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Abstract

We introduce a new network structure named a maximal (σ, τ)-directed acyclic mixed graph
(DAMG). A maximal (σ, τ)-DAMG allows both arcs (directed edges) and (undirected) edges
which is constructed, for any given connected undirected graph with a set of σ nodes specified
as source nodes and a set of τ nodes specified as sink nodes, by assigning directions to as
many (undirected) edges as possible (i.e., by changing edges into arcs) so that the following
conditions are satisfied: (i) each node specified as a source node has at least one outgoing arc
but no incoming arc, (ii) each node specified as a sink node has at least one incoming arc but no
outgoing arc, (iii) each other node has no arc or has both outgoing and incoming arcs, and (iv)
no directed cycle (consisting only of arcs) exists. This maximality implies that changing any
more edges to arcs violates these conditions, for example, a source node has an incoming arc, a
node which is specified as neither a source node nor a sink node has only outgoing or incoming
arcs other than edges, or a directed cycle is created in the network.

In this paper, we propose a self-stabilizing algorithm which constructs a (1,1)-maximal
DAMG in any connected graph with a specified source node and a specified sink node by
assigning directions to as many edges as possible.

Keywords: Directed Acyclic Mixed Graph, Self-Stabilizing Algorithm, Maximal DAMG Con-
struction

1The preliminary version of this paper appeared in the proceedings of the 2017 IEEE International Parallel and Dis-
tributed Processing Symposium Workshop (IPDPSW), which entitled A Self-Stabilizing Algorithm for Constructing
(1,1)-Maximal Directed Acyclic Graph.
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1 Introduction

1.1 Background

A directed acyclic graph (DAG) is a directed graph that has no cycle. Any DAG has at least one
node called a source that has no incoming arc and at least one node called a sink that has no
outgoing arc. Each source node has a directed path to a sink node (but not necessarily to every
sink node). Therefore, communication routes can be ensured from source nodes (can be the senders
of messages) to sink nodes (can be the receivers of the messages) by constructing a DAG in any
connected network.

However, if some nodes are predetermined as either source nodes or sink nodes in an arbitrary
(undirected) graph, a DAG may not be constructed consistently. This is because it is impossible
to make the predetermined source nodes (resp. sink nodes) have only outgoing (incoming) edges
and make the other nodes have both incoming and outgoing arcs. For example, given a tree with
predetermined source and sink nodes, a leaf node becomes a source or sink node even when it is not
a predetermined source or sink. Therefore, a consistent DAG construction can not be guaranteed
from any graph with predetermined source nodes and sink nodes unless we allow some edges to
remain undirected.
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Figure 1: Examples of maximal (σ, τ)-DAMGs

Given a connected network with predetermined σ source nodes and τ sink nodes, we formalize
a consistent DAG (possibly with both arcs and edges) as a new network structure named a (σ, τ)-
Directed Acyclic Mixed Graph (DAMG). A (σ, τ)-DAMG is a mixed graph which allows both arcs
(or directed edges) and (undirected) edges such that there exist exactly σ source nodes and τ sink
nodes but there exists no directed cycle (consisting of only arcs). Each source (resp. sink) node
has at least one outgoing (resp. incoming) arc but no incoming (resp. outgoing) arc. Moreover any
other node is neither a source nor a sink node; it has no arc or both outgoing and incoming arcs.

This paper considers maximal (σ, τ)-DAMG construction: A maximal (σ, τ)-DAMG is con-
structed by assigning directions to as many edges as possible so that the following conditions should
be satisfied: (i) each node specified as a source node has at least one outgoing arc but no incoming
arc, (ii) each node specified as a sink node has at least one incoming arc but no outgoing arc, (iii)
each other node has no arc or has both outgoing and incoming arcs, and (iv) no directed cycle
(consisting only of arcs) exists. Thus if any of the remaining edges are assigned directions, the re-
sultant graph becomes no longer a consistent DAMG (violates any of above conditions). A maximal
(σ, τ)-DAMG can be also presented as a maximal (S, T )-DAMG using a set representation when a
undirected graph G and two disjoint sets S(⊂ G) and T (⊂ G) are given.

Figure 1 shows the examples of some maximal (σ, τ)-DAMGs, which are a maximal (1,1)-DAMG,
a maximal (1,2)-DAMG, and a maximal (2, 3)-DAMG. These can be also represented as a maximal
({s1}, {t1})-DAMG, a maximal ({s1}, {t1, t2})-DAMG, and a maximal ({s1, s2}, {t1, t2, t3})-DAMG
respectively.

In this paper, we propose a self-stabilizing algorithm for constructing a maximal (1,1)-DAMG in
any connected undirected network when only a single node is specified as a source node and another
single node is specified as a sink node.

A self-stabilizing algorithm is a distributed algorithm which manages to eventually present an ap-
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propriate behavior starting from any initial configuration [3, 5]. From this property, a self-stabilizing
algorithm guarantees that the system can be recovered to its intended configuration within a finite
time even if any number of transient failures occur and bring the system to any inconsistent configu-
ration. Therefore, a self-stabilizing algorithm can be operated from any initial state and the system
is always recovered to a consistent configuration, thus it can be applied to the system which freely
changes its configuration.

1.2 Related Works

A transport net of any biconnected network is a DAG (only with arcs) which has two distinct
predetermined nodes, a source node and a sink node. In a transport net, every node other than the
source node and the sink node has both incoming arcs and outgoing arcs (Fig. 2(a)). The maximal
(1,1)-DAMG considered in this paper is a generalization of the transport net in the sense that any
maximal (1,1)-DAMG is a transport net when the given network is biconnected.
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(a) transport net
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(b) st-ordering

Figure 2: A transport net and st-ordering

An st-ordering (also known as st-numbering) is one of the related works of a transport net. An
st-ordering is assignment of an st-order (number) to each node. The predetermined source node is
assigned 1, and the predetermined sink node is assigned n (where n is the total number of nodes),
the other nodes are assigned distinct integers ranging from 2 to (n − 1) so that the st-numbering
represents a topological order of a transport net (Fig. 2(b)). This implies that a transport net can
be constructed if an st-order can be assigned.

J. Ebert had proposed a sequential algorithm to find an st-ordering [6]. This algorithm starts
with constructing a depth-first-search (DFS) tree rooted at the source node, and maintains the list
derived from the tree path from the source node to the sink node and back edges of the tree. An
st-ordering can be found using this list. Aranha et. al. had introduced a distributed algorithm to
find an st-ordering [1] which is based on [6].

Chaudhuri et. al. expanded the st-ordering algorithm[6] to a self-stabilizing algorithm [2]. It
constructs a DFS tree rooted at the source node, and makes the path list of the tree path from
the source node to the sink node. After that, each node updates the path information using the
information of its adjacent nodes. An st-ordering can be realized using the relations between nodes.
Karaata et. al. had proposed another self-stabilizing st-order algorithm [7] using two breadth-first
search (BFS) trees rooted at the source node and the sink node respectively. All nodes in the network
are divided into two sets: one consists of the nodes closer to the sink node than the source node,
and the other consists of the remaining nodes. A transport net can be constructed by directing each
edge from the source node to the sink node and updating the directions of edges of end nodes except
the sink node.

1.3 Organization of the Paper

This paper is organized as follows: Section 2 introduces our system model and the problem we
consider. An algorithm for constructing a maximal (1,1)-DAMG and its correctness are presented
in Section 3. A summary and future works are given in Section 4.
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2 System Model and Problem Definition

In this paper, we consider a maximal (σ, τ)-DAMG construction problem and an algorithm which
constructs a maximal (σ, τ)-DAMG. When an arbitrary connected undirected graph is given and
σ nodes are specified as source nodes and τ nodes are specified as sink nodes, we consider how to
construct a valid maximal (σ, τ)-DAMG by assigning directions to edges.

To discuss our algorithm which constructs a maximal (σ, τ)-DAMG, we introduce our system
model and a formal definition of a problem for constructing a maximal (σ, τ)-DAMG in this section.

2.1 Undirected Graph

An undirected graph G consists of a non-empty set of nodes (also called vertex) V and a set of
edges E, and we notate G = (V,E). If there is an edge between nodes u and v, we call u and v are
adjacent and notate (u, v) ∈ E.

A sequence ⟨v0, v1, · · · , vm⟩ consisting of distinct nodes of G when (vi, vi+1) ∈ E for every i
(where 0 ≤ i < m) is called a v0 − vm path. If both a v0 − vm (m ≥ 2) path and edge (vm, v0) exist
((vm, v0) ∈ E), we call a sequence ⟨v0, v1, · · · , vm, v0⟩ a cycle. G is connected if there is a vi−vj path
for any distinct nodes vi and vj . Otherwise, G is disconnected. If there are two or more internally
disjoint vi − vj paths for any distinct nodes vi and vj in G, G is called biconnected.

Definition 1. (Articulation Point) A node v ∈ V is an articulation point of a connected graph
G = (V,E) when G becomes disconnected if v is removed from G.

A connected graph which has no cycle is called a tree. When G is a tree, a node having only one
adjacent node is called a leaf node.

2.2 Depth-First Search (DFS) Tree

Depth-first search (DFS) is a method for searching a graph which traverses as far as possible along
edges. DFS starts from an initial vertex v (v is initially explored) and explores an unexplored
adjacent node. This process is repeated as long as the currently visited node has an unexplored
adjacent node. If the currently visited node has no unexplored adjacent node, it backtracks along
the edge along which it first visited the node until it goes back to a node that has an unexplored
adjacent node. A tree which is constructed by DFS of a graph G is called a DFS tree.

2.3 Directed Graph and DAG

A directed graph
−→
G can be represented as

−→
G = (V,

−→
E ). V is the non-empty set of vertices, and

−→
E is

the set of arcs. If there is an arc from a node vi to a node vj ,
−−−−→
(vi, vj) ∈

−→
E . When

−−−−→
(vi, vj) ∈

−→
E ,

−−−−→
(vi, vj)

is called an outgoing arc of vi and an incoming arc of vj . A sequence ⟨v0, v1, · · · , vm⟩ consisting

of distinct nodes of
−→
G when

−−−−−−→
(vi, vi+1) ∈

−→
E for every i (where 0 ≤ i < m) is called a directed

v0 → vm path. If both a directed v0 → vm path of length 2 or more and
−−−−−→
(vm, v0) exist, we call

⟨v0, v1, · · · , vm, v0⟩ a directed cycle.
A directed graph which has no directed cycle is called a directed acyclic graph (DAG). A node

which has no incoming arc is called a source node and a node which has no outgoing arc is called a
sink node. Any DAG has at least one source node and at least one sink node.

2.4 Transport Net Problem and st-ordering Problem

Let G = (V,E) be any biconnected undirected graph where two distinct nodes s and t are given. A
transport net problem is to construct a DAG from G by assigning all edges directions so that only
s becomes a source node and only t becomes a sink node [2, 6].

An st-ordering problem for G is to assign st-order (numbers) to all nodes in G as follows: s
is assigned 1, t is assigned n (where n is the total number of the nodes) and each other nodes is
assigned a distinct integer ranging from 2 to (n− 1) so that it has an adjacent node with a smaller
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st-number and an adjacent node with a larger st-number. In other words, the st-numbers assigned
to nodes are consistent with a topological order of a transport net of G. This implies that if the
st-ordering problem can be resolved, a transport net problem can be also resolved.

2.5 Network and Processes

In this paper, we assume a connected network N of arbitrary topology consisting of n processes.
Each process in N operates asynchronously, and two distinct processes are predetermined as a source
node and a sink node.

Let P = {p1, p2, · · · , pn} be the set of n processes, and L be the set of the communication links.
In this case, we denote N = (P,L).

We assume p1 is a source node and pn is a sink node, and these two nodes have unique identifiers.
We denote a source node and a sink node, s and t respectively. Each process in {p2, p3, · · · , pn−1} is
anonymous (we use subscript notation from 2 to n− 1 only for explanation). If (pi, pj) ∈ L (where,
1 ≤ i < j ≤ n), there is a full duplex link between pi and pj . A process pi maintains a port number
of each link incident to pi which is totally ordered at pi and can identify each link by the port
number.

We assume a register communication model where a process pi communicates with a process pj
using shared registers Rij and Rji. A register Rij is written by pi and is read by pj and vice versa.
Writing and reading operations are executed by calling the functions write and read respectively.
We define two functions read and write which can be called by pi as follows.

Definition 2. (Functions read and write)

• read(Rji) : A function returns a value which is read from register Rji.

• write(Rij , x) : A function writes x to register Rij.

Note that a network N = (P,L) can be handled as a graph. Thus, a process and a node are used
interchangeably and a link and an edge are also.

2.6 Schedule

Let qi be the state of a process pi. A configuration (or a global state) c of the networkN is represented
as c = (q1, q2, · · · , qn) where qi includes all data of the registers written by pi in addition to the
internal state of pi. C is the set of all possible configurations of N , thus, when Qi is the set of all
possible states of pi, C can be described as C = Q1 ×Q2 × · · · ×Qn.

Let S be a subset of P , and A be an algorithm. Let c be an arbitrary configuration (c ∈ C).
When each process in S operates an atomic action of A , the configuration of the network c is
changed into c′, then we notate this as c 7→ (S,A )c′.

Definition 3. (Schedule and Execution) We call a sequence T = S0, S1, S2, · · · of non-empty
process sets a schedule. In infinite sequence E = (c0, c1, c2, · · · ) of network configurations, if
ci 7→ (Si,A )ci+1(i ≥ 0) is satisfied, we call E the execution of algorithm A along the schedule
T from the initial configuration c0.

Definition 4. (Fair Schedule) If every process pi ∈ P appears infinitely often in a schedule T , we
call the schedule T a fair schedule.

We consider only fair schedules in this paper unless specifically mentioned. Each process operates
one atomic action when it is selected in a schedule. There are some scheduler models depending on
the number of concurrently operating processes and granularity of an atomic action. In this paper,
we consider the distributed daemon[4, 10] which assumes the followings:

• The number of the process : |Si| ≥ 1 for any i(≥ 0).

• An atomic action : Read data from all adjacent registers, update its internal state, and write
data to all adjacent registers.
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2.7 Self-Stabilizing Algorithm

An algorithm A is a self-stabilizing algorithm for CL E ⊂ C and is denoted SS(A , CL E ) if the
following two conditions hold. We call any configuration in CL E a consistent configuration for
algorithm A . If A is obvious, we just call it a consistent configuration.

1. Convergence: For an arbitrary configuration of the network c ∈ C and an arbitrary schedule
T , there is c′ ∈ CL E which appears in the execution of A with a schedule T .

2. Closure: For an arbitrary configuration c ∈ CL E , if c 7→ c′, then c′ is included in CL E .

The above conditions imply that starting from any configuration c ∈ C, algorithm A reaches a
consistent configuration c′ ∈ CL E within finite time, and remains in consistent configurations after
reaching c′.

2.8 Fair composition

A fair composition is a composition of self-stabilizing algorithms. When self-stabilizing algorithms
A1,A2, · · · ,Ak are converged, the output of Ak can be the input of Ak+1[5]. Ak+1 can be exe-
cuted whether algorithms A1,A2, · · · ,Ak are converged or not. After the convergence of algorithms
A1,A2, · · · ,Ak, algorithm Ak+1 begins to converge to a consistent configuration. When a fair
composition combines two algorithms A1 and A2, it satisfies the following conditions:

• A variable which can be written by A1 can be read by A2 but cannot be written by A2.

• A variable which can be written by A2 is never read or written by A1.

When a process executes an atomic action, it executes an atomic action of each of A1 and A2 in
this order. In a fair composition, if A1 converges to a consistent configuration, A2 will converge to
a consistent configuration within finite time. Obviously, a fair composition can be applied to three
or more algorithms.

2.9 maximal (σ, τ)-DAMG construction Problem

We define a maximal (σ, τ)-DAMG construction problem as follows.

Definition 5. Let G = (V,E) be an arbitrary undirected graph where σ nodes in the set S(⊂ V )
are specified as source nodes and τ nodes in the set T (⊂ V ) are specified as sink nodes. A maximal
(σ, τ)-DAMG is a mixed graph (consisting of both arcs and edges) obtained from G by assigning
directions to some edges of G (i.e., replacing some undirected edges of G with arcs) so that the
following conditions are satisfied.

1. Each node s ∈ S is a source node (or it has no incoming arc) having at least one outgoing arc
and each node t ∈ T is a sink node (or it has no outgoing arc) having at least one incoming
arc.

2. Each node v ∈ (V \(S ∪T )) is neither a source node nor sink node (i.e., it has no arc or it has
both an outgoing arc and an incoming arc).

3. No directed cycle exists.

4. If any one or more edges are further changed into arcs, at least one of the above three conditions
is violated.

We call a maximal DAMG because of the condition 4 and this implies that a maximal (σ, τ)-
DAMG has a maximal number of arcs. However there are some cases that no DAMG constructed
fromG can satisfy all the above conditions. For example, when three nodes in S form a line subgraph,
at least one of the edges adjacent to the center node (say v) has to be changed to an outgoing arc
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Figure 3: An example for all nodes in S cannot be source nodes

of v. But it makes the other end node (say u) have an incoming arc and thus u cannot be a source
node (Fig. 3). The same holds for T .

A problem which constructs a maximal (σ, τ)-DAMG (if possible) from any given undirected
graph G with specified source nodes S and sink nodes T is called a maximal (σ, τ)-DAMG construc-
tion problem. In this paper, we propose a self-stabilizing algorithm for the maximal (1,1)-DAMG
construction problem which handles one source node s and one sink node t only. Notice that a
maximal (1,1)-DAMG can be constructed from any connected graph.

3 Algorithm for constructing a maximal (1,1)-DAMG

In this section, we present our self-stabilizing algorithm for constructing a maximal (1,1)-DAMG in
an arbitrary anonymous connected network N = (P,L) which has two specific nodes s and t.

3.1 Overview of our proposed algorithm

In our algorithm, we divide the initial network N into some biconnected subgraphs which are con-
nected by articulation points. We call these biconnected subgraphs biconnected blocks. Moreover,
our algorithm constructs the DFS tree rooted at s on the initial network N . We denote a path from
s to t s − t and a path from s to t in a DFS tree rooted at s s

∗− t. Note that s
∗− t is the special

case of a s− t path.
Figure 4 shows an example of a maximal (1,1)-DAMG constructed on N . Fig. 4(a) illustrates

an initial network N and a DFS tree constructed on N is described in Fig. 4(b). Note that there is
the only one path from s to t (s

∗− t) in a DFS tree. Fig. 4(c) shows biconnected blocks which are
connected at articulation points.

In every biconnected block including an edge of the s
∗− t path, every edge is assigned a direction

so that a transport net is constructed where the source is the node nearest to s (s or an articulation
point) and the sink is the node nearest to t (t or an articulation point). In every other biconnected
block (including no edge of the s

∗− t path), no edge is assigned a direction. If some edges in the
biconnected blocks are assigned directions, some nodes other than s or t will be source or sink nodes
or some directed cycles will be created, thus, such biconnected blocks cannot include any arc. From
these properties, we design a procedure that constructs a maximal (1,1)-DAMG from an arbitrary
network N as follows.

1. Construct a DFS tree rooted at s.

2. Find articulation points, and divide N into biconnected blocks.

3. Find the s
∗− t path.

4. Classify biconnect blocks into 2 groups: one consists of all the biconnected blocks including
edges of s

∗− t and the other consists of the remaining biconnected blocks.

5. Find st-ordering of every biconnected block including an edge of the s
∗− t path.
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Figure 4: An example of a maximal (1,1)-DAMG

6. Construct a transport net based on the st-order in each of the biconnected block.

To implement the above procedure, we combine some self-stabilizing algorithms using the fair
composition[5]. More precisely, we use algorithm DFST [9] for step 1, algorithm FART [8] for step
2, and algorithm stORDER [2] for step 5. Therefore, we briefly introduce self-stabilizing algorithms
for steps 1, 2 and 5 due to the previous works, we mainly present self-stabilizing algorithms for
steps 3, 4 and 6. Figure 5 illustrates an overview of our algorithm. We introduce the algorithms to
implement the above procedure in sequence.

3.2 Algorithm DFST for constructing a DFS tree (step 1)

In this subsection, we briefly introduce a previous work, algorithm DFST , which constructs a DFS
tree rooted at s on the given network N = (P,L) (or graph G = (V,E)).

Algorithm DFST uses a traversal order of each node and the number of the decendants of each
process. Therefore, algorithm DFST requires only O(log n) as a message size. A traversal order
a natural number provisionally assigned to each process, and it is updated so that it matches the
actual number of the traversal order in the depth first search. Each child process sends the number
of its descendants to its parent process, and the parent process returns the traversal order of each
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Figure 5: An overview our algorithm

child node which is calculated using the number of each child node’s decendants.

The behavior of algorithm DFST is divided depending on whether the process is a source node
or not. Trivially, a source node does not have a parent node, thus its traversal order becomes 0.

We show an outline of algorithm DFST as follows:

1. A source node s determines one child node among its neighbor processes, assigns 1 and sends
it to the child node.

2. Each process finds its parent process among its neighbor processes, and receives its traversal
order.

3. At step 2, if there are two or more parent (candidate) processes, it selects a parent process so
that its traversal order becomes larger.

4. If there is no parent (candidate) process among its neighbor processes, it makes its traversal
order into ⊥, and waits until the neighboring process makes it a child node. A process which
has ⊥ as its traversal order becomes a childe node of a process whose traversal order is not ⊥.

5. Repeat these steps until reaching the leaf node.

6. From the leaf process, return the number of its descendants to its parent node until it reach
the root (a source node).

7. A process that receives the number of the decendants from its child node searches for a new
child node among its neighbor nodes and sends a new traversal order according to the number
of the decendants of its child node.

8. Return to step 2.

For more details, refer [9].
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3.3 Algorithm FART for finding articulation points (step 2)

In this subsection, we shortly introduce algorithm FART which finds all articulation points when a
DFS tree is constructed on the given network N = (P,L) (or graph G = (V,E)).

Algorithm FART uses traversal orders of the DFS tree and a variable LowLink. LowLink of
each node is either its parent node’s traversal order or the traversal order of the ancestral process
that is reachable without going through its parent process. In this algorithm, each process judges
whether it is an articulation point or not using its own traversal order and its LowLink. This implies
that each process can know whether it is an articulation point or not if it knows LowLink. Each
process can know its own traversal order of the DFS tree due to a fair composition.

We introduce how to calculate LowLink of each node as follows:

1. A source node s set its LowLink to 0.

2. The other process finds the minimum traversal order minTO among its neighbor processes.

3. If there is a neighbor process pn which has a smaller traversal order than it, compare its
neighbor process’ LowLinkn with minTO (step 2), and if its neighbor process’ LowLinkn is
smaller than minTO, set LowLinkn to its own LowLink, otherwise, set minTO to its own
LowLink (If there are two or more neighbor processes which has a smaller traversal order than
itself, finds the minimum LowLink among them.)

4. If there is no neighbor process which has a smaller traversal order than it, set minTO to its
own LowLink.

5. Return to step 2.

The value of LowLink is determined on each node by executing the above steps repeatedly. Each
node can determine whether itself is an articulation point or not using this calculated LowLink as
following.

• A source node s is an articulation point if it has two or more child nodes.

• The other process pi is an articulation point if there is a child process whose LowLink is the
same as pi’s traversal order.

For more details, refer [8].

3.4 Algorithm FSTP for finding a path from s to t (step 3)

In this subsection, we introduce algorithm FSTP for finding the s
∗− t path on a DFS tree, when a

DFS tree rooted at s is constructed on the given network N = (P,L) (or graph G = (V,E)).

Algorithm FSTP is executed on a DFS tree rooted at s, it ensures that each process which
appears in the s

∗− t path sets its local variable sink exists to true, and the other processes set it
to false. Algorihtm FSTP determines whether each process appears in the s

∗− t path or not using
the DFS tree; it can refer its parent process and a set of child processes which are obtained in step
1 (algorithm DFST [9]) due to the fair composition.

3.4.1 Overview of algorithm FSTP

We show an outline of algorithm FSTP in the following.

1. Process t : Set sink exists to true.

2. The other processes : Set sink exists to true if it has a child node of which sink exists is
true, otherwise, set to false.
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Figure 6: An execution example of algorithm FSTP

Figure 6 shows an execution example of algorithm FSTP . When algorithm FSTP is ex-
ecuted, t sets its local variable sink exists to true. Each process except t set its local variable
sink exists to true when it has a child of which sink exists is true. Therefore, processes appearing
in the s

∗− t path eventually set their local variable sink exists to true in sequence from t to s. The
processes that do not appear in the s

∗− t path update their local variable sink exists to false in the
order from leaf processes to their ancestors.

3.4.2 Variables of each process

In this subsection, we introduce local variables which are maintained by each process.

• A variable which is written to a register.

– sink existsi ∈ {true, false}: A boolean variable whether pi appears in the s
∗− t path.

• Constant variables of pi.

– Ni: A set of pi’s neighbor processes.

– childreni: A set of the child processes of pi on a DFS tree. Algorithm DFST [9] sets
this variable adequately and algorithm FSTP can read this variable due to the fair
composition.

Algorithm 1 shows an implementation of FSTP using the variables introduced above.

3.4.3 Proof of correctness

In this subsection, we prove the correctness of FSTP . Firstly we define a consistent configuration
as follows.
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Algorithm 1 Algorithm FSTP for finding the s
∗− t path.

1: struct x { sink exists ∈ {true, false} }
2: if pi is t then ▷ when pi is a sink node
3: while forever do
4: sink existsi ⇐ true
5: for every pk ∈ Ni do write(Rtk, sink existsi)
6: end while
7: else ▷ when pi is not a sink node
8: while forever do
9: for every k ∈ Ni do x[k] = read(Rki)

10: if ∃pj(∈ childreni), x[j].sink existsj then
11: sink existsi ⇐ true
12: else
13: sink existsi ⇐ false
14: end if
15: for every pk ∈ Ni do write(Rik, sink existsi)
16: end while
17: end if

Definition 6. (Consistent configuration of algorithm FSTP ) Configuration c of N is consistent for
FSTP if it fulfills the following two conditions:

1. For each process pi, pi’s local variable sink exists and each register Rij(∀pj ∈ Ni)’s sink exists
have the same value.

2. Only the processes in the s
∗− t path have their local variable sink exists set to true.

Now we prove the correctness of algorithm FSTP .

Lemma 1. Assume that a DFS tree rooted at s is constructed and every process has executed an
atomic action of the algorithm at least once. Even if algorithm FSTP starts execution from an
arbitrary configuration, each process in the s

∗− t path eventually sets its local variable sink exists
to true, and the other processes set sink exists to false. And these variables will remain unchanged
after convergence.

Proof. Due to the assumption, each process executes an atomic action of the algorithm at least once,
therefore, its local variable sink exists and each register’s sink exists written by the process have
the same value.
Each process in the s

∗− t path: t makes its local variable sink exists true by line 4 of Algorithm
1 and converges. After that, t’s parent process also makes its sink exists true by lines 10 and 11 of
Algorithm 1 and converges. As the same manner, all processes on the s

∗− t path update their local
variable sink exists to true in sequence toward s from t.
The other processes (not in the s

∗− t path): Each process which is not in the s
∗− t path does

not have a child process which eventually keeps its local variable sink exists true. If such a child
does not exist, it will make its sink exists false by line 13 of Algorithm 1. Therefore, all processes
which are not in the s

∗− t path make their sink exists false and converge.

The following theorem holds from the above Lemma.

Theorem 1. Algorithm FSTP is a self-stabilizing algorithm which finds the s
∗− t path from a DFS

tree.

3.5 Algorithm CLSP for a process classification (step 4)

In this subsection, we propose algorithm CLSP for classifying all processes into two groups, processes
in biconnected blocks including edges of the s

∗− t path and the others when the path s
∗− t and all
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articulation points are given. Note that we will construct a transport network using st-ordering only
on the biconnected blocks which include edges of the s

∗− t path. In our algorithm, all processes are
classified into three groups as follows (Fig. 7).

• (st-node) Processes becoming a source or sink node of the transport net constructed in each
of the biconnected blocks including edges of the s

∗− t path.

• (normal) Processes other than the st-nodes in each of the biconnected blocks including edges
of the s

∗− t path.

• (NULL) The processes other than the st-nodes and the normal nodes.

s

t

Figure 7: Process classification in algorithm CLSP

For the classification, algorithm CLSP uses a DFS tree rooted at s, the s
∗− t path and

articulation points. Now we define a specific process r′.

Definition 7. (Process r′) Let T be a DFS tree rooted at s in N and assume that u is an articulation
point. If u is removed from N , N is divided into two or more connected components. Each connected
subgraph N ′ which does not include s has a subtree T ′ of T rooted at a new process: a child process
of u in T . Process r′ is a process which becomes the root process of a subtree T ′ when a articulation
point u is removed.

Simply, process r′ is the child process of u in T .

s ࢇ	

ࢇ	

	

	
	









Figure 8: Process r′

Figure 8 illustrates an example of the process r′. If articulation point a1 is removed from the
network, p1 and p2 become r′. If articulation point a2 is removed, p3 becomes r′. The spanning
tree rooted at r′ is separated from the connected component that includes s if the articulation point
is removed. Hence, the articulation point (the parent process of r′) is necessary to reach s from
r′. r′ becomes the root process of the subtree of the DFS tree spanning over the biconnected block
except for parent (articulation point) of r′, thus, a path in the subtree starting at r′ forms a part
of the s

∗− t path if r′ appears in the s
∗− t path. To check whether a process is r′, we use the

variable Lowlink in the algorithm for finding articulation points (the step 2 of our algorithm) and
the traversal order (DFS preorder) of the DFS tree. Lowlinki of each process pi stores the minimum
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value of the traversal orders among the neighbors of pi’s descendants (including pi). To find Lowlink
distributedly, we define it as follows.

Definition 8. (Lowlink) Let r be the root of the DFS tree T . Lowlink of each process stores the
following value, where dfnum is the traversal order.

• Root process r

– Lowlinkr ⇐ 0

• Non-root process pi

– min adj Lowlink ⇐ min{∞, Lowlinkj |pj ∈ Ni, dfnumj > dfnumi}
– min adj dfnum ⇐ min{dfnumj |pj ∈ Ni}
– Lowlinki ⇐ min{min adj Lowlink,min adj dfnum}

When Lowlink of a non-root process stores the traversal order of its parent, the parent process
becomes an articulation point. Therefore, a process whose Lowlink stores the traversal order of its
parent process becomes r′.

Each process can determine what type among the three types it belongs to using the above
information. Algorithm CLSP can refer the variables of the three previous algorithms (step 1 to 3)
due to the fair composition.

3.5.1 Overview of algorithm CLSP

Algorithm CLSP classifies each node into one of the three types, and each type of the node fulfills
the following conditions.

• (st-node) A source or sink node of a transport net in the biconnected block that has an edge
in the s

∗− t path. Removing the st-node (except s and t) causes the disconnection of N , thus
st-node is an articulation point. When an articulation point has r′ as its child process in the
s

∗− t path, it becomes st-node.

• (normal) A normal process is a node except for the st-nodes that is included in a biconnected
block including an edge of the s

∗− t path.

• (NULL) A NULL process is a node in a biconnected block that includes no edge of the s
∗− t

path. Hence, NULL processes are r′ which is not in the s
∗− t path and its all descendant

nodes.

We introduce algorithm CLSP for classifying each node into the three types in the following
subsection.

3.5.2 Variables of each process

In this subsection, we introduce variables which are maintained by each process.

• A variable which is written to a register.

– nodetypei ∈ {stnode, normal,NULL}: The type of pi.

• Constant variables of pi.

– Ni: The set of pi’s neighbor processes.

– childreni: The set of pi’s child processes.

– pari: The parent process of pi.

– dfnumi: The traversal order of pi (of the DFS tree).

– lowi: Lowlink of pi.
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Algorithm 2 Algorithm CLSP for classifying of nodes

1: struct x { nodetype ∈ {stnode, normal,NULL} }
2: while forever do
3: for every pk ∈ Ni do x[k] = read(Rki)
4: if pi is s ∨ pi is t then
5: nodetypei ⇐ stnode
6: else if (sep tree root(i) ∧ ¬sink existsi) ∨ x[pari].nodetypepari = NULL then
7: nodetypei ⇐ NULL
8: else if arti ∧ (∃pj ∈ childreni, sep tree root(j) ∧ sink existsj) then
9: nodetypei ⇐ stnode

10: else
11: nodetypei ⇐ normal
12: end if
13: for every pk ∈ Ni do write(Rik, nodetypei)
14: end while

– sink existsi: A boolean variable to denote whether pi is on the s
∗− t path.

– arti: A boolean variable to denote whether pi is an articulation point or not.

Variables childreni, pari, dfnumi, and lowi are adequately set in steps 1[9] and 2[8], and
sink existsi is adequately set in algorithm FSTP introduced in the previous section. Algorithm
CLSP can refer these variables because of the fair composition. The value of arti can be determined
from the result of the algorithm of step 2[8].

Each process uses the following predicate.

• sep tree root(i) ≡ (lowi = dfnumpari)

True when Lowlink of pi is the same as the traversal order of its parent. Note that when true,
pi becomes r′.

Algorithm 2 shows an implementation of FSTP using the above variables and predicate.

3.5.3 Proof of correctness

In this subsection, we prove the correctness of algorithm CLSP . Before the proof, we introduce
some definitions.

Definition 9. (Each node’s type in a consistent configuration of algorithm CLSP )

1. nodetypei = NULL, if pi never appears in any s− t path.

2. nodetypei = stnode, if pi appears in every s− t path.

3. nodetypei = normal, all other processes.

Definition 10. (A consistent configuration of algorithm CLSP ) A configuration of N is consistent
for CLSP when N fulfills the following conditions:

1. Each nodetypei and each register Rij(∀j ∈ Ni)’s nodetype have the same values.

2. Each nodetypei satisfies Definition 9.

Lemma 2. Lowlink of pi and the traversal order of the parent of pi are the same if and only if pi
becomes r′,

Proof. (Proof of necessary condition): Let pi be any process other than the source node s and
pa be the parent process of pi. If the traversal order of pa and Lowlink of pi are the same, pa
becomes an articulation point. This implies that pi and its descendant processes can not connect
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with the process with a smaller traversal order than pa. Therefore, when pa is removed from T , N
is partitioned into the spanning tree rooted at pi and the others. In this case, pi becomes r′ from
Definition 7.
(Proof of sufficient condition): Assume pi becomes r′ of Definition 7 and pu is the parent
process of pi and an articulation point of N . Because of Definition 7, if pu is removed from T , N is
partitioned into two or more connected components one of which consists of nodes appearing in the
subtree of T (say T ′) rooted at pi. No process in T ′ connects with the processes out of T ′ except of
pu. Thus pu has a smaller traversal order than any processes in T ′. Therefore, Lowlink of pi is the
same as the traversal order of pu due to Definition 8 (Lowlink).

Lemma 3. Each process which never appears in any s− t is classified into NULL.

Proof. If process pi never appears in any s − t, pi does not appear in the s
∗− t path neither. In

addition, to reach s from pi, the nearest articulation point which is the ancestor process of pi has
to be visited. This implies that pi is r

′ of the articulation point or its descendant process.

1. When pi is r′: pi is r′ and is not in the s
∗− t path, thus sep tree root(i) ∧ ¬sink existsi

becomes true. nodetypei becomes NULL by lines 6 and 7 of Algorithm 2.

2. When pi is r
′’s descendant: Because pi is not in any s−t path, r′ is not in the s

∗− t path. This
makes r′ NULL (refer the above case 1.), and its child processes become NULL. Therefore all
descendant processes of r′ become NULL.

Lemma 4. All processes in the biconnected block which includes an edge of the s
∗− t path are

classified into st-node or normal.

Proof. We prove the lemma by contradiction. Assume a process pi appears in some s− t path, and
becomes NULL. By lines 6 and 7 of Algorithm 2, pi becomes a NULL process when it is r′ not in
the s

∗− t path or its parent process is NULL.

1. Case that pi is r
′ which is not in the s

∗− t path: The subtree of the spanning tree rooted at pi
does not include t. This implies that any path from pi to t must include the articulation point
which is an ancestor of pi. The path from pi to s must include the same articulation point.
Therefore, the same process appears twice in any s − t in which pi appears, this contradicts
the assumption.

2. Case that parent node of pi is NULL: Let pj be the parent node of pi. pj executes the same
algorithm, thus the condition of the classification is also the same. If pj is r′ which is not in
the s

∗− t path (refer the above case 1.), this contradicts the assumption due to the case 1.
Otherwise, there must be a process which is the same as the case 1 in pj ’s ancestors because
the number of processes is finite.

Lemma 5. Each process which is included in every s− t path is classified into st-node.

Proof. If pi is s or t, nodetypei becomes st-node due to lines 4 and 5 of Algorithm 2. Thus we
consider only the case that pi is neither s nor t.

Because pi is included in every s − t path, pi also appears in the s
∗− t path. If pi is removed

from the network N , t is separated from s, hence pi is an articulation point. Therefore, pi has the
child process r′, and becomes st-node due to lines 8 and 9 of Algorithm 2.

Lemma 6. Assume that all processes execute an atomic action of algorithm CLSP at least once.
On the DFS tree rooted at s, after both Algorithm FART for finding articulation points and Algo-
rithm FSTP for finding the s

∗− t path converge, even when algorithm CLSP is executed from any
configuration, all processes converge to a consistent configuration (Definition 10) within finite time.
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Proof. Due to the assumption, each process executes an atomic action of algorithm CLSP at least
once, therefore, its local variable sink exists and each register’s sink exists written by the process
have the same value. Each st-node process (will converge to st-node) determines its type (st-node)
with refering the following information: articulation points, the s

∗− t path and r′ due to lines 4, 5,
8 and 9. And its type remains unchanged and satisfies Lemma 5. Each NULL process which is r′

and the r′ is not included in the s
∗− t path determines its type with referring invariant information,

thus its type remains unchanged. And NULL process whose parent is NULL eventually determines
its type and converges by lines 6 and 7 of Algorithm 2 (Lemma 3). All st-node and NULL processes
determine their type and converge, each normal process can determine its type and satisfy Lemma
4. From the above convergences, each process is classified within finite time and satisfies Lemma 15,
that is algorithm CLSP can reach a consistent configuration.

The following theorem holds by Lemma 6.

Theorem 2. Algorithm CLSP is a self-stabilizing algorithm which classifies each process into one
of the three types: st-node, normal and NULL.

3.6 St-ordering algorithm stORDER(step 5)

Assume that the DFS tree rooted at s is constructed, the s
∗− t path and all articulation points are

found and all processes are classified into the three types (st-node, normal, NULL) in N = (P,L)
(or G = (V,E)). We use an st-ordering algorithm introduced in [2] which can be executed only on
a biconnected network. However we partition the network into biconnected blocks in steps 1 to 4
of our proposed algorithm, therefore we can adopt the st-ordering algorithm in each biconnected
block2. An st-ordering algorithm uses the following information: a parent process in the DFS tree,
a set of descendant processes, a traversal order and Lowlink. These all information can be obtained
in steps 1 to 4, thus the st-ordering algorithm can be correctly executed in our proposed algorithm
using the fair-composition.

Note that an articulation point which is classified into st-node is responsible for both a source
node and a sink node. Figure 9 illustrates an example of an articulation point which is an st-
node. In this case, p1 and p2 consider α as a sink node but α is considered as a source node by
p3 and p4. Thus, each st-node maintains the variables of both a source node and a sink node, and
also operates as both of them in the st-ordering algorithm. Each neighbor process of an st-node
determines whether it is a source or a sink node using Lowlink and a traversal order. In Fig. 9,
Lowlinks of p1 and p2 are lower than the traversal order of process α, and Lowlinks of p3 and p4
are the same as the traversal order of α. Moreover, each NULL process does not refer its neighbor
processes’ information and each neighbor process of a NULL process does not refer its information.
As a result, an st-ordering to construct a transport net is archived at each biconnected block.

3.7 Algorithm CTRN for constructing a transport net on each block (step
6)

In this subsection, we introduce a self-stabilizing algorithm for constructing a transport net (for step
6) using st-ordering decided in step 5. As we introduced in the Sections 1 and 2, a transport net can
be easily constructed when st-order is decided on each node. We introduce algorithm CTRN for
constructing a transport net on each biconnected block, a maximal (1,1)-DAMG can be constructed
when the algorithm CTRN converges.

Algorithm CTRN is executed on each biconnected block, and each node in the biconnected block
maintains its own st-order. Note that each articulation point in s

∗− t is included two biconnected
blocks and maintains two st-order, one is for a source node (in a biconnected block), another is

2The st-ordering algorithm assumes that the number of the processes in the network is given, but st-ordering can
be achieved even the number of the processes is unknown. In [2], each node calculate its own st-number based on its
parent node’s one in the DFS tree rooted at the source node of which st-number is 1. The st-number of the sink node
eventually becomes the same number as the total number of nodes n regardless of assigning n to the sink node.
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Figure 9: An articulation point which is responsible for both a source and a sink nodes

for a sink node (in a biconnected block). Each st-order is decided when the algorithm for step 5
converges, and it can be referred by each node due to a fair composition.

3.7.1 Overview of algorithm CTRN

We show an outline of algorithm CTRN as follows.

1. An articulation point : Use its sink st-number for processes in the same block, and its source
st-number (fixed at 1) for processes in the other block. Assignment directions to each edge is
the same as follows (the other process).

2. The other processes : If its own st-number is ⊥, it makes all edges (or arcs) into (undirected)
edges. If not, check all neighbor node’s st-number. If there is an st-number which is larger than
its own st-number, changes a corresponding edge into an outgoing arc. Otherwise, changes
a corresponding edge into an incoming arc. If a neighbor node’s st-number is ⊥, remains a
corresponding edge undirected (or changes an arc to an edge).

3.7.2 Variables of each process

In this subsection, we introduce local variables which are maintained by each process.

• A variable which is written to a register.

– dik ∈ {IN,OUT,NULL}: A variable stores the direction from pi to pk (pk is a neighbor
process of pi). If there is no direction between pi and pk, dik = NULL.

• Constant variables of pi.

– Ni: A set of pi’s neighbor processes.

– STi: An st-number of pi. If pi is an articulation point, STi stores its st-number as a
(virtual) sink node.

– arti: A boolean variable to denote whether pi is an articulation point or not.

Algorithm 3 shows an implementation of CTRN using the variables introduced above.
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Algorithm 3 Algorithm CTRN for constructing a transport net.

1: struct x { ST ∈ N }
2: while every k ∈ Ni do
3: x[k] = read(Rki)
4: if arti = true ∧ k is not in the same block then
5: STt = 1 ▷ pi is a (virtual) source node
6: else
7: STt = STi

8: end if
9: if STt = ⊥ ∨ STk = ⊥ then

10: dik ⇐ NULL
11: else if STt < STk then
12: dik ⇐ OUT
13: else
14: dik ⇐ IN
15: end if
16: end while

4 Summary

In this paper, we defined a new network structure named maximal (σ, τ)-DAMG and we proposed a
self-stabilizing algorithm for constructing a maximal (1,1)-DAMG in an arbitrary connected network.
We also presented the correctness proof of our proposed algorithm. However, our algorithm consists
of several self-stabilizing algorithms using the fair composition, and its convergence time becomes
much longer when the scale of the network becomes larger even if the topology of the network is
nearly unchanged. We consider the analysis of the time complexity to converge of our algorithm as
a future work. Moreover we are finding the way to simplify our algorithm.

We had already obtained a self-stabilizing algorithm for constructing a maximal (1,2)-DAMG
from any arbitrary connected network, however we can not introduce it in this paper due to the lack
of space.

Designing the generalized algorithm for constructing a maximal (σ, τ)-DAMG for any σ and τ
is a future work. In a maximal (σ, τ)-DAMG, we assume that each source node has a directed
path to at least one sink node. However, we can also consider a maximal (σ, τ)-DAMG in which
every source node in S is reachable to every sink node in T . We call this a maximal strong-connected
(σ, τ)-DAMG, and consider it as one of the future works. Finally, finding the necessary and sufficient
condition for existing consistent a maximal (strong-connected) (σ, τ)-DAMG is also an important
future work.
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