algorithm can be executed concurrently at many routers which detect a local update
rule in the path.

The average number of the synchronous rounds when the length of the initial path is long is
presented in Table 1.

Length n Average Rounds Ratio
1000 409.53 40.95%
5000 1987.61 39.75%
10000 3949.31 39.49%

Table 1: The number of rounds when the length of the initial path is long

From table 1, the ratio of the synchronous rounds to the length n for constructing a shortest
path becomes smaller when an initial path becomes longer.
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Figure 15: The ratio of the number of rounds to the length n

5.2.3 The comparison with the previous work

In the previous section, we had analyzed the time complexity our algorithm. For this analysis, we
use the time complexity of the previous work: a self-optimizing routing algorithm Zigzag in a 2D
grid network. In other words, the time complexity of our algorithm is based on the previous work.
Nonetheless the time complexity of our algorithm has the orderly same (O(|P |), where |P | is the
length of the initial path) as the one of the previous work, obviously our algorithm requires more
synchronous rounds.

In this experiment, we verify the difference of the time complexity between our work and the
previous work from a practical viewpoint3.

Figure 16 represents the number of synchronous rounds of our algorithm and the previous work.
In our algorithm, when the length of the path n is 10, a shortest path can be constructed in about
60% of n, and when n becomes longer by 100, the number of rounds decreases to about 50% of n.
However, in the previous work Zigzag, it can construct a shortest path in a 2D grid network in about
30% of n when n is 10, furthermore, the number of rounds decreases to about 15% of n.

From this result, even though the assumptive system models are different, the previous work is
superior to parallelism of the local updates, because the requiring number of rounds decreases more
and more as the length of the path becomes longer.

In our algorithm, when many local update rules are detected at the same synchronous round
and they are interrupted by the other local update rules in a continuous fashion, only one local
update which is the most nearest one to the source node can be executed. On the other hand, the
previous work Zigzag has some priorities among local update rules, thus two or more rules can be
executed when many local update rules are collided sequentially. We consider that such a priority
among local update rules can be adopted to our algorithm and it may decrease the actual number
of synchronous rounds to construct a shortest path in 3D grid network.

3Actually our algorithm can be executed in both 2D and 3D virtual grid networks but the previous work operates
only in 2D virtual grid networks, thus the result of this experiment is offered for reference.
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Figure 16: Comparison between our work in 3D grid and previous work in 2D grid

6 Conclusion

In this paper, we proposed a self-optimizing routing algorithm which construct the shortest path in
a 3D virtual grid network. Our algorithm uses each router’s local information only and has only
four local update rules. We proved that our algorithm eventually constructs a shortest path from
the source node to the destination node.

We had analyzed the complexity of our algorithm based on the previous work, and we presented
the actual number of synchronous rounds to construct a shortest path using our algorithm.

To guarantee the correct local updates, we assume that each router maintains 6 hops of routing
information, because some collisions can be occurred among local updates. We expect that this
routing problem in a 3D virtual grid network can be resolved using less routing information (e.g. 4
hops for each router).

As we mentioned in the previous section, we expect that the actual number of synchronous
rounds to transform an arbitrary given path to a shortest path can be decreased if we change the
priority rules among local update rules in our algorithm4.

Finally, to make our algorithm a practical protocol, the design of each local update as the
distributed manner is required.
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