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Abstract

In Transactional Memory each shared object can be accessed by concurrent transactions
which may cause conflicts and aborts. Opacity is a precise consistency property which maps a
concurrent execution to a legal sequential execution that preserves the real time order of events.
However, having precise consistency in large scale network and database applications may result
in a large rate of aborts, especially in systems that have frequent memory updates. Actually,
high rate of aborts causes huge negative performance impact. In real applications, there are
systems that do not require precise consistency especially when the data is not sensitive. Thus,
we introduce here the notion of approximate consistency in transactional memory. We define
K-opacity as a relaxed consistency property where transactions are allowed to read one of the
K most recent written values to the objects (and not just the latest value only). This increases
the throughput and reduces the abort rate by reducing the chance of conflicts. In multi-version
transactional memory, the relaxed consistency allows to save a new object version once every
K object updates, and hence, reduces space requirements by a factor of K. In fact, we apply
the concept of K-opacity to regular read/write, count, and queue objects, which are common
objects used in typical concurrent programs. We use the technique of writer lists to keep track of
the transactions and the data being written to the system, in order to control the error rate and
to prevent error propagation. We illustrate with an experimental analysis the positive impact
of our approach on performance, where higher opacity relaxation (higher values of K) increases
the throughput and decreases the aborts rate significantly.1

Keywords: Transactional Memory, K-opacity, Counting Operation, Queue Operation, Approxi-
mate Consistency.

1This paper combines the preliminary versions of works that appear in SRMPDS’16 [3] and APDCM’17 [4].
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1 Introduction

The evolution of parallel computing [2] is confronted by the challenge of concurrent memory ac-
cesses. Transactional memory (TM) enables concurrent processing by offering transactional support
to concurrent access of shared data [14]. A transaction is a finite sequence of machine operations
that access local and shared memory. The operations are reads or writes to shared memory objects.
The read operation returns data from memory while the write operation writes data on the memory.
Read-only transactions consist only of read operations, while update transactions have at least one
write operation. The transaction is atomic so that after all its operations execute, it either commits
allowing the changes to take effect, or it aborts without having any effect [22]. The execution of con-
current transactions must satisfy consistency conditions which affirm the correctness of transactions’
execution which will appear as if they execute sequentially (even if they execute concurrently) [12].
For this purpose transactions may abort if they violate the correctness of the execution, and oth-
erwise, they commit. In fact, conflicts between concurrent transactions occur when at least one of
them writes to some shared object and another transaction accesses the same shared object for read
or write. Software transactional memory (STM) implementations provide flexibility and control over
consistency [22], and can be implemented with the use of lock-based or lock-free techniques [15].

In TM the opacity property is used to ensure the correctness of a concurrent execution [12].
Opacity requires legality where each read operation in all transactions must read the last written
(committed) value on the respective accessed object. A transaction is aborted if its execution affects
the validity of read operations in other transactions. However, aborts are generally inefficient as 80%
of the execution time might be wasted on them [17]. Thus, in order to cope with the high number
of aborts, we relax the strict consistency requirements of opacity. As an alternative we propose
to relax the definition of opacity using the notion of K-opacity as a means for implementing an
approximately opaque transactional memory. K-opacity tolerates some inconsistent read operations,
such that it is allowed to read any one of the last K writes, where K is a constant number that is
determined according to the data/system sensitivity to stale values. For example, we set K to 1
for sensitive systems in which strict consistency is mandatory (1-opacity is the same with normal
opacity), but K can be greater than 1 to tolerate some conflicts.

In real life there are many kinds of systems where precise computations are not required and
relaxing strict consistency is acceptable for non-sensitive data and systems [21, 23]. For example,
in large distributed systems there are often delays to update all copies of objects which may result
in some inconsistent reads and aborts. Also approximated results are acceptable for some database
queries such as inventory queries through Online Analytical Processing (OLAP), as it can return
approximated results to nested and complicated database queries [8, 23]. Decision Support Systems
also work with approximated results such as queries about average income and the percentage
of newborns in the country [1]. Moreover, there is no risk for advertising and recommendation
systems to have approximated results (suggesting inaccurate restaurant or song would not harm).
Furthermore, sensors for temperatures or weather forecasting, usually give approximated reads that
satisfy the specification of some systems. Approximation may take place in systems with huge data
and frequent changes (such as social network mining systems) [7]. In addition, K-opacity can be
used to relax priorities in priority queue applications such as scheduling, bandwidth management,
and Dijkstra’s algorithm [24]. In such cases, the approximated data would be sufficient and hence
allow to relax the precision level. Therefore, we will be able to commit some transactions even if
they violate consistency which increases throughput and reduces aborts.

1.1 Contributions

We first apply K-opacity on read-only transactions. A read-only transaction accesses shared objects
for read, while update transaction updates the value of any object. Using multi-version TM, it is
possible to avoid all aborts of read-only transactions, since a transaction can commit by reading
stale stored values. However, using stale values may require a lot of space to store all the saved
object versions. By relaxing the opacity precision we can reduce the number of saved versions without
aborting any read-only transaction. Particularly, with K-opacity we can reduce the number of saved
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versions by a factor of K, improving significantly the space requirements of multi-version TM. For
read-only transactions we used simple read/write objects. Even though the consistency is relaxed
for read-only transactions, for transaction with update operations we require precise consistency
(1-opacity).

The promising results of applying the K-opacity concept on read-only transactions encourages
us to apply the concept to other kinds of objects as well that involve update operations. Specifically,
we consider count and queue objects. A count object has an initial numerical value and it supports
the add operation which increments or decrements the object’s value, and returns the last object
value. A queue object maintains a list of elements and supports enqueue and dequeue operations,
where enqueues occur at the tail of list and dequeues at the head. For these kinds of objects we do
not consider the problem of minimizing the number of versions, but rather, we focus on minimizing
the total number of aborts by relaxing the consistency requirement.

Maintaining relaxed consistency on update transactions is challenging. Committed update trans-
actions may write some values based on inconsistent reads which would make them produce imprecise
results. If new transactions use those imprecise results, then the imprecision could propagate indef-
initely. To prevent this scenario, every K update operations a new object version is created that
is guaranteed to be precisely consistent. Hence, the read values are always consistent within the
last K operations; hence, we achieve K-opacity. To facilitate this, we use writer lists that record
values of committed write operations which are used to determine the point of time at which the
Kth consistent write is to be applied.

Experimental analysis demonstrates the usefulness of our approach. We use synthetic bench-
marks where we randomly generate sequences of transactions that access and update the objects.
The experiments depict that the throughput increases as the value of K increases.

In summary, our contributions are:

• We introduce the notion of K-opacity as an approximately opaque STM consistency property.

• We propose a multi-version model that applies K-opacity on read-only transactions, while
update transactions are precisely opaque. This reduces space requirements by a factor of K.

• We apply K-opacity on STM that uses common objects such as read/write, count and queue
objects to reduce the number of total aborts on all kinds of (read-only and update) transactions.

• We also demonstrate the ability of applying K-opacity on single-version and multi-version
STM, for some objects including the read/write and count object.

1.2 Outline

The rest of this paper is organized as follows: The system model and definitions are presented in
Section 2. Section 3 shows the applying of K-opacity on STM for read-only transactions. In Section
4, we present the design of the algorithm that applies K-opacity on STM using read/write, count
and queue objects on all kinds of transactions. The the proof of the correctness is presented in
Section 5. Section 6 shows the experimental results and in Section 7, we discuss some related works.
Section 8 concludes the paper with some discussion.

2 Notions and Definitions

2.1 Kinds of Objects

A transactional memory system accesses shared memory objects. In this paper, we consider trans-
actions which may perform read/write operations, counting operations such as addition and subtrac-
tion, and queue operations such as enqueue and dequeue. We start with some basic definitions of
read/write objects, and then we extend these definitions to count and queue objects. The discussion
below is focused on the legality of operations which is better described for sequential executions.
The notion of legality will be used later in opacity.
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2.1.1 Read/Write Objects

Let x be a shared read/write object. The object supports the read operation x.r(), which returns
the stored data in the object, and it also supports the write operation x.w(data) which writes the
value data to x. A sequence of operations on object x is legal if every read operation on x returns
the most recent written value to x (or the initial value if there is no previous write operation). We
relax this definition, and we say that a sequence of operations to object x is K-approximately legal
(or K-legal for brevity) if every read operation returns one of the K most recent written values to
x (or also the initial value if the number of previous write operations is less than K). Clearly, for
K = 1, a 1-legal execution is also a legal execution. In the example below the sequential execution is
1-legal for object x, and 2-legal for object y, since the last y.r() operation returns the value written
by the second to the last write operation to y. (Returned values are shown below their respective
operations.)

x.w(1) y.w(1) x.w(2) y.w(2) x.r() y.r()

2 1

2.1.2 Count Objects

Let x be a shared count object. The object supports the add operation x.add(val), which returns
the last value of x and adds val to the current value of x. A sequence of operations on object x is
legal if every add operation returns the last value written to the object by the immediately previous
add operation (or the initial value if there is no previous add operation). We relax this definition,
and we say that a sequence of operations to object x is K-legal if every add operation returns the
value written by one of the K most recent add operations applied to the object (or also the initial
value if the number of previous add operations is less than K). In the example below assume that
count objects x and y are initialized to value 0. The sequential execution is 1-legal for object x, and
2-legal for object y, since the last add operation y.add(3) returns the outcome of the second to the
last add operation to y. (Returned values are shown below their respective operations.)

x.add(1) y.add(1) x.add(2) y.add(2) x.add(3) y.add(3)

0 0 1 1 3 1

2.1.3 Queue Objects

Let x be a shared queue object. The object supports the enqueue operation x.enq(elem) which
inserts an element elem in the queue, and it also supports the dequeue operation x.deq() which
removes an element from the queue and returns it. A sequence of operations on object x is legal
if every dequeue operation returns the oldest inserted element to the queue (if the queue is empty
then it returns nil). We relax this definition, and we say that a sequence of operations to object x
is K-legal if every dequeue operation returns one of the K oldest inserted elements to the queue (or
also nil if the number of elements in the queue is less than K). In the example below assume that
queue objects x and y are initially empty (hold no elements). The sequential execution is 1-legal for
object x, and 2-legal for object y, since the last dequeue operation y.deq() returns the second to the
oldest inserted element to queue y. (Returned values are shown below their respective operations.)

x.enq(a) y.enq(c) x.enq(b) y.enq(d) x.deq() y.deq()

a d

2.2 Approximate Opacity

Each execution thread may execute a sequence of transactions. A transaction may access different
kinds of objects and can execute multiple operations on them. All changes made by a transaction
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Figure 1: (a) Example of Legal Reads, (b) Example of K-Legal Reads

to shared objects become visible to other transactions only when the transaction commits. If a
transaction aborts then all its changes to shared objects are discarded.

Every transaction has a status which is initially live, and it changes to committed or aborted
at the end of its execution. In our algorithms, every transaction is assigned a unique timestamp i
upon its arrival. The timestamp is used as a unique identifier of the transaction [19, 16], so that
Ti denotes a transaction that has a timestamp i. Also i.rx(data) is a read operation belongs to Ti
and i.wx(data) is a write operation that belongs to Ti. Moreover transaction Ti has an access set
T.accSet that contains all objects the transaction would access (by applying respective operations)
during its execution.

For a transaction, there are two special instantaneous events signifying the begin (TX begin)
and end (TX end) of a transaction execution. Within a transaction, each operation on a object
executes between two instantaneous events which are the invocation and response of the respective
object operation (the duration between these two events is the interval of the operation).

An execution history H is a sequence consisting of all the transactions’ events. A history H is
complete if all transactions in H are either committed or aborted, namely, there are no pending
transactions (still in execution) [12, 15].

The partial order <H is used to express the real time order of transactions in history H [12, 15, 16].
For any two transactions Ti and Tj in H, Ti <H Tj implies that all events of Ti happen before all
events of Tj . If the events of Ti and Tj interleave (i.e. there is an overlap between the execution
intervals of Ti and Tj), then Ti and Tj are not related according to <H . In a sequential history S
transactions execute one after the other, namely, <S is a total order [15, 16]. In addition, we say
that any two histories are equivalent if they have the same set of events.

Now, in order to define legality we need to be very careful since we have to discard the update
operations that belong to aborted transactions. Let S be a sequential history. For any transaction
Ti denote by Si the subsequence of S that includes Ti and all committed transactions that appear in
S before Ti. In other words, for any transaction Tj ∈ Si, either j = i or Tj committed and Tj <S Ti.

In addition, for any transaction Ti there is Vi which is a set of all write, count and queue operations
in Si; in other words, Vi contains all operations that are visible to Ti. Moreover, with respect to any
shared object x, we can define Vi(x) as a subset of Vi that considers only the operations on x.

Based on the above, a legal operation by Ti on object x is the one that reads the value of the
last operation in Vi(x). Furthermore, a K-legal operation on the object x is the one that reads the
value of one of the K last operations in Vi(x). Based on legality definition, we assume that for a
read/write object there is at most one write operation for each transaction which is the same with
the last write operation for the object within the transaction. Similarly, for a count object there
is at most one representative add operation in a transaction, which aggregates all the individual
add operation arguments in the transaction. On the other hand, for a queue object each individual
enqueue or dequeue operation is considered in the legality specification of the object.

Thus, transaction Ti is legal, if all operations in Ti are legal. Then, S is legal if all transactions
in S are legal. Also Ti is K-legal, if all operations in Ti are K-legal [3]. Then, S is K-legal if all
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transactions in S are K-legal. Consequently, a legal history is a special case of K-legal history by
taking K = 1.

In Figure 1 we give an example that demonstrates the notion of legal and K-legal executions. In
Figure 1(a) transaction T1, T2 and T3 arrive consecutively. Transaction T2 has a read operation to
object x that returns the value 1 which is a legal read because it reads the initial value of x. Then,
T2 writes the value 2 to x and it commits. Transaction T1 has illegal read as for some reasons, it
returns 1 while the last write to x writes the value 2, so it aborts. However, T3 reads 2 which is the
last written value to x and that is legal. It also writes to x and commits. In Figure 1(b) we show
how K-legal allows to commit more transactions. Suppose K = 2, means it is allowed to read one of
the last two writes on x. Now, the three transactions arrive. Transaction T2 reads the initial value
of x which is 1, so it is a legal read. Then, it writes 2 to x and commits. Thus, the last two writes
on x are 1 and 2 (we consider the initial value of the object as the first write). Transaction T1 has
a read operation that reads the value 1 which is the second last write to x. As K = 2 it is K-legal,
and then T1 commits. Moreover, the read operation in T3 reads the last write to x which is legal.
After that, it writes to x and commits.

Definition 1 (K-approximate opacity) A history H is K-opaque if it can be converted into
complete history H ′ (by aborting pending transactions) which further has an equivalent sequential
history S such that:

• H ′ preserves the real time order of transactions in H, namely, <H⊆<H′ .

• S preserves the real time order of transactions in H ′, namely, <H′⊆<S.

• S is K-legal with respect to all of the involved operations.

Figure 2 shows two example executions (a) and (b) of three transactions sharing two objects x
and y. The respective histories Ha and Hb are shown below. It is clear that the histories Ha and Hb

of the two executions are complete as there is no live transaction or pending operation. Figure 2(a)
shows an opaque execution (Ha) that aborts T2, and there is an equivalent legal sequential history
S, such that T2 <s T1 <s T3. So, Ha is opaque.

Figure 2(b) illustrates Hb which is not opaque. This is because if T2 commits then T1 cannot be
ordered before T2 as T1 reads y = 1, and it cannot be ordered after T2 as it reads the initial value
of x, which means it reads before T2 writes. However, Hb is K-opaque, as there is an equivalent
K-legal sequential history S, such that T2 <s T1 <s T3. For K = 2, T1 reads one of the last K
writes. So, Hb is 2-opaque. 2

Ha = 〈x.r1(0), x.w2(1), y.w2(1), T ryC()2, Abort2, y.r1(0), y.r3(0), T ryC()1, Commit1, y.w3(2), T ryC()3, Commit3〉

Hb = 〈x.r1(0), x.w2(1), y.w2(1), T ryC()2, Commit2, y.r1(1), y.r3(1), T ryC()1, Commit1, y.w3(2), T ryC()3, Commit3〉

3 Approximately Opaque STM for Read-only Transactions

We consider multi-version TM, where each object stores each new version that is created on updates.
Read-only transaction do not perform any updates. In multi-version TM, read-only transactions do
not need to abort, while transactions that update objects may abort. Using K-opacity we can reduce
the number of saved versions by a factor of K.

Since any new update creates new version and we still save previous ones, read-only transactions
avoid aborting by finding the version that preserves the correctness and does not violate consistency.
In this work we improve the space complexity of saved versions by reducing the number of saved
versions. With reduced number of saved versions, some transactions may not be able to find the
suitable version for precise consistency. To cope with this issue, we relax the consistency precision
for some read-only transactions such that they are allowed to read some stale values of the memory
up to some limit K.

Therefore, we apply K-opacity on read-only transactions while the update transactions are pre-
cise. We focus on transactions that perform operations on shared read/write objects.

2Each operation in Ha and Hb consists of two events which are invocation and response.
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Figure 2: (a) Example of Opaque Execution, (b) Example of K-opaque Execution

3.1 Design of the Algorithm

Our multi-version algorithm (Algorithm 1) is timestamp-based as in previous works that do not
consider approximate opacity [16, 9]. As shown in Figure 3, each object x has multiple versions
that are stored in a list x.vl. We denote a version of object x as vi = (ts, data, rl), where ts is
the timestamp of the transaction that creates (writes) this version, data is the value of x, and rl is
a reader-list that includes the timestamps of all transactions that have been reading this version.
In our algorithm, we create a new version of x each K commits and we save it in x.vl. The last
written value is maintained in x.lastCommit = (ts, data, rl) which is an independent version that
is overwritten with each commit on x to record the last written value.

Figure 3: Object data structure.

In many systems, the kinds of transactions (read-only or update) are identified at the begin-
ning such as read balance and bank statements in bank systems, or product quantities in in-
ventory systems. The read operation in read-only transaction Ti tries to read the last written
value in x.lastCommit if x.lastCommit.ts is smaller than its own (in Algorithm 2). Otherwise, if
x.lastCommist.ts > i, then it reads from a suitable saved version in x.vl. Also, it adds Ti timestamp
to that version’s rl. When Ti finishes the execution of all operations, it commits directly.

Figure 4(a) shows an example where read-only transaction can read x.lastCommit without vio-
lating the correctness of execution. The execution in Figure 4(a) illustrates the situation where there
is no concurrent write on the object. The read-only transaction T3 finds that the x.lastCommit.ts
equals to 2 which is smaller than its own timestamp 3. Therefore, it reads x.lastCommit which
shows the last write on the object x. In contrast, Figure 4(b) demonstrates a situation where there
is one concurrent write on the object x. When the read-only transaction T3 executes the read op-
eration x.r() it finds that x.lastCommit.ts = 4 (due to the update transaction T4) which is greater
than its own timestamp 3. Thus, it reads a version from x.vl. In particular, it reads the latest saved
version with the timestamp smaller than its own.

For an update transaction Ti, for any read operation it checks only x.lastCommit and adds i to
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Figure 4: (a) Read-only transaction with no concurrent writes; (b) Read-only transaction with a
concurrent write.

x.lastCommit.rl (Algorithm 2). Then, as shown in Algorithm 1, if x.lastCommit.ts > i, Ti aborts
immediately. Otherwise, it gets x.lastCommit.ts (for validation) and reads the data of x. For the
write operations the transaction Ti just writes to its local memory and it maintains its own write
set wSet during the execution.

When the update transaction Ti finishes the execution of all operations, it attempts to commit
by calling TryC (Algorithm 3). For any object x that was read by Ti, if the x.lastCommit has been
overwritten, then Ti aborts. Moreover, Ti aborts if it has a write that invalidates another transaction
Tm where m > i (Algorithm 4). In TryC, Ti locks each object x in its wSet and if it commits it
overwrites the x.lastCommit version and updates x.lastCommit.ts = i. We create a new version in
x.vl only every K commits of the object x. We let the new version’s ts to be equal to i. After that,
we release all locks. In our algorithm read-only transactions never abort, while update transactions
may abort.

3.2 Correctness of the Algorithm

In the correctness analysis we prove that our algorithm is opaque for update transactions, and K-
opaque for read-only transactions. Let H be an arbitrary execution history, and H ′ the respective
complete history. Consider the sequential execution S which is a serialization of the transactions in
H ′ such that the order of transactions is determined by the timestamps of the transactions, such
that if in H ′ for any two transaction Ti and Tj , i < j, then Ti <s Tj .

Lemma 1 S preserves the real time order of H ′.

Proof According to Algorithm 1, for a transaction Ti the timestamp i is obtained through an
atomic operation i ← timestamp.getAndInc(); If Ti <H′ Tj then, it has to be that i < j. Since S
orders transactions in the timestamp order, then we also have that Ti <S Tj , as needed. ut

Lemma 2 For any object x, the history S is K-legal with respect to read-only transactions accessing
x.

Proof Let Ti be a read-only transaction. Note that in our algorithm read-only transactions do not
abort, and hence Ti does not abort. Suppose Ti executes operation x.r(). According to function
GetLatestVersion(), we have that Ti observes either x.lastCommit.ts < i or x.lastCommit.ts > i.
We examine these two cases separately.

i. x.lastCommit.ts < i:
then GetLatestVersion() returns x.lastCommit and data y = x.lastCommit.data, which is the
latest version of the object at that moment when x is accessed by Ti. Let Tj be the transaction
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Algorithm 1: K-Opaque Multi-Version

/* global variable initialization */
timestamp← 0;
foreach transaction Ti do

/* i gets a unique timestamp */
i← timestamp.getAndInc();
Ti.status← live;
Ti.wSet← ∅;
while there is an unexecuted operation x do

/* if operation is read */
if x = x.r() then

v ← GetLatestVersion(i, x);
if v.ts > i then

/* this check only for read operation in update transaction to have immediate abort */
Ti.status← aborted;
return;

y ← v.data;
xlocal.ts← v.ts;

else
/* x = x.w(data); write local copy */
xlocal.data← data;
Ti.wSet← x ∪ Ti.wSet;

if TryC(i) then
Ti.status← committed;

else
Ti.status← aborted;

return;

Algorithm 2: GetLatestVersion(i, x)
last← null;
Lock x;
if Ti.kind = readonly then

if x.lastCommit.ts < i then
last← x.lastCommit;
Add i to list x.lastCommit.rl;

else
v ← the most recent version in x.vl with timestamp smaller than i;
last← v;
Add i to list v.rl;

else
/* update transaction */
last← x.lastCommit;
Add i to list x.lastCommit.rl;

Unlock x;
return last;
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Algorithm 3: TryC(i, x)

/* check if Ti is readonly */
if Ti.kind = readonly then

return true;

/* Ti has to be update transaction */
L← ∅;
/* assume a predetermined order for the objects */ forall the x ∈ i.wSet do

Lock x;
L← L ∪ x;
if Validate(i, x) = false then

unlock all locked objects in L;
return false;

forall the x in i.wSet do
x.versionCounter.getAndInc();
if x.versionCounter mod K = 0 then

/* add new version to x.vl */
Add (i, xlocal.data, nil) to x.vl;

/* overwrite x.lastCommit */
x.lastCommit← (i, xlocal.data, nil);

Unlock all objects in L;

return true;

Algorithm 4: Validate(i, x)

/* Check if lastCommit has been overwritten */
if x.lastCommit.ts > xlocal.ts then

return false;

/* Check if some other transaction Tm has read the same version read by Ti, where m > xlocal.ts */
if x.lastCommit.rl contains a transaction Tm, where m > i then

return false;

return true;
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that committed the value, that is, j = x.lastCommit.ts < i. Since S preserves the timestamp
order, Tj appears before Ti in S. Suppose that there is another transaction Tk, with j < k < i,
that commits a value to object x. If Tk commits after x.r() locks x (in GetLatestVersion()),
then according to function Validate(), Tk has to abort because Ti is in the reader-list of x when
Tk attempts to commit. On the other hand, if Tk commits before x.r() locks x, then Ti must
have read the value committed by Tk, or in other words Tk = Tj .

ii. x.lastCommit.ts > i:
then GetLatestVersion() returns a version v, and data y = v.data, where v belongs to version list
x.vl and it is the latest version of x with timestamp v.ts = j < i. Let Tj be the transaction that
created version v. We need to prove that there cannot be more than K − 1 other committed
transactions for object x between the time that Tj commits and Ti starts in H ′. We observe
that any transaction Tk that commits a value for x after Tj must have timestamp k > j, since
otherwise the interval of Tk would contain the interval of Tj in H ′, and according to function
Validate() Tk would abort. We have that in S, Tj appears before Ti, since j < i. Let X be
the set of transactions which appear in S between Tj and Ti and commit a value for x (for
any Tk ∈ X it holds j < k < i). We want to show that |X| ≤ K − 1. Similar to the reasons
explained above in case i, X cannot contain any transaction which commits after x.r() locks x.
Moreover, X cannot contain any transaction Tk that commits before Tj , since in H ′ interval
Tj would contain interval Tk and according to function Validate() Tj would abort. Hence, all
the transactions in X must have timestamp greater than j and must commit in H ′ after Tj .
If |X| ≥ K, according to our algorithm, a newer version v′ of x must have been saved (in
x.vl) after Tj commits and before Ti starts, by some transaction Tζ ∈ X. However, this is
impossible, since Ti would have read v′ and not v.

Therefore, we have that in case i execution S is 1-legal, while in case ii the execution S is K-legal.
ut

Lemma 3 For any object x, the history S is 1-legal with respect to update transactions accessing x.

Proof Now consider the update transactions that access object x. Let Ti be an update transaction
that invokes operation x.r(). According to the algorithm, if x.lastCommit.ts > i, then Ti is aborted
and operation x.r() never completed. On the other hand, if x.lastCommit.ts < i then x.r() com-
pletes with y = x.lastCommit.data. Let j = x.lastCommit.ts, namely, Ti reads the value written
by Tj , with j < i. Similar to the proof of Lemma 2, any transaction Tk that commits a value for x
after Tj must have timestamp k > j.

In S transaction Tj appears before Ti. We only need to show that in S there is no other committed
transaction between Tj and Ti for object x. Suppose that there is a transaction Tk, with j < k < i,
which appears between Tj and Ti in S and commits a value to x. If Tk commits before Tj in H ′,
function Validate() would cause to abort Tj . If Tk commits before x.r() locks object x, then Ti must
have used the value committed by Tk. On the other hand, if Tk commits after x.r() locks object
x, then according to function Validate() Tk has to abort, since Ti is in the reader-list of x when Tk
attempts to commit, and i > k. ut

Since H ′ respects the real time order of H, considering all objects used in H, from Lemmas 1, 2
and 3, we obtain the following theorem.

Theorem 1 Any execution history H of our algorithm is K-opaque with respect to read-only trans-
actions and 1-opaque with respect to update transactions.

It is easy to check that the proposed algorithm does not deadlock, since function GetLatestVer-
sion() accesses one object at a time, and function TryC() accesses objects in a predetermined order,
avoiding racing situations.

Lemma 4 Our algorithm does not deadlock.
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Figure 5: (a) Read/Write object data structure; (b) Count object data structure; (c) Queue object
data structure.

Assume that the transactions in our algorithm access the set of objects X = (x1, x2, ..., xn). Let
V be the set of all committed versions (updating xi.lastCommit) and V ′ the set of all saved versions
(saved in xi.vl).

Theorem 2 In any execution of our algorithm, the total number of saved object versions is |V ′| =
Θ(|V |/K + |O|).

Proof Throughout the execution, for any object xi let the number of committed versions be vxi

(updating xi.lastCommit). The total number of committed versions for all objects is |V | =
∑n
i=1 voi .

Our algorithm saves a new version for object xi each K object commits. Thus, the total number of
saved versions for object xi (saved in xi.vl) is vxi

/K, and consequently, the total number of saved
versions |V ′| for all objects will be |V |/K. In addition, each object has a lastCommit version which
adds a number of |O| versions to |V |/K. ut

Now, if we exclude the last committed versions, the total version space of regular (not ours)
multi-version TM is Θ(|V |), since every version is saved at some point of time. On the other hand,
from Theorem 2, with our approximately opaque multi-version algorithm we only create a new
version each K commits reducing this number to Θ(|V |/K), a reduction by a factor of K.

4 Approximately Opaque STM for Read/Write, Count and
Queue Objects

The promising results of applying K-opacity on read-only transactions (see section 6.1), encourages
us to apply the concept of K-opacity on update transactions as well. The update transactions access
regular read/write, count and queue objects, which are common objects used in typical concurrent
programs. The goal is to reduce the overall number of aborts by taking advantage of the relaxed
consistency offered by K-opacity.

4.1 Design of the Algorithm

Let us start with the structure of the STM objects where there are three kinds of ob-
jects which are read/write, count and queue objects. For a read/write object x, Fig-
ure 5(a) depicts the basic data structure used in our algorithm. This structure has fields
(ts, data, commitsCounter,maxT, dataT, rl[]) such that: ts shows the maximum timestamp of the
transactions that overwrite x, data is the value of x, commitsCounter records the number of com-
mits on x to ensure that we overwrite x every K commits, maxT and dataT record the maximum
timestamp of the transactions that commit on x and the value it writes, respectively, and rl is a list
that records the timestamps of the readers of the object.

Figure 5(b) illustrates the counter object x which consists of ts, data, commitsCounter, wl and
index, where ts represents the maximum timestamp of the transactions that overwrite x, data is the
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Figure 6: Concurrent transactions execute add operation on the count object x.

value of x, commitsCounter records the number of commits on x and wl[][] is a writer list which
is an array of size n, where n is the number of threads in the system. Actually, wl[][] has three
columns such that each update transaction that writes to x must post its timestamp (tx) in the
first column, the data it writes in the second column, and the transaction status (live, committed or
aborted) in the third one. Since wl[][] is an integer array, we represent the transaction status with
0, 1 and 2 corresponding respectively to live, committed and aborted. In addition, we use index to
tell the update transactions in which position to write in wl[][].

Figure 5(c) illustrates the structure of the queue object x that has a field ts which is the maximum
timestamp of the transactions that update x. queue[][] is an array of two columns. The first one is
for data and the other is for the timestamp of the transaction that enqueues or dequeues that data.
Also x has head and tail. The commitsCounter records the number of commits on x. To show
the number of concurrent transactions that perform enqueues and dequeues we use enqCounter and
deqCounter. Moreover, every queue has wl[][] (writer list) which is an array of size n, where n is the
number of threads in the system. In fact wl[][] has three columns such that each update transaction
that writes to x must post its timestamp in the first column, the second column illustrates the kinds
of the operation which is either enqueue or dequeue; the status of the transaction (which is either
live, committed or aborted) appears in the third column.

4.2 Example

For simplicity we start the explanation of our algorithm with an example of concurrent transactions
that execute add operations on a counter object x where K = 3. Figure 6(a) shows that the
transaction T0 has committed and updated x that x.commitsCounter = 0 , x.ts = 0 and x.data = 1.

Three concurrent transactions, T1, T2, and T3 execute and add their own value but each returns
the same value 1, the previous value inserted by last committed transaction T0, since K = 3. Figure
6(b) shows that the transaction T1 executes the operation x.add(10). It records its information
in x.wl[][] such that the timestamp is in the first column, the new value 10 in the second, and
status (live) in the third. Then, T1 reads x.data = 1 (the returned value) and at commit increases
x.commitsCounter by 1 and changes its status in the writer list to C (committed). Also, T2 executes
the operation x.add(7). So it records its information in x.wl[][] and it reads x.data = 1 and adds
7. At commit, T2 increases x.commitsCounter by 1 and changes its status in the writer list to C
(committed). Further, T3 executes x.add(3) and records its information in x.wl[][]. T3 also reads
x.data = 1. At commit, T3 increases x.commitsCounter by 1 so it becomes 3 which is equal to
K. T3 changes its status in the writer list to C (committed), and updates x with the new value
aggregating the previous transactions, x.data = 1 + 10 + 7 + 3 = 21. The x.commitsCounter is also
reset to 0, and the latest committed timestamp is set to x.ts = 3, as shown in Figure 6(c).

4.3 The Detailed Design of the Algorithm

To start with our algorithm, the classes RWObject, Count and Queue, show the structure of the
objects as described earlier. Basically our algorithm is timestamp-based that executes transactions
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concurrently but does not update objects with each commit. Indeed, every K commits on the object
we overwrite the object with a new value.

The Main (Algorithm 5) shows the structure of the transaction where it has a unique timestamp
i using getAndIncerement() method that increments the value of a special object timestamp by 1.
A transaction Ti has a status Ti.status that is set to a live. It also has an access set Ti.accSet that
is maintained during the execution. We also have two global variables which are correct (which is
used to calculate the correct value of update transactions) and commits (which counts the number
of commits on x). We assume that the timestamp of Ti is i (i.e. its subscript).

Then, transaction Ti executes all its operations on the different objects kinds it accesses which
are read, write, add, enqueue or dequeue operations. For all operations we add the object x and
x.ts at that moment to Ti.accSet and execute by calling functions ReadWrite(), Add(), Enqueue()
or Dequeue(). If the function returns false, then Ti aborts immediately. For queue operations,
before we execute the operation the enqueue and dequeue require to count the number of concurrent
enqueues and dequeues using x.enqCounter and x.deqCounter. When Ti executes all operations it
calls TryC() (Algorithm 11) and based on that it commits or aborts. 3

4.3.1 Read/Write Operations

For read/write operations, in ReadWrite() (Algorithm 6), if the transaction’s Ti timestamp i is smaller
than x.ts, then Ti aborts since it violates the correctness property (timestamp-based execution).
Otherwise, if data = Null means that the operation is a read, and then we add i to x.rl[] and get
x.data. At the end of Ti execution, it calls TryC() where the read operations get validated.

On the other hand, if data 6= Null it means that the operation is write, and Ti writes in
its own local memory. At the end of Ti’s execution, it calls TryC() and it locks x (we lock ob-
jects in a predetermined order to avoid deadlock) to check if there is another transaction with a
timestamp greater than i that commits on x. Also, it checks if another transaction with greater
timestamp has read x. In these two cases Ti aborts. Otherwise, in Commit() (Algorithm 13), we
store the maximum timestamp of the transactions that commit on x in x.maxT , and the data of
that transaction in x.dataT . We increase x.commitsCounter by one, and if it is equal to K, then
we overwrite x with the timestamp and the data that are stored in x.maxT and x.dataT . We then
reset x.commitsCounter, x.maxT and x.dataT . We release all locks and we change Ti.status to
committed. However, if x.commitsCounter < K, Ti just commits.

4.3.2 Counting Operations

For counting operations, in Add() (Algorithm 7), if x.ts > i, then Ti aborts. Otherwise, to simply
read the counter (by applying x.add(0)), we get the data and write locally.

To add a nonzero value to x, if Ti accesses x for the first time, then Ti adds itself to x.wl[][],
such that it increments x.index which tells in which row Ti can write, and then it posts i, data and
status to x.wl[][]. Ti also writes in its local memory. If Ti already accessed x, then it would already
be in x.wl[][]. In this case, it just adds the data of the operation to the data that is already stored
in x.wl[][].

Then, in TryC() the transaction locks x and calls CheckStatus() (Algorithm 10) to check if Ti is
aborted by another transaction or whether x has been overwritten by a transaction Tm where m > i
tin which case it returns false and Ti aborts. In Abort() (Algorithm 12), for all objects in Ti.accSet,
we change Ti.status to aborted.

Otherwise, Ti calls Commit() and checks (x.commitsCounter) if the number of committed trans-
actions including Ti equals to K, then Ti overwrites x with the correct value that considers the values
of all committed transactions in x.wl[][]. Therefore, Ti aborts all live transactions in x.wl[][], copies
the data of committed transactions from x.wl[][] to temporary array temp[][] and sorts temp[][] based
on the transactions’ timestamps. After that, it calculates the correct value of x.data and finds the
maximum timestamp in temp[][] (max). It overwrites x with x.ts = max, x : data = correct and

3The operations within a transaction are sequential
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resets all other fields of x. We release all locks and change Ti.status to committed. However, if the
number of committed transactions is less than K, Ti just commits and changes its status in x.wl[][].

4.3.3 Queue Operations

In Enqueue() (Algorithm 8), a transaction Ti first checks if there is no version of object x in any
transaction’s local memory, and then Ti accesses the (global) shared object x and Ti aborts if
x.ts > i. Otherwise, it gets x.tail and uses enqs which shows how many concurrent enqueues there
are, and that is used to map Ti to the right spot in the x.queue. If the queue is full, it returns nil
(special specification of the queue object), or Ti enqueues the new element. Ti can be mapped in
any position between tail + 1 and tail + K. Also, we write Ti timestamp next to the element in
x.queue. Ti posts i, status and op (enqueue or dequeue) in wl[][], and returns true. Now we check if
x.commitsCounter = K − 1 which means that this operation is the Kth operation on x, then, we
change x.copied flag to 1 and we copy x to Ti’s local memory.

Second, if x is copied by Ti, we find x in Ti’s local memory (which means Ti already accessed x
and executed the Kth operation on x) and then Ti accesses the local copy. After that it will do the
same procedure that would be done on the global x but on the local copy instead. If Ti executes
another Kth operation on x, it just overwrites the local copy and does not touch global x. Third,
if x is copied by another transaction then Ti aborts.

In Dequeue() (Algorithm 9) if there is no version of object x in Ti’s local memory, then Ti accesses
the (global) shared object x and we abort Ti if x.ts > i. Otherwise, we get x.head and x.tail. If
the queue is empty, we return nil (special specification of the queue object), or we use deqs (which
shows the number of concurrent dequeues) to map Ti to a specific position in the queue and copy
the element. Ti can be mapped to dequeue any element between head, and head+K. Also Ti writes
its information in wl[][] and returns true. Indeed, a dequeue operation does not remove the element
from the queue since Ti may abort later. Now we check if x.commitsCounter = K− 1 which means
that this operation is the Kth operation on x; the rest follows the same procedure as in Enqueue().

In TryC() we call CheckStatus() to check whether Ti is aborted and removed from wl[][] by
another transaction, in which case we return false and call Abort(). Otherwise, we check if the
number of committed transactions (x.commitsCounter) equals to K, Then, we abort all the other
live transactions in x.wl[][] and consider two possible scenarios:

i. If a copy of x is in Ti local memory, we just copy the local copy of x to global.

ii. If there is no copy of x in Ti local memory, then Ti overwrites shared object x.

We adjust the field x.queue by deleting the elements of committed dequeues and remov-
ing the empty spots that result from aborted enqueues. In addition, we update x.ts and reset
x.enqCounter, x.deqCounter and x.wl[][]. However, if the number of committed transactions does
not equal to K, then we do nothing. We release all locks and we change Ti.status to committed. In
Abort(), we change Ti.status to aborted, and we change Ti status to aborted in the writer lists of all
objects in Ti.accSet. Also, for any x that has a copy in Ti local memory, we reset x.copied to 0.

Class RWObject
int ts← 0;
int data← 0;
int commitsCounter ← 0;
int maxT ← −1;
int dataT ;
int rl[];

5 Correctness of the Algorithm

In the correctness analysis we prove that our algorithm is K-opaque for all transactions. Let H be
an arbitrary history of an execution. Let H ′ be a complete history that we obtain such that if a
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Class Count
int ts← 0;
int data← 0;
int commitsCounter ← 0;
int index← 0;//Array’s index
//wl[][] is an array to record update transactions
//n is the number of the thread in the system
int wl[n][3];

Class Queue
int ts← 0;
int head← 0;
int tail← 0;
int queue[size][];
int commitsCounter ← 0;
int x.copied = 0;
//wl[][] is an array to record update transactions
//n is the number of the thread in the system
int wl[n][3];
int index← 0;//wl[][] array’s index
enqCounter ← −1;
deqCounter ← −1;

pending transaction in H didn’t invoke either Commit() or Abort() then its status is aborted, while
in any other case the status is either committed or aborted, according to which of the two functions
the transaction invoked. Let S be the sequential execution which is a timestamp-based serialization
of the transactions in H ′. (Due to lack of space the proofs appear in the Appendix.)

Lemma 5 S preserves the real time order of the transactions in H ′.

Proof According to Main() (Algorithm 5), each transaction Ti obtains a unique timestamp using
i← timestamp.getAndInc() which is an atomic operation. If Ti <H′ Tj , then i < j. Since S orders
transactions based on their timestamp, we get Ti <S Tj . In other words, <H′⊆<S , as needed. ut

We continue to prove that S is K-legal with respect to any object x for any transaction.

Lemma 6 The history S is K-legal, for any read/write object x.

Proof Let Ti be a transaction that executes read operation x.ri(data). According to function
ReadWrite(), Ti checks x.ts that shows the timestamp of the last transaction that overwrites x. If
x.ts = j > i , then Ti aborts. If Tj is the last transaction that overwrites x, then we need to prove
that there cannot be more than K − 1 other committed transactions on x between the time that Tj
commits and Ti performs its read in S. Since j < i we have that in S, Tj <S Ti. Let Q be the set of
transactions that appear in S between Tj and Ti that have a write operation to x and commit (Q
does not contain Tj or Ti). We only need to show that |Q| ≤ K − 1.

We first show that none of the transactions in Q overwrite x. Suppose for the sake of contradiction
that there is a transaction Tm ∈ Q which overwrites x, namely, it sets x.commitsCounter = 0 and
updates x.data = xlocal.data and x.ts = m. Note that j < m < i. We examine three cases with
respect to when Tm commits in H ′:

• Tm commits before Tj commits.
In this case, when Tj invokes TryC() it observes one of the following two scenarios:

– maxT = m > j: Tj observes that a transaction Tm with higher timestamp (m > j)
has committed on x (but it does not overwrite x), since maxT records the maximum
timestamp of the committed transactions, and hence Tj aborts.
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Algorithm 5: Main()

timestamp← 0;
int correct← 0;//To calculate the correct value
int commits← 0;
bool valid = true;
foreach (transaction T ) do

//Get a unique timestamp
i← T imestamp.getAndInc();
Ti.status← live;
Ti.accSet← ∅;
while (there is unexecuted operation on object x) do

switch operation on x do
case (x.r())

//Read operation
Ti.accSet← x ∪ Ti.accSet;
valid = ReadWrite(i, x, data);

case (x.w(data))
//Write operation
Ti.accSet← x ∪ Ti.accSet;
valid = ReadWrite(i, x, data);

case (x.add(data))
//Add operation
Ti.accSet← x ∪ Ti.accSet;
valid = Add(i, x, data);

case (x.enqueue(data))
//Enqueue operation
enqs← x.enqCounter.getAndInc();//How many concurrent enqueues
Ti.accSet← x ∪ Ti.accSet;
valid = enqueue(i, x, data, enqs);

case (x.dequeue(data))
//Dequeue operation
deqs← x.deqCounter.getAndInc();//How many concurrent dequeues
Ti.accSet← x ∪ Ti.accSet;
valid = dequeue(i, x, deqs);

if (valid = false) then
Abort(i, Ti.accSet);
return;

if (TryC(i, Ti.accSet)) then
Commit(i, Ti.accSet);

else
Abort(i, Ti.accSet);

return;

Algorithm 6: ReadWrite(i, x, data)

//If a newer transaction overwrites x, then Ti aborts
if (i < x.ts) then

return false;

if (data = Null) then
//Read operation
add i to x.rl[];
get(x.data);

else
//Write operation
//Write the value data to x in local memory
let xlocal.data← data;

return true;
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Algorithm 7: Add(i, x, data)

int max← −1;
//If a newer transaction overwrites x, then Ti aborts
if (x.ts > i) then

return false;

//If the operation is reading the counter
if (data = 0) then

//Get the value of x
int y = x.data;
let xlocal.data← y;

else
//If the operation is writing to the counter
//If the same transactions execute more than one counting operation on the same object x, it maintains
its data and then behaves like arriving for first time
for ( from m← 0 to m = n) do

if (wl[m].tx = i) then
x.wl[].data = x.wl[].data + data;

//If Ti accesses x for first time
r ← x.index.getAndInc();
//wl is an array of size n
x.wl[r].tx← i;
x.wl[r].data← data;
x.wl[r].status← Ti.status;
//Write the value data to x in local memory
int y = x.data;
let xlocal.data← y;

return true;

– x.ts ≥ j: Tj observes that x was actually overwritten by Tm or by a more recent trans-
action, and hence, Tj aborts.

In either scenario, Tj aborts, which is impossible.

• Tm commits and overwrites x before x.ri() starts.
In this case, Ti reads either the value written by Tm or by a more recent transaction (with
timestamp x.ts ≥ m). However, this contradicts the assumption that Ti reads x.ts = j.

• Tm commits and overwrites x after x.ri() ends.
In this case, in its TryC() transaction Tm will observe that x.commitsCounter ≥ K−1 (which
means Tm is the Kth transaction), and also it observes that Ti is in the reader list of x (that
is, i ∈ x.rl with i > m), and the combination of these two observations together force Tm to
abort, which is a contradiction.

Therefore, no transaction in Q overwrites x. This implies that each transaction in Q in-
crements x.commitsCounter. For a transaction Tk ∈ Q, let ck denote the respective updated
value of x.commitsCounter. Next we show that for any pair Tk, Tl ∈ Q, where k < l, it must
hold that ck 6= cl. Since x.commitsCounter is updated atomically (is locked by each transac-
tion that modifies it), if ck = cl then some transaction Tm must commit and overwrite x (reset
x.commitsCounter) after Tk commits and before Tl commits in H ′. We know that transaction Tm
cannot be in Q. Therefore, m < j, which is impossible since Tm would abort observing a higher
timestamp on x than its own (x.ts ≥ j). Therefore, the transactions in Q assign unique values to
x.commitsCounter. Since the x.commitsCounter cannot exceed K−1 and none of the transactions
in Q set x.commitsCounter = 0, we get that |Q| ≤ K − 1, as needed.

As a special case, the same properties for Q hold even if Ti reads the initial value of x and Tj is
replaced by a special instantaneous event that initializes x. ut

Lemma 7 The history S is K-legal, for any count object x.
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Algorithm 8: Enqueue(i, x, data, enqs)

//If x is not in any transaction local memory
if (x.copied = 0) then

//If a newer transaction overwrites x, or there are more than K dequeues, then Ti aborts
if ((x.ts > i) ∨ (enqs >= K)) then

return false;

t← x.tail;
if (t = size) then

//The queue is full
return nil;

//Mapping
position← enqs + t + 1;
//Insert element
x.queue[position].data← data;
x.queue[position].tx← i;
x.wl[index].tx← i;
x.wl[index].op← enqueue;
x.wl[index].status← live;

//Now we check if it is the Kth operation
if (x.commitsCounter = K − 1) then

x.copied = i;
//We prepare a local version of x
copy x to Ti local memory;
adjust xlocal.queue[][];
max = max(xlocal.queue[].tx);//Maximum timestamp in xlocal.queue[][]
update xlocal.head; update xlocal.tail; xlocal.ts← max;
reset xlocal.enqCounter; x.localdeqCounter; xlocal.wl[][];
xlocal.commitsCounter = 0;

else
//If x is in another transaction local memory
if (x.copied 6= i) then

return false;

do the same thing (in if() part) on the local copy but we do not copy x to local memory again;

return true;
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Algorithm 9: Dequeue(i, x, deqs)

//If x is not in any transaction local memory
if (x.copied = 0) then

//If a newer transaction overwrites x, or there are more than K dequeues, then Ti aborts
if ((x.ts > i) ∨ (deqs >= K)) then

return false;

h← x.head;
t← x.tail;
//Mapping
if ((t = 0) ∨ ((t− h) + 1) < deqs)) then

//Empty queue
return nil;

position← deqs + (h + 1);
//Get element
data← x.queue[position].data;
x.queue[position].tx← i;
x.wl[index].tx← i;
x.wl[index].op← dequeue;
x.wl[index].status← live;

//Now we check if it is the Kth operation
if (x.commitsCounter = K − 1) then

x.copied = 1;
//We prepare a local version of x
copy x to Ti local memory;
adjust xlocal.queue[][];
max = max(xlocal.queue[].tx);//Maximum timestamp in xlocal.queue[][]
update xlocal.head; update xlocal.tail; xlocal.ts← max;
reset xlocal.enqCounter; x.localdeqCounter; xlocal.wl[][];
xlocal.commitsCounter = 0;

else
//If x is in another transaction local memory
if (x.copied 6= i) then

return false;

do the same thing (in if() part) on the local copy but we do not copy x to local memory again;

return true;

Algorithm 10: CheckStatus(i, x)

int TiRemoved← 0;
//Check if Ti is aborted and removed from wl by another transaction
for ( from m← 0 to m = n) do

if (x.wl[m].tx = i) then
TiRemoved← 1;//It is not removed
break;

//If Ti is removed from wl
if (TiRemoved = 0) then

commits = −1;
return commits;

//Ti still in wl
x.wl[m].status = committed;
//Check how many committed transactions
commits = x.commitsCounter;

return commits;
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Algorithm 11: TryC(i, Ti.accSet)

L← ∅;
forall the (x in Ti.accSet) do

lock();
L← L ∪ x;
switch Type of x do

case x is RWObject
if (data = Null) then

//Read operations do not validate

else
//For write operation
if ((x.ts > i) ∨ (maxT > i)) then

//Aborting because a concurrent write
Unlock() all objects in L;
return false;

if ((x.rl[] has a transaction Tm where m > i) ∧ (x.commitsCounter = K − 1)) then
//Aborting because a concurrent read
Unlock() all objects in L;
return false;

case (x is Counter)
commits←CheckStatus(i, x);
if ((commits = −1) ∨ (x.wl[][] has a transaction Tm where m > i)) then

Unlock() all objects in L;
return false;

case (x is Queue)
commits←CheckStatus(i, x);
if ((commits = −1) ∨ (x.wl[][] has a transaction Tm where m > i)) then

Unlock() all objects in L;
return false;

return true;

Algorithm 12: Abort(i, Ti.accSet)

Ti.status← aborted;
//Change its status in all counters and queues it accesses
forall the (x in Ti.accSet) do

if (x.copied = i) then
x.copied = 0;

x.wl[x.index].status← aborted;
remove i from x.rl[];

return;
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Algorithm 13: Commit(i, Ti.accSet)

int max← −1;
Ti.status← committed;
forall the (x in Ti.accSet) do

switch Type of x do
case x is RWObject

if (x.maxT < i) then
//Recording the maximum timestamp and its data
x.maxT = i;
x.dataT = data;

x.commitsCounter + +;
if (x.commitsCounter = K) then

//Overwrite x
x.ts = x.maxT ;
x.data = x.dataT ;
reset x.commitsCounter, x.rl[], x.maxT and x.dataT ;

case (x is Counter)
x.commitsCounter + +;
if (x.commitsCounter = K) then

//Calculate the correct value considering only the committed transactions
abort the other live transactions in x.wl[][];
copy the data of committed transactions from x.wl[][] to temp[][];
sort(temp[][]); //Based on the timestamps
max = max(temp[].tx); //Maximum timestamp in temp[][]
for (from j ← 0 to j < K) do

correct← correct + temp[j].data;

x.data← correct;
x.ts← max;
reset x.wl[][] and x.index;

else
//Just Commit
x.wl[].status = Committed;

case (x is Queue)
x.commitsCounter + +;
if (a version of x ∈ Ti.accSet) then

abort the other live transactions in x.wl[][];
let x = xlocal;

else if (x.commitsCounter = K) then
abort the other live transactions in x.wl[][];
adjust x.queue[][];
max = max(queue[].tx); //Maximum timestamp in queue[][]
update x.head; update x.tail; x.ts← max;
reset x.enqCounter; x.deqCounter; x.wl[][];
reset x.copied; x.commitsCounter;

else
//Just Commit
x.wl[].status = Committed;

Unlock() all objects in L;
return true;
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Proof According to the implementation of Algorithm Add(), within a transaction Ti we can treat
the sequence of all add operations as a single x.addi(vi) operation which aggregates the added values
of the operations to a single operand value vi, to be added to the current value of x. Assume that
in each transaction Ti there is at most one add operation on object x with operand vi.

Let S(x) = T1, T2, . . . , Tq be the subsequence of transactions in S that invoke an add operation to
x. A transaction Ti that overwrites x is a transaction that commits and updates x.data = xlocal.data,
and it also sets x.commitsCounter = 0 and x.ts = i. Let S′(x) denote the subsequence of S(x)
consisting of all transactions that commit. Let S′′(x) denote the subsequence of S(x) consisting of
all transactions that overwrite x.

Let r1, . . . , rq be the respective sequence of returned values of the add operations of transactions
in S(x), namely, ri = x.addi(vi) is the value returned by Ti. Let r′g denote the precise value that
would have been returned by the add operation of transaction Tg when the consistency is precise,
that is, r′g = v0 +

∑
(1≤l<g)∧Tl∈S′(x) vl, where v0 is the initial value of x. Let og = rg + vg be the

result of the add operation of transaction Tg. Similarly, let o′g = r′g + vg be the respective precise
result of the add operation of transaction Tg.

For each Tg ∈ S(x) let Pg denote the set of the last K transactions which precede Tg in S′(x).
We only need to prove the following two properties:

(i) For each Tg ∈ S′′(x), rg = r′g (the transactions in S′′(x) are precise).

(ii) For each Tg ∈ S(x) \ S′′(x), either rg = ol and Tl ∈ Pg and Tl ∈ S′′(x), or rg = v0 and
|Pg| < K.

We prove these properties by induction on q. For q = 0, S(x) is empty and the properties hold
trivially. Assume now that the properties hold for any q < i; we will show that the properties hold
also for q = i > 0.

Consider now the last transaction Ti. According to function Add(), Ti checks x.ts that shows the
timestamp of the last transaction that overwrites x. Suppose that x.ts = j > i. Let Q be the set of
transactions that appear in S between Tj and Ti and that have an add operation to x and commit
(Q does not contain Tj or Ti). We continue to show that |Q| ≤ K − 1.

We first show that none of the transactions in Q overwrite x. Suppose for the sake of contradiction
that there is a transaction Tm ∈ Q which overwrites x. Note that j < m < i. We examine three
cases with respect to when Tm commits in H ′:

• Tm commits before Tj commits.
In this case, when Tj invokes TryC() it observes one of the following two scenarios:

– m ∈ x.wl and m > j: Tj observes that a transaction Tm with higher timestamp (m > j)
has committed on x but does not overwrite x, and hence Tj aborts.

– x.ts ≥ j: Since Tm commits and overwrites x based on the Algorithm Commit(), Tm
aborts all live transactions with smaller timestamp than m, and hence Tj aborts.

In either scenario, Tj aborts, which is impossible.

• Tm commits and overwrites x before x.addi() starts.
In this case, Ti reads either the value of x written by Tm or by a more recent transaction (with
timestamp x.ts ≥ m). However, this contradicts the assumption that Ti reads x.ts = j.

• Tm commits and overwrites x after x.addi() ends.
In this case, in its TryC() transaction Tm will observe that x.commitsCounter ≥ K−1 (which
means Tm is the Kth transaction), and also it observes that Ti is in the writer list of x (that
is, i ∈ x.wl with i > m), and the combination of these two observations together force Tm to
abort, which is a contradiction.

Therefore, no transaction in Q overwrites x. This implies that each transaction in Q increments
x.commitsCounter. Therefore, similar to the proof of Lemma 6 the transactions in Q assign unique
values to x.commitsCounter. Since the x.commitsCounter cannot exceed K − 1 and none of the
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transactions in Q set x.commitsCounter = 0, we get that |Q| ≤ K − 1. The same observations for
Q hold even if Ti reads the initial value of x and Tj is replaced by a special event that initializes x.

Suppose now that Ti ∈ S′′. When Ti invokes Algorithm Commit() the only committed transac-
tions in the writer list of x are the ones in set Q. Therefore, the value returned by the add operation
of Ti is equal to ri = oj +

∑
Tl∈Q vl. By induction hypothesis, rj = r′j , and hence ri = r′i; therefore

property (i) holds. If Ti ∈ S \ S′′, then it returns ri = rj = r′j . Since, Q ∪ {Tj} ⊆ Pi property (ii)
holds as well. (Note that properties (i) and (ii) hold even if Ti reads the initial value v0 and Tj is
replaced with a special initialization event of x.) ut

Lemma 8 The history S is K-legal, for any queue object x.

Proof According to the implementation of algorithms Enqueue() and Dequeue(), within a transac-
tion Ti each individual enqueue or dequeue operation is considered in the legality specification of the
queue object x. So assume that in transaction Ti, each enqueue and dequeue operation on object x
is denoted as qOi.

Let S(x) = T1, T2, . . . , Tq be the subsequence of transactions in S that invoke enqueue or dequeue
operations to x. A transaction Tg that overwrites x is a transaction that commits and updates
x.queue[][], x.head and x.tail. It also sets x.copied = 0, x.ts = g and x.commitsCounter = 0;
Let S′(x) denote the subsequence of S(x) consisting of all transactions that commit. Let S′′(x)
denote the subsequence of S(x) consisting of all transactions that overwrite x. Let V (x) denote all
individual operations in S(x) and let V ′(x) denote all individual operations in S′(x) while V ′′(x)
denote all individual operations in S′′(x). For any queue operation qOpg,u, g is the timestamp of
the transaction that executes qOpg,u and u is the order of qOpg,u in V .

Let qs denote the queue status and qs0,0, . . . , qsq,d be the respective sequence of returned queue
status of the enqueue and dequeue operations of transactions in S(x), namely, qsg,first, . . . , qsg,last
represent the queue statuses returned by Tg. Let sq′g,u denote the precise queue status that would
have been returned by any queue operation of transaction Tg when the consistency is precise, that is,
qs′g,u = qOp0,0∧

∑
(1≤l<j)∧qOpl,s∈V ′(x) qOpl,s, where qOp0,0 is the initial value of x. Let og,u = qsg,a∧

qOpg,u be the result of any queue operation of transaction Tg. Similarly, let o′g,u = qs′g,u ∧ qOpg,u
be the respective precise result of the queue operation of transaction Tg.

For each qOpg,u ∈ V (x) let Pg,u denote the set of the last K operations which precede qOpg,u in
V (x). We only need to prove the following two properties:

(i) For each qOpg,u ∈ V ′′(x), qsg,u = qs′g,u (the operations in V ′′(x) are precise.

(ii) For each qOpg,u ∈ V (x) \ V ′′(x), either qsg,u = or,z and qOpr,z ∈ Pg,u and qOpr,z ∈ V ′′(x), or
qsg,u = qs0,0 and |Pg,u| < K.

We prove these properties by induction on q. For q = 0, V (x) is empty and the properties hold
trivially. Assume now that the properties hold for any q < n; we will show that the properties hold
also for q = n > 0.

Consider now the last operation qOpi,n. According to function Enqueue() and Dequeue(), qOpi,n
checks x.ts that shows the timestamp of the last transaction that overwrites x. Suppose that
x.ts = j ≥ i. Let Q be the set of operations that appear in V between qOpj,a ∈ Tj and qOpi,n ∈ Ti
and that have queue operations to x and commit (Q does not contain qOpj,a or qOpi,n). We continue
to show that |Q| ≤ K − 1.

We first show that none of the operations in Q overwrite x. Suppose for the sake of contradiction
that there is an operation qOpm,b ∈ Q which overwrites x. Note that j, a ≤ m, b ≤ i. We examine
three cases with respect to when qOpm,b belongs to a committed transaction Tm in H ′:

• Tm commits before Tj commits.
In this case, when Tj invokes TryC() it observes one of the following scenarios:

– m ∈ x.wl and Tj observes that a transaction Tm with higher timestamp (m > j) has
committed on x but does not overwrite x, and hence Tj aborts (considering that j 6= m 6=
i).
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– x.ts ≥ j: Since Tm commits and overwrites x based on the Algorithm Commit(), Tm aborts
all live transactions with smaller timestamp than m, and hence Tj aborts (considering
that j 6= m 6= i).

– Since some of these operations may belong to the same transaction, and since Tm commits
before Tj commits, then qOpj,a and qOpm,b belong to different transactions.

1. Now let us assume that j = i (which means qOpj,a and qOpi,n belong to the same
transaction). Based on Enqueue() and Dequeue(), qOpj,a would copy x to Tj local
memory and qOpi,n would read from the local copy. Then qOpm,b would find that the
object is copied by another concurrent transaction, so Tm aborts and qOpm,b would
not execute between qOpj,a and qOpi,n which means it cannot be in Q, contradiction.

2. If m = i and then qOpm,b would copy x to Tm local memory and qOpi,n would read
from the local copy, which contradicts our assumption that qOpi,n reads qOpj,a.

In all scenarios, either Tj aborts which is impossible, or qOpm,b is not in Q.

• Tm commits and overwrites x before qOpi,n starts.
In this case, qOpi,n reads either the value of x.head and/or x.tail that is written by qOpm,b or
by a more recent operation However, this contradicts the assumption that qOpi,n reads qOpj,n.
Actually this also holds if j = m, j = m = i or m = i.

On the other hand if j = i, then qOpj,a would copy x to Tj local memory and qOpm,b would
find that x is copied. So Tm aborts and it cannot execute between qOpj,a and qOpi,n. Thus
qOpm,b /∈ Q, contradiction.

• Tm commits and overwrites x after qOpi,n() ends.
In this case, we have the following scenarios:

– In case of j 6= m 6= i, in its TryC() transaction Tm will observe that x.commitsCounter ≥
K−1 (which means Tm is the Kth transaction), and also it observes that Ti is in the writer
list of x (that is, i ∈ x.wl with i > m), and the combination of these two observations
together force Tm to abort, which is a contradiction.

– In case some of these operations belong to the same transaction, we examine the following
cases:

1. Since Tm commits and overwrites x after qOpi,n() ends, then we cannot have that
m = i or j = m = i, otherwise qOpmb

/∈ Q.

2. If j = i, then x would be copied by Tj and qOpm,b /∈ Q.

3. If j = m then x would be copied by Tj , and Ti would abort and qOpi, n cannot
execute.

Therefore, no operation qOpm,b in Q overwrites x. This implies that each operation in Q incre-
ments x.commitsCounter. Therefore, similar to the proof of Lemma 6 the operations in Q assign
unique values to x.commitsCounter. Since the x.commitsCounter cannot exceed K − 1 and none
of the operations in Q set x.commitsCounter = 0, we get that |Q| ≤ K − 1. The same observations
for Q hold even if qOpi,n reads the initial value of x and qOpj,a is replaced by a special event that
initializes x.

Suppose now that qOpi,n ∈ V ′′ which implies that Ti ∈ S′′. When Ti invokes Algorithm Com-
mit(), the only committed transactions in the writer list of x are the ones in set Q. Therefore, the
value returned by the qOpi,n of Ti is equal to qsi,n = qsj∧

∑
qOpl∈Q qOpin . By induction hypothesis,

qsj,a = qs′j,a, and hence qsi,n = qs′i,n, and therefore, property (i) holds. If qOpi,n ∈ V \ V ′′ (which
implies Ti ∈ S \ S′′ ), then it returns qsi,n = qsj,a = qs′j,a. Since, Q ∪ {qOpj,a} ⊆ Pi,n property (ii)
holds as well. (Note that properties (i) and (ii) hold even if qOpi,n reads the initial value qs0,0 and
qOpj,a is replaced with a special initialization event of x.) ut

Based on Lemmas 5, 6, 7 and 8, we obtain the following theorem.

Theorem 3 Any execution history H of our algorithm is K-opaque.
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Figure 7: (a) Comparison of the throughputs (committed transactions per time) of opaque, 2-opaque,
4-opaque and 8-opaque using Bank, Linked-list and Red-black tree benchmarks; (b) Comparison of
the number of committed updates to the number of the saved versions in opaque, 2-opaque, 4-opaque
and 8-opaque using Linked-list benchmark.

6 Experimental Results

In our experimental analysis, we simulate the Bank, Linked-list and Red-black Tree benchmarks from
TinySTM-1.0.5 [10]. We run the experiments on a machine with dual Intel(R) Xeon(R) CPU E5-2630
(6 cores total) clocked at 2.30 GHz. Each run of the benchmark takes about 5500 milliseconds using
10 threads. We test the benchmarks to compare the opaque execution (1-opaque) with 2-opaque,
4-opaque and 8-opaque. The Bank benchmark is used to test read, write and counting operations.
In Bank benchmark, there are three kinds of operations which are read balance, write amount and
transfer. In the Linked-list and Red-black Tree benchmarks, we have search operations, add and
delete node. Read balance (in Bank) and search (in Linked-list and Red-black Tree) are read-only,
but write, transfer (in Bank) and add/delete node (in Linked-list and Red-black Tree) are update
transactions.

6.1 K-opacity for Read-only Transactions Using Read/write Object

First we show the results of applying K-opacity on read-only transactions using multi-version STM.
In Figure 7(a), we compare the throughput (commits per time) of an opaque execution (1-opaque),
2-opaque, 4-opaque and 8-opaque using the three benchmarks. Clearly, the relaxed opacity in
2-opaque, 4-opaque and 8-opaque helps to avoid some aborts and to improve the throughput. Fur-
thermore, in 1-opaque all read-only transactions are precise but in 2-opaque, 4-opaque and 8-opaque
the percentage of approximated read-only transactions is smaller than the percentage of the precise
ones. We note that there is an increase in the number of committed updates since relaxing the
opacity of a read-only transaction sometimes allows to avoid many aborts; as 1-opaque read-only
transaction may conflict with many update ones.

Figure 7(b) shows a comparison between the number of committed updates and the number of
the saved versions using Linked-list benchmark. In 1-opaque the number of committed updates and
the number of the saved versions are the same, since we save a new version with each committed
update. In 2-opaque and 4-opaque, the number of saved version increases because such relaxations
allow to commit very large number of updates. However, in 8-opaque the number of committed
updates increases but the number of non-saved versions is very large (as we save 1 version every 8
commits), so the number of saved versions decreases.

6.2 K-opaque STM for Count Object

Now we apply K-opacity concept on all kind of transactions of STM. In this part we focus on the
count object and we show the results using single-version and multi-version STM.
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Figure 8: Comparison of the throughput of 1-opaque, 2-opaque, 4-opaque and 8-opaque executions
on the Bank benchmark with 25% read-only and 75% updates, 50% read-only and 50% updates,
and 75% read-only and 25% update transactions.

Figure 9: Comparison of the aborts of 1-opaque, 2-opaque, 4-opaque and 8-opaque executions on
the Bank benchmark with 25% read-only and 75% updates, 50% read-only and 50% updates, and
75% read-only and 25% update transactions.

6.2.1 K-opaque Single-version STM

We apply K-opacity concept on single-version STM. we modify the objects of Bank benchmark such
that each account is a count object. Also there are three kinds of operations which are read balance
(add(0)), write amount (add(data), where data is a positive or negative number), and transfer (which
has two add operations to subtract a number from one account and add it to another account). Read
balance represents a read-only transaction, but write and transfer are update transactions. We run
our experiments with different ratio of read-only and update transactions.

Figure 8 shows the throughput of 1-opaque, 2-opaque, 4-opaque and 8-opaque executions on
the Bank benchmark. The figure shows an execution of 25% read-only and 75% updates, where
in opaque execution all committed transactions are precise. In 2-opaque, 4-opaque and 8-opaque
executions the throughput increases because the relaxation (which means to have some approximated
transactions) of some read-only and update transactions results in the avoidance of some aborts.
Also the throughput increases with a large value of K because there is a higher commit rate since
update transactions get faster as their commit phase creates new versions with lower frequency.
Moreover, the same thing happens with executions of 50% read-only and 50% updates, and 75%
read-only and 25% update transactions.

Figure 9 shows the abort rate of 1-opaque, 2-opaque, 4-opaque and 8-opaque executions on the
Bank benchmark. The figure shows executions of 25% read-only and 75% updates, 50% read-only
and 50% updates, and 75% read-only and 25% update transactions. In all executions the abort rate
decreases as we relax the opacity. In 8-opaque, the abort rate drops by about 88% and all read-only
transactions are committed.
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Figure 10: (a) Comparison of the throughput of 1-opaque single-version STM to 1-opaque multi-
version STM using the Bank benchmark; (b) Comparison of the throughput of 2-opaque single-
version STM to 2-opaque multi-version STM using the Bank benchmark; (c) Comparison of the
throughput of 4-opaque single-version STM to 4-opaque multi-version STM using Bank benchmark;
(d) Comparison of the throughput of 8-opaque single-version STM to 8-opaque multi-version STM
using the Bank benchmark.

6.2.2 K-opaque Multi-version STM

After we applied the concept of approximated opacity on the single-version STM, we applied the
same concept on multi-version STM. In multi-version STM each shared object may have multiple
versions. In this way, when an update transaction commits, it creates new versions for the objects in
its write set. Using multiple memory object versions, read-only transactions can successfully commit
(without aborting at all) by preserving the versions in the access sets of the transactions. Therefore,
we have slightly modified the structure of the count object and the algorithm to satisfy multi-version
specifications.

Now we compare the performance of the single-version STM to the multi-version STM using the
Bank benchmark. We use different ratios of read-only and update transactions.

Figure 10(a) Compares the throughput of 1-opaque single-version STM to 1-opaque multi-version
STM using the Bank benchmark. With all different ratios of read-only and update transactions,
multi-version STM usually shows better performance than the single-version one. More improvement
of throughput happens when there is a higher ratio of read-only transactions, since in multi-version
STM read-only transactions never abort. The same thing happens with Figure 10(b) which compares
the throughput of 2-opaque single-version STM to 1-opaque multi-version STM using the Bank
benchmark. However, because of the relaxation of opacity we have some approximated read-only
and approximated update transactions. In addition, Figures 10(c) and 10(d) show the 4-opaque
and the 8-opaque executions. In both, the throughput of multi-version STM and the throughput of
single-version STM are almost the same with all different ratios of read-only and update transactions.
This happens because more relaxation of the single-version STM allows to commit more read-only
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Figure 11: (a) Comparison of the throughput of 1-opaque, 2-opaque, 4-opaque and 8-opaque ex-
ecutions on the Linked-list benchmark; (b) Comparison of the abort rate of 1-opaque, 2-opaque,
4-opaque and 8-opaque executions on the Linked-list benchmark.

transactions without aborting update ones, while the multi-version STM originally has such property.
However, in multi-version STM, the ratio of precise read-only transactions is usually higher.

6.3 K-opaque STM for Queue Object

Now, we use the Linked-list benchmark to test the queue operations. We initialize 70 lists (we
modify the structure of each list to be a queue object) and we use the add and delete nodes to
simulate enqueue and dequeue operations. Both enqueue and dequeue operations are considered
update transactions and for queue specification we consider a single-version STM only.

Figure 11(a) demonstrates the throughput of 1-opaque, 2-opaque, 4-opaque and 8-opaque exe-
cutions on the Linked-list benchmark. It shows an execution of 50% enqueues and 50% dequeues,
where all of them are update transactions. The throughput of the 8-opaque execution is the max-
imum since the throughput improves as we relax the opacity. Moreover, Figure 11(b) shows the
abort rate on the Linked-list benchmark. The figure illustrates the fast drop of the abort rate as we
relax opacity.

7 Related Work

STM is a suitable paradigm to support parallel processing as it is able to guarantee progressiveness
which aims to reduce aborts [13, 22].

An approach to reduce aborts is the multi-version STMs which keep multiple versions of each
memory object [11, 18]. In case of a conflict this kind of STMs prevent aborts by allowing some
operations of the conflicted transactions to use old object versions and maintain consistency at the
same time. The main quality of using multi-version STMs is to never abort read-only transactions.

In addition, opacity is a property which is used to ensure the correctness of concurrent executions,
such that the parallel execution of transactions must be matched with a sequential one [12].

A relaxed model that is proposed for database problems, classifies database objects into two
classes which are sensitive and non-sensitive objects. Then they use strong consistency with sensitive
objects and weak consistency with the non-sensitive ones [23]. However, we use the concept of opacity
to verify the correctness of the execution in STM and we relax the opacity concept to K-opacity.

In fact, K-opacity is stronger than Read Uncommitted [5] which allows dirty reads while K-
opacity does not. Also K-opacity is stronger than Read Committed [6] since K-opacity does not
allow non-repeatable reads such that the transactions are serializable on each object even if any
transaction accesses the same object multiple times. Also K-opacity is stronger than Repeatable
Read [5] such that phantom reads are limited. Indeed phantom reads may happens within no more
than K concurrent transactions. Thus K-opacity preserves an approximated serializability up to
the limit K.

Snapshot Isolation (SI) [20] allows to read old values, but it still ensures that each transaction sees
a consistent snapshot. So, SI is stronger than K-opacity transactions that may see a K-consistent
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snapshot which preserves a relaxed (approximated) serializability.
A Lazy Snapshot Algorithm (LSA) [19] allows older reads, but it still ensures that each transaction

sees a consistent snapshot, while in K-opacity we may see a K-consistent snapshot (by proper
adaptation of the snapshot definition). On the other hand, in LSA when the transaction arrives
(is issued), it gets a timestamp and it reads from the versions that already committed before that
point (i.e. it does not read from concurrent transactions). However, in K-opacity the transactions
read from concurrent updates only if they have smaller timestamps. Therefore, LSA guarantees
serializability, while K-opacity guarantees relaxed (approximated) serializability. In short with K-
opacity we can improve the performance comparing to LSA by relaxing the consistency and avoiding
some aborts.

8 Conclusion

In conclusion, our algorithm usually allows to commit some of the conflicted transactions, due
to relaxed consistency, which improves the performance. The count object could be extended to
execute other arithmetic operations as well. For that, we can add another column in the wl array
to record the type of operations, i.e. multiplication or division. Also the timestamp order of the
sequential history S is used for the correctness of transactions’ execution. It may be possible to
use another S that does not respect the timestamps’ order but it allows more commits (i.e. value
based approximation). For future work, the composability of approximated opacity can be applied
to other object kinds (such as stacks).
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