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Abstract

Graph algorithms play an important role in several fields of sciences and engineering. Promi-
nent among them are the All-Pairs-Shortest-Paths (APSP) and related problems. Indeed there
are several efficient implementations for such problems on a variety of modern multi- and many-
core architectures.

It can be noticed that for several graph problems, parallelism offers only a limited success
as current parallel architectures have severe short-comings when deployed for most graph algo-
rithms. At the same time, some of these graphs exhibit clear structural properties due to their
sparsity. This calls for particular solution strategies aimed at scalable processing of large, sparse
graphs on modern parallel architectures.

In this paper, we study the applicability of an ear decomposition of graphs to problems such
as all-pairs-shortest-paths and minimum cost cycle basis. Through experimentation, we show
that the resulting solutions are scalable in terms of both memory usage and also their speedup
over best known current implementations. We believe that our techniques have the potential to
be relevant for designing scalable solutions for other computations on large sparse graphs.
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1 Introduction

Graphs are of fundamental importance to several disciplines in sciences and engineering with appli-
cations to biological and social phenomenon. As graphs corresponding to real-world and practical
applications have a massive size, parallel processing is often necessary. It is therefore natural that a
lot of current research is directed towards efficient algorithmics on a variety of modern and emerging
multi- and many-core architectures [4, 28, 5, 34].

On the other hand, it is observed by several authors that the characteristics of most modern
architectures are not well-suited for efficient execution of graph algorithms. The highly irregular
nature of memory accesses of graph algorithms induces a heavy burden on the I/O system of mod-
ern architectures. Recent work on efficient parallel algorithmics for graph problems is aimed at
addressing this issue via novel data structures and memory layout optimizations [7, 13].

As the sizes of the graphs of interest are large, there has been a renewed interest in novel
algorithmic enhancements for known graph problems. An approach to address this problem is to
understand the structural properties of graphs and redesign algorithms that can better exploit such
properties for gains in efficiency. Examples of this approach can be seen in works of Cong and Bader
[2] for identifying the biconnected components of a graph, Banerjee et al. [4] for graph algorithms
such as BFS, connected components, and APSP, and Hong et al. [17] for identifying the strongly
connected components of a directed graph.

This paper presents some novel insights along the same direction on two well studied graph
theoretic problems. We first consider the problem of computing shortest paths between all pairs of
nodes in a weighted graph which we denote by APSP. As an application of the APSP problem, our
second problem (denoted by MCB) is to obtain a minimum weight cycle basis of a weighted graph —
essentially, to find a set of basis cycles with the least total weight such that every other cycle can
be represented as a linear combination of the basis cycles. The MCB problem has applications to
problems in biochemistry [14], three-dimensional surface reconstruction from a point cloud [15] and
electric networks [11].

The main tool behind the algorithms presented in this paper is an ear decomposition of a graph.
We observed that the degree-two nodes can be considered differently from the higher degree nodes
for problems that are based on paths in graphs. Consider, e.g., a sequence of connected degree-
two vertices u1 − u2 − u3 − . . . uk that is present in some graph. Then, for any s and t chosen
not among them, any path between s and t either passes through all or none of the uis. We
also observed that several real-life instances contain a significant number of degree-two nodes (see
Table 1). Ear decomposition is a technique to identify the structural composition of a graph in
terms of sequences of degree-two nodes (aka. ears). We show how ear decomposition can lead
to significant improvements on APSP (thereby also affecting MCB) apart from making the algorithms
scalable. Along the way, we introduce novel and non-trivial pre-processing and post-processing steps
that are crucial for obtaining an efficient algorithm for each of the problems. In a recent work, we
have used the ear decomposition of a graph to obtain efficient parallel algorithms for computing the
betweenness-centrality values at each node of a graph [32].

Our algorithms for APSP and MCB have a common blueprint. It is well known that a graph has
an ear decomposition if and only if the graph is biconnected [33]. The decomposition of such a
graph into its ears allows us to systematically remove the nodes of degree two in the preprocessing
stage and focus on a smaller network built only on the higher degree nodes that we call as a reduced
graph. Such a decomposition is helpful in the context of parallel graph algorithms to increase the
available parallelism in the computation and decrease the work required. It should be noted that
ear-decomposition is a linear-time process and moreover, has an efficient parallel implementation as
well [33]. In the next stage we run a parallel adaptation of one of the existing algorithms for APSP

and MCB, with appropriate modifications, on the reduced graph. We observed a drastic reduction
in the running time due to the small size of this graph compared to the original one. In the post-
processing stage, we extrapolate the results obtained on the reduced graph to the original graph
which is again a linear-time process.

The main technical contributions of this work are summarized below.

• We design appropriate pre-processing and post-processing routines that leverage the ear-
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decomposition of a graph to efficiently solve the APSP graph problem (Section 2) and the
MCB problem (Section 3).

• We implement our algorithms on a heterogeneous platform consisting of an Intel i5 E2650
multicore CPU and an NVidia Tesla K40c GPU. For our implementation to be efficient, we
introduce dynamic work balancing techniques via a work queue.

• We analyze the benefits of our approach by conducting a wide variety of experiments on
real-world graphs of size ranging from 10 K nodes to 130 K nodes. Our approach results
in an 1.7x improvement on average over the corresponding best known implementation of
APSP on real-world graphs. When compared to a technique without ear-decomposition, our
ear-decomposition based algorithm for MCB results in about 3x improvement.

1.1 Related Work

Graph algorithms on a variety of emerging architectures have been studied in several recent works.
We focus only on those that are directly relevant to our paper.

APSP Parallel implementations for the APSP problem have been a topic of immense research
interest over the decades on a variety of architectures. One of the earliest works on parallel shortest
path problem was proposed by Micikevicius et al. in [30] that was subsequently improved by Harish
and Narayanan [16]. The algorithm of Floyd and Warshall (cf. [9]) has been the choice of several
parallel implementation as the algorithm allows one to study cache blocking techniques. Examples
of this approach can be seen in Buluc et al. [5], Matsumoto et al. [28] and Katz et al. [23]. The
above works report results on a variety of CPU and GPU architectures.

Recent GPU algorithms for the APSP problem are reported in Banerjee et al. [4] and Djidjev
et al. [12]. Djidjev et al. [12] use graph decomposition via Parmetis [22], compute shortest paths
within the partitions and extend the same to paths across partitions. They work mostly with planar
graphs to ensure a good partition. Banerjee et al. [4] use a decomposition based on biconnected
components to compute shortest paths in a large sparse graph.

A decomposition technique called the hammocks-on-ears decomposition has been proposed by
Kavvadias et al. [27] along with a PRAM algorithm for obtaining such a decomposition. The
hammocks they propose have stronger properties than an ear decomposition. But, the parallel com-
putation of such a decomposition and the post-processing can turn out to be more time consuming
in practice.

Minimum Cycle Basis Minimum Cycle Basis problem has been well studied in the sequential
domain. There are several known algorithms for computing the MCB in an weighted undirected
graph. The first polynomial algorithm was suggested by Horton [18]. Horton [18] computes an MCB
in time O(m3n). De Pina [11] gave an O(m3 + mn2) approach by using a different method. Recent
contributions by Telikepalli et al. [25] have brought down the complexity to O(m2n + mn2 log n)
by using a fast matrix multiplication based approach. Mehlhorn et al. [29] further describes a
O(m2n/ log n+n2m) algorithm for undirected weighted graphs and also provided for a simpler way
to obtain the shortest cycle in each phase. Amaldi et al. [1] characterizes the Horton cycles to
obtain a restricted set of cycles known as the isometric cycles and provides an improved O(mω)
Monte Carlo algorithm where ω is the exponent of the fast matrix multiplication.

2 Our Approach for APSP

We start with graphs that are biconnected (Section 2.1) and extend our approach to graphs that
are not biconnected in Section 2.2.

75



Applications of Ear Decomposition to Efficient Heterogeneous Algorithms

2.1 APSP for Biconnected Graphs

We now present our algorithm for APSP on biconnected graphs using the technique of ear decompo-
sition. Algorithm 1 describes a brief pseudocode of our three phase algorithm followed by the details
of each phase. The label {cpu,gpu} in Algorithm 1 is used to indicate that the corresponding task is
computed in a heterogeneous manner on both the GPU and CPU. The labels {cpu} (resp. {gpu})
are used to indicate tasks that are executed solely on the CPU (GPU).

Algorithm 1 APSP(G)

1: /* Phase I: Preprocessing */
2: {gpu}: Gr = Reduce(G)
3: /* Phase II: Processing */
4: {cpu,gpu}:
5: for each s ∈ V (Gr) do
6: DIJKSTRA(Gr, s) /* Find shortest paths from s */
7: end for
8: /* Phase III: Post-processing */
9: {cpu,gpu}:

10: for each s ∈ G \Gr in parallel do
11: UPDATE DISTANCE(s).
12: end for

2.1.1 Preprocessing

Let G be a sparse and biconnected graph. It is known that a biconnected graph possesses an ear
decomposition. An ear decomposition of a graph G = (V,E) is a partitioning of the edges of G into
simple paths (ears) P0, P1, · · · , as follows (see also [33]).

• P0 is an edge uv,

• P0 ∪ P1 is a simple cycle, and

• The end points of path Pi, for i ≥ 2, are on the paths P0, P1, · · · , Pi−1, and path Pi has no
other nodes common with the nodes on the paths P0, P1, · · · , Pi−1.

In such a decomposition, nodes of degree two, except possibly those on ear P0, appear on exactly
one ear. We show that such nodes of degree two can be removed from G. We call the resulting graph
of G as the reduced graph Gr. One can formalize the notion of the reduced graph Gr = (V r, Er,W r)
as follows. The nodes of Gr are the nodes of G that have a degree at least three. Two nodes v and
w in Gr are neighbors if and only if v and w belong to a common ear P of G and have no nodes of
degree three or more in between them on the ear P . The weight of an edge vw in Gr set as the sum
of the weights of the edges vx1, x1x2, · · · , xiw in G such that nodes x1, x2, · · · , xi are consecutive
vertices on P with degree two in G and are in between v and w on the ear P in G. For a node
xi, i > 1, of degree two on ear P = (x1x2 · · ·xk) in G, we define functions left and right of xi in
Gr, denoted left(xi) and right(xi), as the nodes of degree at least three on P that are closest to
xi towards x1 and xk respectively. For instance, in the above example with v, x1, x1, x2, · · · , xi, w
being on the same ear in that order with v and w having degree more than 2 and the xis having
degree of 2, left(x) = v and right(x) = w.

Notice that during the construction of the reduced graph, there could be multiple edges between
nodes in the reduced graph. In this case, since we are interested in shortest paths, we retain the
edge with the shortest weight and discard the remaining edges.

2.1.2 Phase II: Processing

In this phase, we find the shortest paths between all pairs of nodes in the reduced graph Gr. From
each node v in Gr, we essentially run the algorithm of Dijkstra [9] that finds the shortest paths from
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Figure 1: In the figure on the left, nodes completely filled appear in the reduced graph and shaded
nodes are removed in Stage II of preprocessing.

v to all other nodes t in Gr. In short, we obtain all the shortest path values Sr[s, t] | ∀{s, t} ∈ Gr.
We use the GPU implementation of Dijkstra’s algorithm due to Harish et al. [16]. On CPU,
we run multiple instances of Dijkstra’s algorithm from different vertices of Gr. Each instance of
Dijkstra’s algorithm is run on an individual thread. The algorithm of Dijkstra is preferred over
other shortest path algorithms for reasons including the ability to run each instance of Dijkstra’s
algorithm independently by a thread and the work involved in Dijkstra’s algorithm depends linearly
on the number of edges in the graph.

2.1.3 Post-processing

In this phase, we use the shortest paths in Gr to compute the shortest paths across all pairs of
nodes in G. Consider the shortest paths originating from a node x in G \Gr with left(x) = `x and
right(x) = rx, left(y) = `y and right(y) = ry as shown in Figure 1. The shortest path between such
nodes x and y has to use one of `x or rx to leave the ear P = (a · · · `x · · ·x · · · rx · · · b) and one of
`y or ry to enter the ear Q = (c · · · `y · · · y · · · ry · · · d). If the four pairwise shortest paths between
`x, rx, and `y, ry are given, marked with double lines in the right figure of Figure 1, the shortest
path from x and y can be obtained as the shortest among the four possible paths.

For paths from x that end at nodes y with left(x) = left(y) and right(x) = right(y), the shortest
xy path is either the unique xy-path along P that does not use `x and rx, or the path x− `x−rx−y
that crosses P via `x, reenters P via rx and then reaches y. Paths from x that end at nodes y such
that x and y have different left and/or rightnodes, have to necessarily go via `x or rx.

Let S[s, t] store the weight of the shortest path between s and t in G and wt(a, b) represents the
weight of the edge ab. Clearly, for all u, v ∈ V r, S[u, v] = Sr[u, v] since the reduced graph preserves
shortest-path distances between vertices of degree at least 3. To compute shortest path S[x, v]
between any v ∈ V r and any x ∈ V \V r, consider the ear P on which x lies and let left(x) = `x and
right(x) = rx (v may coincide with `x or rx). We can compute

S[x, v] = min
{
Sr[`x, v] + wt(x, `x), Sr[rx, v] + wt(x, rx)

}
.

Now we consider the most general case of computing S[x, y] for nodes x, y ∈ V \ V r. For this
case, let `x, rx and `y, ry be the left and right nodes of x and y respectively (`x may coincide with
`y or ry, and similar reasoning applies to rx). Using the same idea as above, we can compute

S[x, y] = min


wt(x, `x) + Sr[`x, `y] + wt(`y, y),
wt(x, `x) + Sr[`x, ry] + wt(ry, y),
wt(x, rx) + Sr[rx, `y] + wt(`y, y),
wt(x, rx) + Sr[rx, ry] + wt(ry, y).


The call to UPDATE DISTANCE(s) in this phase essentially computes S[s, t] for all t ∈ G by

using the appropriate formula described above.
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2.2 Extension to General Graphs

As we are interested in large sparse graphs, it is very likely that our graphs are not 2-connected
or even 2-edge-connected. Quite contrary, large sparse graphs arising out of real-world phenomena
tend to have several 2-connected components of varying sizes. In such a scenario, such graphs do
not have a ear decomposition as being 2-edge-connected is a necessary (and sufficient) condition for
having an ear decomposition [33].

To make use of Algorithm 1, in a preprocessing step we start by partitioning G into its biconnected
components G1, G2, · · · each of which is 2-connected. We now obtain an ear decomposition of
G1, G2, · · · , and obtain their respective reduced graphs Gr

1, G
r
2, · · · ,. Let Ar

1, A
r
2, · · · , denote the set

of articulation points (APs) in Gr
1, G

r
2, · · · , respectively. We let a = |∪iAr

i |. The quantity a denotes
the number of articulation points in G.

In the processing step, we now find the shortest paths between pairs of nodes in each Gr
i individ-

ually, and in parallel. We store the computed results in a table Ai that stores the shortest distance
between pairs of nodes in Gi.

Our post-processing is now spread across two stages. In Stage 1, for each i = 1, 2, · · · we extend
the shortest paths between pairs of nodes in the ear graph Gr

i to shortest path between pairs of
nodes in Gi. This is done as described in Section 2.1. These results are also stored in tables Ai for
i = 1, 2, · · · . To compute shortest paths across pairs of nodes in different biconnected components
we proceed as follows.

In Stage 2 of post-processing, we use the notion of the block-cut tree of a graph as described in
[4]. The block-cut tree B of a graph G has nodes corresponding to the biconnected components of
G. An edge exists between two nodes v and w in B if the corresponding biconnected components
in G share an articulation point. We use the block-cut tree to find the shortest distance from each
articulation point to every other articulation point in G. These results are stored in a table A of
size a × a. We use A to compute distance between nodes of different biconnected components, Gi

and Gj .

For nodes n1 ∈ Gi and n2 ∈ Gj | i 6= j, d(n1, n2) = min(d(n1, a1) + d(a1, a2) + d(a2, n2)) where
a1 and a2 are the AP’s corresponding to Gi and Gj which are on the path from Gi and Gj .

2.3 Implementation Details

In our heterogeneous implementation of the processing and the post-processing step, we notice that
work balancing is needed between the CPU and the GPU. Since a static approach for work balancing
can fall short of the desired work balance, we use our custom work queue (from [19]). The workunits
correspond to the processing (resp. post-processing) with respect to each biconnected component of
the graph. For reasons of efficiency, the work units are sorted according to the size of the biconnected
component and arranged in sorted order so that the GPU starts accessing the bigger workunits. If
the graph is already biconnected and we are using Algorithm 1, then the workunits can correspond
to the processing required with respect to a vertex. As is done in [19], the CPU and the GPU access
workunits from the queue from either end points, and also in proportion to the number of threads
supported on the CPU and the GPU.

Since the matrix A is needed by both the CPU and the GPU in the post-processing step, the
matrix A is kept in the memory of both the CPU and the GPU. This forces us to limit our experiments
to fit the available space on the GPU. One advantage of our method is that the space used to store
all the shortest path values is in O(a2 +

∑
i n

2
i ) where ni refers to the number of nodes in Gi. In

most sparse graphs, the above quantity is usually much smaller than O(n2) that is required to store
the shortest path values. See also Table 1 for evidence for this phenomenon.

2.4 Results and Analysis

In this section, we show experimental results of our algorithm and also compare the results with
related approaches. We start by describing our experimental platform and the datasets used.
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2.4.1 Our Experimental Platform

Our experiments are conducted on a multicore CPU and an NVidia GPU. We use the Intel E5-2650
CPU for our experiments on a multicore CPU. The E5-2650 is a dual processor with each processor
having 10 cores. With hyper-threading each core can support two logical threads. The cores operate
at a frequency of 2.3 GHz that can be boosted up to 3 GHz using the turbo boost technology. The
E5-2650 has 128 GB RAM and a memory bandwidth of 68 GB/s. In addition, the memory hierarchy
includes a 64 KB L1 cache per core, a 256 KB L2 cache per core, and a shared 25 MB L3 cache.

The NVidia Tesla K40c GPU houses 2880 cores over 15 SMs, with each core clocked at 745 MHz,
providing a peak double precision floating point performance of 1.43 TFLOPS and single precision
floating point performance of 4.29 TFLOPS. The K40c GPU has an on board GDDR5 RAM of 12
GB that is served by a 288 GB/sec channel. Each SM also has a 64 KB configurable cache to exploit
data locality.

CPU: OpenMP - Application Program Interface OpenMP (Open Multi-processing) is an
application programming interface (API) that supports multi-platform shared memory multipro-
cessing programming in C, C++, Fortran, on most platforms, processor architectures and operating
systems. The API is simple and flexible enough for developing parallel applications for platforms
ranging from standard desktop computer to the supercomputer.

Using OpenMP, the section of code that is meant to run in parallel is marked with a preprocessor
directive, the master thread forks a specified number of slave threads and the system divides the
task among them. The threads run concurrently, with the runtime environment (defined using
environment variables) allocating threads to different processor. After the execution of parallelized
code, the threads join back into the master thread, which continues onward to the end of the program.

We refer the reader to OpenMP tutorial [6], for detailed information about compiler directives,
library routines, and environment variables.

GPU: CUDA - Application Program Interface CUDA (Compute Unified Device Architec-
ture) is an API created by NVIDIA. It allows programmers to use CUDA-enabled GPU for general
purpose programming - an approach known as GPGPU. The CUDA platform is a software layer that
gives direct access to the GPU’s virtual instruction set and parallel computing elements. The CUDA

platform is designed to work with programming languages such as C, C++ and Fortran.

We refer the reader to CUDA programming guide [31], for detailed information about programming
model, interface, runtime, guidelines and extensions.
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Table 1: List of sparse graphs that we use in our experiments. In the column labeled “Largest
BCC (%)”, we show the number of edges in the largest BCC of the graph as a percentage of the
number of edges in the graph. The column labeled “Nodes Removed (%)” shows the percentage of
the nodes removed by our algorithm during the preprocessing step. The column “Our’s memory”
lists the total memory used by our algorithm as compared to the memory required to store the table
of shortest distance across all pairs of vertices. The latter value is shown in the column labelled
“Max Memory”. Note that storage requirements are shown rounded to the nearest Megabyte (MB).

Graph |V |E| #BCCs Largest Nodes Our’s Max
BCC (%) Removed Memory Memory
(% |E|) (% |V |) (MB) (MB)

Graphs taken from [10]
nopoly 10K 30K 1 100 0.018 443 443
OPF 3754 15K 86K 1 100 1.98 873 909
ca-AstroPh 18K 198K 647 98.43 15.85 970 1344
as-22july06 22K 48K 13 99.9 77.60 851 2012
c-50 22K 90K 1 100 52.04 651 1914
cond mat 2003 31K 120K 2157 80.52 26.88 1826 3705
delaunay n15 32K 98K 1 100 0 4096 4096
Rajat26 51K 247K 5053 95.17 32.92 7176 9934
Wordnet3 82K 132K 156 98.92 77.24 4663 26071
soc-signs- 131K 841K 609 99.7 67.86 12932 66294
-epinions

Graphs generated using the OGDF framework [8]
Planar 1 19K 54K 46 99.55 12.42 1278 1296
Planar 2 25K 64K 164 93.65 5.63 1627 1881
Planar 3 30K 70K 298 96.53 19.72 2068 2275
Planar 4 36K 94K 175 98.37 18.56 3890 4074
Planar 5 41K 128K 223 95.63 16.34 4350 4942

2.4.2 Datasets

We experiment on two datasets: general graphs and planar graphs. General graphs for our exper-
iment are taken from the dataset of sparse graphs from the University of Florida Sparse Matrix
Collection [10]. These graph come from domains such as geometric, social networks, collaboration,
and peer-to-peer networks. The planar graphs shown in Table 1 were generated using the OGDF
framework [8] using methods that generate connected graphs. Some of the characteristics of the
graphs considered are listed in Table 1. It can be observed that our dataset has a good diversity.
The size of the graphs ranges from 10 K to 130 K, and the number of nodes of degree two range
between 0% to 60%. Further, the size of the largest BCC as a percentage of edges also varies between
80% to 98%.

2.4.3 Results

We now compare the results of our algorithm labeled as “Our Approach” with two related ap-
proaches: the approach of Djidjev et al. [12] that works for planar graphs, and the approach of
Banerjee et al. [4] that works for general graphs. We start by briefly describing these approaches.

Comparison with Djidjev et al. [12] for planar graphs The algorithm of Djidjev et al.
[12] works as follows. As part of their approach, Djidjev et al. [12] starts by partitioning the
input graph into k parts using the METIS decomposition [21]. The partitioning is used to define
a boundary graph that contains nodes of the input graph that are the end points of edges that go
across partitions. Once the shortest paths in each partition are obtained, the boundary graph is
augmented with edges uv such that u and v are in the same partition and the weight of the edge uv
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Figure 2: Figure displays the absolute time taken by our approach, labeled “Our Approach” com-
pared to [4] for general graphs and [12] for planar graphs.

is set to be the shortest distance between u and v as computed in the previous step. The shortest
paths in the boundary graph are computed in a recursive fashion followed by the shortest paths in
each partition. For further details we reader can refer to [12].

It is worthwhile to note that while the algorithm presented by Djidjev et al. [12] works for any
general graph, the approach is efficient for particular classes of graphs, including planar graphs with
the property that the number of vertices in the boundary graph is guaranteed to be small. For this
reason, their experimental results are shown only for planar graphs.

The speedup achieved by our implementation on planar graphs compared to Djidjev et al. [12]
approach is shown in Figure 2. It contains the overall timings for our implementation along with
Djidjev’s for planar graphs on the Y1-axis on the right. The Y2-axis denotes the speedup achieved
by our algorithm. The timings displayed on the Y1-axis are on a logarithmic scale. An average
speedup of 2.2x achieved is mentioned in the right most column of Figure 2. As most planar graphs
contain a good percentage of degree-2 vertices we conclude that our approach for real world planar
graphs is more beneficial compared to [12].

Comparison with Banerjee et al. [4] The algorithm provided by Banerjee et al. [4] works
by decomposing the graph as follows. Given an input graph G, it constructs a block-cut tree for
G. It then computes the shortest paths within each biconnected component and later extends the
computation of shortest paths across the blocks. The algorithm also optimizes the run time by
removing the iterative pendants vertices. That is, it initially removes vertices of degree-1 from the
graph. It then checks if the degree of any vertices adjacent to the vertices removed in the first
iteration, degenerates to 1. This method, though reduces the computation time compared to other
existing algorithms for real world sparse graphs, it does not effectively benefit from the degree-2
vertices present in the graph. Also this model requires more storage compared to our approach.
For further details interested reader can refer to [4]. To illustrate our algorithm’s computational
efficiency we compare our results with Banerjee et al. [4] for general graphs.

Figure 2 shows the relative improvement of our approach compared to Banerjee et al. [4] im-
plementation for general graphs. The Y2-axis denotes the speedup achieved by our algorithm with
respect to that Banerjee et al. [4]. The average speedup achieved is 1.7x. Moreover, since we notice
a small speedup even in cases where no nodes were removed, the speedup achieved is due to both
implementation and using an ear decomposition.

Another way to study the scalability of parallel graph algorithms is to use the metric MTEPS
standing for Million Traversed Edges Per Second. This metric is computed as the ratio of the product
of the number of edges and number of vertices over the time taken in seconds. A higher MTEPS

81



Applications of Ear Decomposition to Efficient Heterogeneous Algorithms

4

16

64

256

1024

4096

16384

65536

no
po

ly

O
PF

_3
75

4

ca
-A

st
ro

Ph

as
-2

2j
ul

y0
6

c-
50

co
nd

-m
at

-2
00

3

de
la

un
ay

_n
15

Ra
ja

t2
6

W
or

dn
et

3

So
c-

sig
n-

ep
in

io
ns

Pl
an

ar
_1

Pl
an

ar
_2

Pl
an

ar
_3

Pl
an

ar
_4

Pl
an

ar
_5

M
TE

PS

Our Approach [4] [13]

Figure 3: MTEPS achieved by our algorithm, labeled “Our Approach” and that of [4] for general
graphs and [12] for planar graphs.

indicates a more scalable algorithm. Figure 3 provides the MTEPS achieved by the approaches of
Djidjev et al. [12] and Banerjee et al. [4] on planar and non-planar graphs respectively in comparison
to our approach. We finally note that we are limited in this comparison by the space available on
the GPU although our approach needs lesser space compared to that of both [12, 4].

3 Minimum Weighted Cycle Basis (MCB)

3.1 Preliminaries

A cycle C, in an undirected graph is a subgraph where every vertex has a degree of two. A cycle
can be represented by an incidence vector ~C on E. The vector space of the cycles are generated in
the field GF (2). If there are k connected components in the graph, then the cardinality of a cycle
space of the graph is equal to m − n + k. A maximal set of linearly independent cycles form the
cycle basis of the graph. In a graph G with a weight function W : E → R+, the weight of a cycle,
denoted by W (C) is the sum of weights of edges present in the cycle. The weight of a cycle basis is
the sum of weights of all the cycles in the basis. We consider the problem of finding a cycle basis of
minimum total weight, denoted MCB, in a graph.

3.2 Sequential Algorithms

We will now summarize the deterministic sequential algorithms from [1, 11, 18, 29] for obtaining
an MCB. Horton [18] provided the first polynomial time algorithm for computing an MCB. Horton
showed that an MCB can be extracted from a set of restricted cycles containing the fundamental
cycles with respect to the shortest path trees from each node as the source. Such cycles are known
as Horton cycles and the set of the Horton cycles is denoted as Horton-Set(G). Notice that there
are n · (m− n + 1) cycles in Horton-Set(G).

Many recent works [1, 29] use the idea that the Horton cycles of G with respect to a feedback
vertex set of V (G) suffices. A Feedback Vertex Set (FVS) is a set of vertices such that every cycle
in the graph contains some vertex in the set [20]. Since obtaining a smallest FVS is shown to be
NP-Complete [20], one often uses a 2-approximate FVS that is easy to obtain (cf. [3]).

To describe the algorithms for an MCB, we need the following notation. For two vectors ~x1 and
~x2 in GF (2), denote their inner product as 〈 ~x1, ~x2〉. If 〈 ~x1, ~x2〉 = 0, then ~x1 and ~x2 are said to be
orthogonal to each other. Let T be any spanning tree in the underlying unweighted graph G(V,E).
We denote the set E′ = E\T to be the set of non-tree edges. Let the cardinality of this set be
f = |E′|. Order the edges of E′ in an arbitrary order {e1, e2, · · · , ef}. Fundamental cycle bases
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consist of cycles induced by the non-tree edges corresponding to a spanning tree T . There is a cycle
for each non-tree edge consisting of the non-tree edge plus the tree path connecting its endpoints.
We consider the vector representation of a cycle C incident on the restricted edge set consisting
of edges in E′ and not E since it is sufficient to consider E′. Since each cycle can be represented
uniquely in this manner, we can also treat each cycle as an incidence vector on E′. Each such vector
is seen to lie in {0, 1}f .

For these vectors, one can also associate the standard orthonormal basis ~Si for i = 1, 2, · · · , f ,
with ~Si having 1 in the ith component and 0 in all other components. Each such vector ~Si is called
as a witness. The product 〈~C, ~S〉 = 0 indicates that ~S is orthogonal to ~C. Since we are in the field

GF(2), observe that 〈~C, ~S〉 = 1 if and only if C contains an odd number of edges in ~S. A cycle Ce

formed by edges of T and e has intersection of exactly one edge with Si. So there is always at least
one cycle satisfying 〈~C, ~S〉 = 1.

De Pina [11] shows that given the witness vectors ~Si from {0, 1}f , let ~Ci be the vector correspond-

ing to the shortest cycle Ci in the graph G such that 〈 ~Ci, ~Si〉 = 1. Then,
∑f

i=1 W (Ci) ≤MCB(G).
The algorithm from De Pina [11] therefore computes the minimum weighted cycles to form a basis.

Algorithm 2 Obtaining Minimum Cycle Basis

1: Initialize ∀i,~Si(ei) = 1 and ∀j (j 6= i) Si(ej) = 0
2: for i = 1, · · · , f do
3: find ~Ci that satisfies 〈 ~Ci, ~Si〉= 1
4: for j = i + 1, · · · , f do
5: if 〈 ~Ci, ~Sj〉= 1 /* ~Sj is not orthogonal to ~Ci*/ then

6: ~Sj = ~Sj ⊕ ~Si /* Make ~Sj orthogonal to ~Si*/
7: end if
8: end for
9: end for

Algorithm 2 presents the generic algorithm. It has f iterations (Step 2). Each iteration has two

sections. In the first section (Step 3), we search for a ~Ci non-orthogonal to ~Si. This retrieves one
minimum cycle of the basis. The next section corresponding to Steps 4-6 performs an independence
test that updates the remaining witnesses to make them orthogonal to cycles ~C1, · · · , ~Ci. This is
done by taking the symmetric difference between ~Si and ~Sj .

3.2.1 Searching for the cycle Ci

We now give the intuition behind obtaining the required minimum cycle at step three of the Algo-
rithm 2. Given graph G(V,E), we construct an auxiliary graph with the following rules.

1. For every node x ∈ G, construct two nodes x+ and x−.

2. Given the initial spanning tree T of the underlying unweighted graph of G and the set E′,
consider an edge e = (u, v) ∈ G

(a) construct the edges (u+, v+) and (u−, v−) if e ∈ T (connect similar signed nodes), else

(b) construct the edges (u+, v−) and (u−, v+) if e ∈ E′ (connect opposite signed nodes).

For a given node x ∈ G, we obtain a single source shortest path(SSSP) in the auxiliary graph from
x+. Every shortest path from x+ to x− induces a minimum weighted cycle in G that contains
x [24]. Also, it is proved in [26] that every such minimum weighted cycles have odd number of
non-tree edges(i.e. edges ∈ E′). This in turn implies that such a cycle need to satisfy the condition

〈 ~Ci, ~Si〉 = 1 in GF(2).
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3.2.2 Computing the witnesses ~Si

We now consider the problem of computing ~Si for i ∈ 1, · · · , f . ~Si should be orthogonal to cycles
C1, · · · , Ci−1. We now show that we take the initial witnesses ~Si, · · · , ~Sf and at every step i, we

use ~Si to compute ~Ci and update ~Si+1, · · · , ~Sf to make them orthogonal to the cycles ~C1, · · · , ~Ci.

At the beginning of phase i, we have ~Si, ~Si+1, · · · , ~Sf which is a basis of the space C orthogonal to

the space C spanned by ~C1, · · · , ~Ci−1. After ith step we end up having ~S′i+1, · · · , ~S′f and show that
~S′i+1, · · · , ~S′f are orthogonal to ~C1, · · · , ~Ci. Since each ~S′j , i + 1 ≤ j ≤ f is a linear combination of
~Sj and ~Si, it follows that ~S′j is orthogonal to ~C1, · · · , ~Ci−1. If an ~Sj is already orthogonal to ~Ci,

then we leave it as it is, i.e., ~S′j = ~Sj . Otherwise, 〈 ~Ci, ~Si〉 = 1, and we update ~Sj as ~S′j = ~Sj ⊕ ~Si.

Since both 〈 ~Ci, ~Sj〉 and 〈 ~Ci, ~Si〉 are equal to 1, it follows that each ~S′j is now orthogonal to ~Ci also.

Hence, ~S′i+1, · · · , ~S′f belong to the subspace orthogonal to ~C1, · · · , ~Ci.

3.3 Our Approach for Parallel MCB

In this section we describe our algorithmic approach for obtaining an MCB in parallel. We use the
generic algorithm (Algorithm 2) and describe each step in detail. Our algorithmic approach has
three phases: pre-processing, processing, and post-processing.

3.3.1 Pre-Processing

We process each biconnected component separately as there can be no cycles in an MCB that span
two different biconnected components. We begin with an ear decomposition on the graph G to
obtain a reduced graph Gr. The following lemma shows that the MCB of Gr can be used to obtain
an MCB of G.

Lemma 3.1 Let Gr(V r, Er) be the reduced graph obtained by an ear-decomposition on G(V,E). Let
P denote all maximal degree two chains with the endpoints as non-degree two nodes in G. Let eP be
the edge in Gr that replaces the path P ∈ P with W (eP ) = W (P ). Let MCB(Gr) be a cycle basis of
minimum weight on the graph Gr. Then,

1. for every cycle C ∈ Horton-Set(Gr) that contains edges eP1
, eP2

, · · · , ePt
from P, with t ≥ 1,

there exists a cycle C ′ ∈ Horton-Set(G) such that C ′ contains all edges in C−{eP1
, eP2

, · · · , ePt
}∪

(∪ti=1Pi).

2. for every cycle C ∈ Horton-Set(Gr) that does not contain any edge eP for some P ∈ P, C ∈
Horton-Set(G),

3. dim(MCB(G)) = dim(MCB(Gr)), and

4. W (MCB(G)) = W (MCB(Gr)).

Proof. We will start by proving statements 1 and 2. For each cycle C ∈ Horton-Set(Gr), there
can be two cases, i.e. either C contains some eP1

, eP2
, · · · , ePt

from P, with t ≥ 1 or none at all.
Considering the first case, note that W (ePi

) = W (Pi), for every i ∈ 1, · · · , t. Hence, C is equivalent
to a cycle Ck obtained as Ck = C−{eP1 , eP2 , · · · , ePt}∪(∪ti=1Pi) and Ck can substitute C in Horton-
Set(G). Ck is guaranteed to contain every Pi in its entirety with Pi being a degree-two chain. For
the other case, when a cycle C does not contain any eP , C is also present in Horton-Set(G) since all
edges of C are present in G as well. This proves statements 1 and 2 of the lemma.

For statement 3, the dimensions of the orthonormal basis vectors are equal to the number of
non-tree edges with respect to any spanning tree. Let T be a spanning tree in G. We show that
there exists a spanning tree T r in Gr such that G and Gr have the same number of non-tree edges.
This implies that dim(MCB(G)) = dim(MCB(Gr)). To construct T r, we mainly focus on the chains
in P. Note that being chains of degree two nodes, each P contains at least 2 edges. For each chain
P ∈ P, there are two cases.
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1. All edges in P are in T .

2. One edge in P is a non-tree edge and the remaining are tree edges with respect to T .

We will now study the effect of replacing the chains in P with corresponding eP in Gr. For
any chain having k degree-two nodes, the effect of substitution is to reduce k + 1 edges and add 1
edge with a net effect of reduction of k edges. We will now substitute each Pi, for i ∈ 1, · · · , |P|, in
succession one at a time. Let us assume the initial graph G0 = G,E0 = E, T0 = T . For each iteration
of i we get a graph Gi by replacing Pi with its corresponding ePi . Note that Gr = GK , Er = EK

and TK obtained at the end equal T r. For every iteration i , Pi might belong to case 1 or case 2. In
case 1, the graph Gi is obtained by substituting Pi. This removes from Gi−1 all degree-two nodes
present in chains which existed entirely in Ti−1 and replacing them with a single edge, essentially
compressing Ti−1 while keeping it connected. Thus, |Ei| = |Ei−1| − (|Vi−1| − |Vi|) as a total of
|Vi−1| − |Vi| nodes are removed from Gi−1. The number of tree-edges in Gi is |Vi| − 1 and non-tree
edges in Gi = |Ei| − |Vi| + 1 = |Ei−1| − |Vi−1| + 1. This proves that chains in case 1 do not affect
the number of non-tree edges with respect to Ti−1 going from Gi−1 to Gi.

For a Pi in case 2, lets consider the nodes in Pi as u1, u2, · · · , uk+1, uk+2 where u1 and uk+2 are
non degree-two endpoints of Pi. Exactly one of the edge e = ujuj+1 for some j ∈ 2, · · · , k + 1 is a
non-tree edge. Nodes ul for l ∈ 2, · · · , k + 1 are removed from Gi−1. Thus, ePi connects u1, uk+2 as
a non-tree edge in Gi. This retains the number of non-tree edges with respect to Ti−1 from Gi−1 to
Gi.

Thus, the overall number of non-tree edges in Gk with respect to the Tk is equivalent to number
of non-tree edges in G0 with respect to T0 and hence, number of non-tree edges in Gr is equivalent
to those in G. Since, the dimension of the MCB depends on the number of non-tree edges in G and
Gr, this proves statement 3 of the lemma. Since the weights of cycles in Horton-Set(G) are same as
those in Horton-Set(Gr), hence W (MCB(G)) = W (MCB(Gr)) and this proves statement 4 of the
lemma.

This ensures that cycles in MCB(G), extracted from Horton-Set(G) are equivalent to the cycles
in MCB(Gr) extracted from the Horton-Set(Gr). �

Note that the graph Gr may contain multiple edges and self-loops. For the purpose of obtaining
an MCB, we imagine that multiple edges and self-loops appear as nontree edges of any spanning tree
of Gr. An example of the lemma and its proof is shown in Figure 4.

3.3.2 Processing

We divide this section in two parts, the first part describes in detail the algorithm for computation
of the least weighted cycle satisfying the condition in Step 3 of Algorithm 2. In next subsection, we
explain in detail about the witness update step (Independence Test).

Searching for the least weighted cycle: Step 3 of Algorithm 2 is the most time consuming
step. Let ~Scurr ∈ {0, 1}f denote ~Si for the ith phase. A cycle represented by ~Ci needs to be obtained

such that ~Ci is non-orthogonal to ~Scurr.

We start by computing the single source shortest path trees from each node in the reduced graph.
Horton cycles can then be obtained by inspecting the non-tree edges present in all such shortest path
trees and stored in a list sorted by the weight of each cycle. We then make use of the approach of
Mehlhorn and Michail [29] for computing such a cycle. This approach has the advantage that the
potential set of cycles that need to be considered are smaller in number than the Horton cycles.

Recall that the Horton cycles with respect to an FVS Z of G is a superset of the cycles in an
MCB. Mehlhorn and Michail [29] show that a further reduction in the number of Horton cycles is
possible. For z ∈ Z, let Tz denote the shortest path tree rooted at z and let e = uv be a nontree
edge with respect to Tz such that z is the least common ancestor of u and v in Tz. Consider the
cycles Cze of weight W (Cze) = dz(u) + W (uv) + dz(v) where dz(u) denotes the distance between z
and u in Tz. The collection of such cycles, denoted A, is shown to be a superset of the cycles in an
MCB of G [29].

85



Applications of Ear Decomposition to Efficient Heterogeneous Algorithms

Figure 4: In the above figure, (a) is the original graph G while (b) is the corresponding reduced
graph Gr. The non-tree edges in graph G and Gr are displayed as dashed lines. Nodes 4, 5, 6
are degree two vertices, that are pruned out using Ear-Decomposition. The degree-two chains
{1,4,3} and {2,5,6,3} in G are replaced by respective edges {1,3} and {2,3} in Gr. (a1,a2,a3)
represent subsets of Horton-Set(G) with node 1 as the root node. (b1,b2,b3) represent the cycles
in Gr corresponding to (a1,a2,a3) with their degree two chain replaced by single edges. Note that,
W (a1) = W (b1),W (a2) = W (b2),W (a3) = W (b3)

Since the cycles in A always pass through the root of some shortest path tree Tz for z in an
FVS of G, Mehlhorn and Michail [29] use a tree traversals from the root to the leaves to identify
the required cycle. We briefly explain this procedure and its parallelization in the following. The
algorithm from [29] is a two part algorithm. The first part computes partial labels and the second
step uses these partially computed labels to determine orthogonality of a cycle with the current
witness ~Scurr.

One of the tasks in Step 3 of Algorithm 2 is to check if a cycle is non-orthogonal to vector ~Scurr.
To do this check in constant time per cycle, we associate labels to each node u in the shortest path
tree Tz rooted at z, for every z ∈ Z. We consider a path from root z to a node u in Tz and form a

vector representation of this path,
−−→
pathz(u) in the space induced by the restricted edge set of E′ as

defined in the algorithm. Edges in the above path that belong to E′ are the components of
−−→
pathz(u).

For all node u ∈ Tz, the label lz(u) represents 〈
−−→
pathz(u), ~Scurr〉. These labels are computed as below.

Given a tree Tz and a witness ~Scurr, the tree is traversed from root to leaves. For every node
u ∈ Tz, a label lz(u) is computed with respect to ~Scurr. We maintain an additional variable cz(u)
for each u ∈ Tz. We make two passes on the tree Tz. In the first pass for every edge, e = uv ∈ Tz

and e /∈ E′ such that v is parent of u, we set cz(u) = 0, otherwise we set cz(u) = ~Scurr(e). Note
that cz(z) = 0 and lz(z) = 0 for Tz. In the second pass, the traversal updates for every edge e,
lz(u) = lz(v)⊕ cz(u). A pseudocode of the algorithm is shown in Algorithm 3.

The overall work done for all labels in all the |Z| trees is O(n|Z|). Since the computation with
respect to each tree Tz is independent, this step can be performed in parallel by allocating each
thread to work on a single tree Tz. In our heterogeneous algorithm, we also divide the computation
across the CPU and the GPU.

In this step, using the labels computed previously, we search for the minimum weighted cycle in A
which is non-orthogonal to ~Scurr. The labels for every tree Tz are already computed. For every cycle,
Cze in A, we can inspect in constant time, whether the cycle vector ~Cze is non-orthogonal to ~Scurr.
Following [29], this can be done as follows. For e = (u, v) ∈ Cze, 〈~Cze, ~Scurr〉 = (lz(u) ⊕ lz(v) ⊕ 0),

if e /∈ E′ or (lz(u) ⊕ lz(v) ⊕ ~Scurr(e)), if e ∈ E′, we stop after obtaining the first such cycle, Cze

that satisfies 〈~Cze, ~Scurr〉 = 1 and remove it from A. There are O(mn) such cycles, and hence it
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Algorithm 3 Algorithm for computing labelled trees (from [29])

1: Initialize {∀z ∈ Z, ∀u ∈ n}, cz(u) = 0 , lz(z) = 0
2: for each z ∈ Z do
3: //Traverse Tz in level-order from root to leaves
4: for each e = uv, e ∈ Tz do
5: if e ∈ E′ then
6: cz(u) = ~Scurr(e)
7: end if
8: end for
9: for each e = uv, e ∈ Tz do

10: lz(u) = lz(v)⊕ cz(u)
11: end for
12: end for

takes O(mn) work in the worst case for every cycle. This task can be parallelized with an early-exit
terminating condition.

Note that A contain cycles in a sorted order in increasing order of their weights. We arrange
the cycles in A into logical batches. We check for a cycle satisfying the non-orthogonality condition
in Step 3 of Algorithm 2 in each batch in parallel. If no cycle is found in batch B1, then we move
to check in batch B2. We repeat this check until we find the required cycle. While the removal
of the lists can be achieved by setting a boolean flag, the algorithm has to still travel through all
the nodes in the worst case, whereas use of linked-lists are found to be lacking in efficiency due to
higher penalty in access times. We use a hybrid of linked-list as well as linear arrays to store the
cycles. Each linked-list node consists of a constant sized array as its base element and has a single
next pointer. We first check within each position of the linked-list node and if not found skip to the
next node. We mark the removal of elements by setting off the MSB and reorder the cycles within
nodes when half of those in a node are removed.

Independence Test (Witness Update) This computation corresponds to steps 5 and 6 of

Algorithm 2. We update each witness ~Sj , where 〈~Sj , ~Ci〉 = 1. Witnesses are updated to make them

orthogonal to each ~Ck, for k ∈ 1, · · · , i. This is done by ~Si⊕ ~Sj (Step 6 of Algorithm 2). We update

witnesses in parallel. For each witness ~Si+1 through ~Sf , each thread can carry out the steps 5 and
6 of Algorithm 2 independently.

We perform this in both CPU as well as GPU. For the CPU, we dedicate each thread to a witness
~Sj . Each thread checks in a sequential manner whether ~Sj is non-orthogonal to ~Scurr and depending

on the result, updates ~Sj . We have observed in our experiments that allocating every thread to a
single witness and calculating the inner product is more cache-efficient than allocating threads to
all the elements of a single witness and then reducing them.

For the GPU, each block processes one single witness, We first do a per block pairwise-component
product for the witness ~Sj with ~Ccurr. We then use a parallel reduce on the block to obtain the Xor
of the entire product. If the resultant value of the reduction is 1, we compute a symmetric-difference
of ~Scurr with ~Sj in parallel for the entire block.

3.3.3 Post-Processing

We refer to the lemma given in Section 3.1 to note that MCB(G) is equivalent to MCB(Gr). We
maintain an additional identifier for each eP in Gr corresponding to a P ∈ P. The actual cycle with
respect to MCB(Gr) can be obtained per query basis from a cycle in MCB(Gr) just by substituting
every eP present in the cycle with its corresponding P .
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Figure 5: Displays the relative speedup of the Multi-core, GPU and Heterogeneous(CPU+GPU)
w.r.t Sequential Approach

3.4 Implementation Details

We now comment on the aspects that affect all parts of our implementation. Our shortest path
trees are constructed in a manner that lead to an increased efficiency of the GPU warp based SIMT
parallelism while also maintaining the caching effectiveness for a CPU.

Many steps of our algorithm such as computing shortest path trees, identifying the least weighted
cycle, and witness update are executed simultaneously on both the CPU and the GPU. Such a
situation requires one to aim at an execution where the work is split among the CPU and the GPU
in the right proportion. Since arriving at this proportion analytically is not easy, we use a dynamic
mechanism based on the work queue framework [19]. Each task that uses the workqueue is organized
into multiple independent workunits that can be executed either on the CPU or the GPU. These
workunits are then kept in a double ended queue with the CPU and the GPU accessing the queue
from either ends. The workunits are removed by the CPU and the GPU from the queue in batches
whose size depends on the nature of the task. The computation finishes when the queue becomes
empty.

3.5 Experimental Results

All our experiments are conducted using the computing platform described in Section 2.4.1. For our
experiments, we use the first seven graphs listed in Table 1. The existing space limitations on the
system renders it impossible to run our algorithm on larger graphs. Since there is no known parallel
implementation available to the best of our knowledge, we limit ourselves to study the speedup of our
heterogeneous implementation over a multi-threaded CPU, GPU, and sequential implementation.
Table 2 lists the total time spent in each of four implementations. Figure 5 lists the speedup achieved
by the above three implementations with respect to the sequential algorithm. We observe an average
speedup of 3x, 9x and 11x respectively.

The speedup can be attributed to using the ear decomposition that results in reducing the number
of nodes and the corresponding shortest path trees that have to be processed. In particular, if the
number of degree two nodes removed is n2, we now construct only n− n2 shortest path trees. This
leads to an overall reduction of f · n2 · (n− n2) work with respect to the entire algorithm. Table 2
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neous(CPU+GPU) approaches

Table 2: List of timings(in seconds) of four different implementations for our approach. Labels ’w’
and ’w/o’ indicate with and without ear-decomposition respectively.

Sequential Multi-Core GPU CPU + GPU
Graphs w w/o w w/o w w/o w w/o
nopoly 7.83K 7.83K 2.34K 2.35K .602K .604K .624K .624K
OPF 3754 44.58K 44.58K 11.8K 11.8K 3.8K 3.8K 3.2K 3.2K
ca-Astro 246.3K 271.3K 75.06K 81.5K 38.04K 40.15K 27.6K 27.6K
as-22july06 .57K 7.4K .17K 1.8K 0.134K 1.29K 0.09K 0.94K
c-50 17.05K 28.07K 6.17K 9.8K 2.90K 4.278K 2.02K 3.03K
cond mat 2003 141.3K 177.6K 35.9K 44.2K 14.89K 17.97K 10.9K 13.2K
delaunay n15 272.5K 272.5K 59.5K 59.5K 18.37K 18.37K 15.8K 15.8K

and Figure 6 also lists the impact of ear-decomposition on all the four implementations.
The average speedup due to Ear-Decomposition on each of the four implementations as specified

in the table are 3.1x, 2.7x, 2.5x, 2.7x respectively. The speedup is proportional to the number of
degree-two nodes e.g. as-22july06 has an average of 10x speedup across all the implementations.

In our experiments, we have observed that steps label computation, identifying the minimum
weight cycle, and independence test have a major impact on the overall execution time at 76%,
14%, and 8% of the overall execution time respectively. Since independence test is dependent on
label computation and identifying the minimum weight cycle, there is also a limit on the parallelism
available in the overall algorithm.

4 Conclusions

In this paper, we considered two important path-based graph problems, namely “all-pairs shortest
paths” and “minimum cycle basis computation” and proposed efficient parallel algorithms based on
graph decomposition and reduction. We discussed several heuristics based on ear-decomposition of
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biconnected graphs, both in the pre-processing and the post-processing stages, that considerably
reduces the time taken compared to the state-of-the-art algorithms. We believe that similar tech-
niques can be employed to obtain significant speedup for other graph problems too, especially the
ones based on paths of a graph.
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Petra Mutzel. The open graph drawing framework (ogdf). Handbook of Graph Drawing and
Visualization, pages 543–569, 2011.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms, 2001.

[10] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.
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