
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 8, Number 2, pages 141–152, July 2018

An asynchronous P system with branch and bound for solving the satisfiability problem

Yuki Jimen and Akihiro Fujiwara

Graduate School of Computer Science and Systems Engineering,
Kyushu Institute of Technology

Iizuka, Fukuoka, 820-8502, Japan

Received: January 31, 2018
Accepted: March 19, 2018

Communicated by Fukuhito Ooshita

Abstract

Membrane computing, which is a computational model based on cell activity, has consider-
able attention as one of new paradigms of computations. In the general membrane computing,
computationally hard problems have been solved in a polynomial number of steps using an
exponential number of membranes. However, reduction of the number of membranes must be
considered to make P system more realistic model.

In the paper, we propose an asynchronous P system with branch and bound, which is a well
known optimization technique, to reduce the number of membranes. The proposed P system
solves the satisfiability problem (SAT) with n variables and m clauses, and works in O(m2n)
sequential steps or O(mn) parallel steps.

In addition, the number of membranes used in the proposed P system is evaluated using a
computational simulation. The experimental result shows validity and efficiency of the proposed
P system.

Keywords: membrane computing, satisfiability problem (SAT), branch and bound

1 Introduction

A number of next-generation computing paradigms have been considered due to limitation of silicon-
based computational hardware. As an example of the computing paradigms, natural computing,
which works using natural materials for computation, has considerable attention. Membrane com-
puting, which is a computational model inspired by the structures and behaviors of living cells, is a
representative of the natural computing.

A basic feature of the membrane computing was introduced in [9] as a P system. The P system
consists mainly of membranes and objects. A membrane is a computing cell, in which independent
computation is executed, and may contain objects and other membranes. Each object evolves
according to evolution rules associated with a membrane in which the object is contained.

The P system and most variants have been proved to be universal [11], and several P systems
have been proposed for solving computationally hard problems [3, 6, 8, 10, 15, 18, 2, 12, 13, 14, 5].
For example, Pan and Alhazov [8] have proposed a P system that solves satisfiability problem (SAT).
The P system solves SAT with n variables and m clauses in O(n+m) steps using O(mn2) kinds of
objects and O(2n) membranes.

In addition, asynchronous parallelism has been considered on the P system. The asynchronous
parallelism means that all objects may react on rules with different speed, and evolution rules are

141

An asynchronous P system with branch and bound for solving SAT

applied to objects independently. Since all objects in a living cell basically works in asynchronous
manner, the asynchronous parallelism makes P system a more realistic computational model.

A number of asynchronous P systems have been proposed for the computationally hard problems
in [1, 16, 7, 17, 4]. For example, an asynchronous P system has been proposed for solving SAT in
[16]. The P system solves the satisfiability with n variables and m clauses in O(mn2n) sequential
steps or O(mn) parallel steps using O(mn) kinds of objects.

In all of the above P systems, the computationally hard problems have been solved in polynomial
numbers of steps using exponential numbers of membranes. The number of membranes means the
number of living cells, and reduction of the number of membranes must be considered in case that
the P system is implemented using living cells because living cells cannot be created exponentially.
However, no P system is proposed for considering reduction of the number of membranes.

In the paper, we propose an asynchronous P system for solving SAT with branch and bound,
which is a well known optimization technique, to reduce the number of membranes. In the proposed
P system, one of two values, true or false, is assigned for variables one by one, and then, the
satisfiability is checked for the partial assignment. If all clauses are satisfied or one of the clauses
cannot be satisfied for the partial assignment, output of SAT can be determined. Since the number
of membranes increases according to the number of assigned values, the number of membrane can be
reduced by omitting value assignments for the other variables. We show that the proposed P system
solves the satisfiability problem with n variables and m clauses, and works in O(m2n) sequential
steps or O(mn) parallel steps using O(mn2) kinds of objects.

Since the asymptotic complexities are almost the same as complexities of the previous P system
[16], validity of the proposed system is evaluated using a computational simulation. In the simulation,
various instances are executed on the previous P system and the proposed P system, and the number
of membranes are compared for the same instances. The experimental results show validity and
efficiency of the proposed P system with branch and bound.

The remainder of the present paper is organized as follows. In Section 2, we give a brief descrip-
tion of the model for asynchronous membrane computing. In Section 3, we propose the P system
with branch and bound for SAT, and experimental results for the proposed P system are shown in
Section 4. Section 5 concludes the paper.

2 Preliminaries

2.1 Computational model for membrane computing

Several models have been proposed for membrane computing. We briefly introduce a basic model
of the P system in this subsection.

The P system consists mainly of membranes and objects. A membrane is a computing cell,
in which independent computation is executed, and may contain objects and other membranes. In
other words, the membranes form nested structures. In the present paper, each membrane is denoted
by using a pair of square brackets, and the number on the right-hand side of each right-hand bracket
denotes the label of the corresponding membrane. An object in the P system is a memory cell, in
which each data is stored, and can divide, dissolve, and pass through membranes. In the present
paper, each object is denoted by finite strings over a given alphabet, and is contained in one of the
membranes.

For example, [[a]2[b]3]1 and Figure 1 denotes the same membrane structure that consists of
three membranes. The membrane labeled 1 contains two membranes labeled 2 and 3, and the two
membranes contain objects a and b, respectively.

Computation of P systems is executed according to evolution rules, which are defined as rewriting
rules for membranes and objects. All objects and membranes are transformed in parallel accord-
ing to applicable evolution rules. If no evolution rule is applicable for objects, the system ceases
computation.

We now formally define a P system and the sets used in the system as follows.

Π = (O,µ, ω1, ω2, · · · , ωm, R1, R2, · · · , Rm)

142

International Journal of Networking and Computing

1

2 3

a b

Figure 1: An example of membrane structure

O: O is the set of all objects used in the system.

µ: µ is membrane structure that consists of m membranes. Each membrane in the structure is
labeled with an integer.

ωi: Each ωi is a set of objects initially contained only in the membrane labeled i.

Ri: Each Ri is a set of evolution rules that are applicable to objects in the membrane labeled i.

In the present paper, we assume that input objects are given from the outside region into the
outermost membrane, and computation is started by applying evolution rules. We also assume that
output objects are sent from the outermost membrane to the outside region.

In membrane computing, several types of rules are proposed. In the present paper, we consider
five basic rules of the following forms.

(1) Object evolution rule:
[a]h → [b]h

In the above rule, h is a label of the membrane and a, b ∈ O. Using the rule, an object a
evolves into another object b. (We omit the brackets in each evolution rule such as a→ b for
cases that a corresponding membrane is obvious.)

(2) Send-in communication rule:
a[]h → [b]h

In the above rule, h is a label of the membrane, and a, b ∈ O. Using the rule, an object a is
sent into the membrane, and can evolve into another object b.

(3) Send-out communication rule:
[a]h → []hb

In the above rule, h is a label of the membrane, and a, b ∈ O. Using the rule, an object a is
sent out of the membrane, and can evolve into another object b.

(4) Dissolution rule:
[a]h → b

In the above rule, h is a label of the membrane, and a, b ∈ O. Using the rule, the membrane,
which contains object a, is dissolved, and the object can evolve into another object b. (The
outermost membrane cannot be dissolved.)

(5) Division rule:
[a]h → [b]h[c]h

In the above rule, h is a label of the membrane, and a, b, c ∈ O. Using the rule, the mem-
brane, which contains object a, is divided into two membranes that contain objects b and c,
respectively.

We assume that each of the above rules is applied in a constant number of biological steps. In
the following sections, we consider the number of steps executed in a P system as the complexity of
the P system.

143

An asynchronous P system with branch and bound for solving SAT

2.2 Maximal parallelism and asynchronous parallelism

In the standard model in membrane computing, which is a P system with maximal parallelism, all
of the above rules are applied in a non-deterministic maximally parallel manner. In one step of
computation of the P system, each object is evolved according to one of applicable rules. (In case
there are several possibilities, one of the applicable rules is non-deterministically chosen.) All objects,
for which no rules applicable, remain unchanged to the next step. In other words, all applicable
rules are applied in parallel in each step of computation.

On the other hand, evolution rules are applied in a fully asynchronous manner on the asyn-
chronous P system, and any number of applicable evolution rules is applied in each step of compu-
tation. In other words, the asynchronous P system can be executed sequentially, and also can be
executed in the maximal parallel manner.

The reason why we assume the asynchronous parallelism in this paper is based on the fact that
every living cell acts independently and asynchronously. Since the standard P system ignores the
asynchronous feature of living cells, the asynchronous P system is a more realistic computation
model for cell activities.

We now show an example for difference between the P system with maximal parallelism and the
asynchronous P system. We define P system Π and the sets used in the system as follows.

Π = (O,µ, ω1, R1)
O = {a, b, c, d, e}, µ = []1, ω1 = φ,
R1 = {a→ b, bc→ d, c→ e, ae→ f}

We consider computations of the P system Π. Let us assume that input objects ac are given into
the membrane from the outside region. On the standard P system, all applicable evolution rules,
which are a → b and c → e, are applied in parallel, and the objects ac are evolved into be. Since
objects be cannot be evolved using evolution rules in R1, the computation on the P system is halted.

On the other hand, five computations given below can be considered on the asynchronous P
system according to the order of application of the evolution rules.

ac→ be

ac→ ae→ be

ac→ ae→ f

ac→ bc→ be

ac→ bc→ d

Therefore, a number of executions are possible in the asynchronous P system, and the evolution
rules in the standard P system, which assumes the maximal parallel manner, may not work in the
asynchronous parallel manner.

In the asynchronous P system, all evolution rules can be applied completely in parallel, which
is the same as the conventional P system, or all evolution rules can be applied sequentially. We
define the number of steps executed in the asynchronous P system in the maximal parallel manner
as the number of parallel steps. We also define the number of steps in the case that the applicable
evolution rules are applied sequentially as the number of sequential steps. The numbers of parallel
and sequential steps indicate the best and worst case complexities for the asynchronous P system.
In addition, the proposed asynchronous P system must be guaranteed to output a correct solution
in any asynchronous execution.

3 An asynchronous P system with branch and bound for
SAT

In this section, we present an asynchronous P system with branch and bound for the satisfiability
problem. We first explain an input and an output of the problem for the system, and then, show an
outline and details of the P system with an example. Finally, we discuss complexity of the proposed
P system.

144

International Journal of Networking and Computing

Bounding

x1=0
x1=1

x2=0 x2=1

x3=0 x3=1 x3=0 x3=1

x2=0
x2=1

x3=0 x3=1 x3=0 x3=1

Bounding

Figure 2: An example of branch and bound for SAT

3.1 Input and output for SAT

The satisfiability problem (SAT) is a well-known problem that determines if there exists a truth
assignment for a given Boolean formula. We assume that an input formula of SAT is given in the
conjunctive normal form (CNF) with n Boolean variables and m clauses. We also assume that an
output of SAT is one of two values, “TRUE” and “FALSE”. The output is “TRUE” if there exists
a truth assignment for satisfying the formula, otherwise, the value is “FALSE”.

The following is an example of an input formula with 3 variables and 3 clauses. Since a truth
assignment, x1 = 0, x2 = 1 and x3 = 0, satisfies the input formula, an output of SAT for the instance
is “TRUE”.

(x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1)

The above input is given by the following set of objects OL in the P system.

OL = {〈Xi,j , V 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1, N}}

Each object 〈Xi,j , V 〉 denotes a Boolean value of variable xi in the j-th clause. In addition, V is
set to N if neither xi nor x̄i is in the j-th clause.

For example, the following set of objects denotes the above input formula.

OL = { 〈X1,1, 1〉, 〈X1,2, N〉, 〈X1,3, 0〉,
〈X2,1, 1〉, 〈X2,2, 0〉, 〈X2,3, N〉,
〈X3,1, N〉, 〈X3,2, 0〉, 〈X3,3, N〉 }

We assume that input set OL is given from the outside region into the outer membrane.
The output of the P system is one of two objects, 〈TRUE〉 and 〈FALSE〉. The object 〈TRUE〉 is

sent out from the outer membrane to the outside region if the input formula is satisfiable, otherwise,
the object 〈FALSE〉 is sent out to the outside region.

3.2 Branch and bound technique for SAT

Branch and bound is a well known computing paradigm for optimization problems. For solving
SAT, all assignments are enumerated for n Boolean variables, and 2n solutions must be created for
the exhaustive enumeration. However, a number of assignments can be discarded if the output is
determined to be “TRUE” or “FALSE” by partial assignments for the variables.

Figure 2 shows a search tree for illustration of the above idea. Let (x1∨x2)∧ (¬x2∨¬x3)∧ (¬x1)
be an input formula. In this case, the first clause cannot be satisfied in case of x1 = 0, x2 = 0, and
assignments for x3 can be ignored. In another case, the third clause cannot be satisfied in case of
x1 = 1, and assignments for x2 and x3 can be ignored.

We now explain an overview of the asynchronous P system with branch and bound for solving
SAT. An initial membrane structure for the computation is [[]2]1. We call the membranes labeled
1 and 2 outer and inner membranes, respectively.

The computation of the P system mainly consists of the following three steps.

145

An asynchronous P system with branch and bound for solving SAT

Step 1: Move all input objects in the outer membrane into the inner membrane.

Step 2: In each inner membrane, repeat the following (2-1) and (2-2) until “TRUE” or “FALSE”
is outputted.

(2-1) Create a truth assignment for a variable by dividing the inner membrane.

(2-2) Check satisfiability for a truth assignment in each divided membrane. If all clauses are
satisfied with the assignment, an object denoting “TRUE” is outputted to the outer membrane.
On the other hand, if one of the clauses cannot be satisfied by the truth assignment, an object
denoting “FALSE” is outputted to the outer membrane.

Step 3: Send out a final result, “TRUE” or “FALSE”, from the outer membrane.

3.3 Details of the P system

We now explain details of each step of the computation. In Step 1, all input objects in the outer
membrane are moved into the inner membrane. Since the P system used in the paper is asynchronous,
we cannot move the input objects in parallel, and input objects are moved one by one applying
following two sets of evolution rules.

(Evolution rules for the outer membrane)

R1,1 = {〈X1,1, V 〉[]2 → [〈M2.1, 0〉〈X1,1, V 〉]2 | V ∈ {0, 1, N}}
∪{〈Mi,j , k〉〈Xi,j , V 〉[]2 → [〈Mi+1,j , 0〉〈Xi,j , V 〉]2
| 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ n− 1, V ∈ {0, 1}}

∪{〈Mi,j , k〉〈Xi,j , N〉[]2 → [〈Mi+1,j , k + 1〉〈Xi,j , N〉]2
| 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ n}

(Evolution rules for the inner membrane)

R2,1 = {[〈Mi,j , k〉]2 → []2〈Mi,j , k〉 | 2 ≤ i ≤ n, 1 ≤ j ≤ m}
∪{〈Mn+1,j , k〉 → 〈M1,j+1, 0〉〈Fj , n− k, 0〉 | 1 ≤ j ≤ m, 0 ≤ k ≤ n− 1}
∪{〈M1,m+1, 0〉 → 〈S1〉〈m〉}

In the above evolution rules, object 〈X1,1, V 〉 is moved from the outer membrane to the inner
membrane, and then, object 〈M2,1, 0〉 is created and moved to the inner membrane. (Object 〈Mi,j , k〉
moves object 〈Xi,j , V 〉 from the outer membrane to the inner membrane.)

In addition, object 〈Fj , k, f〉 is created for the j-th clause. In the object, k denotes the order of
division for the clause, and f ∈ {0, 1} is a flag that is set to 1 if j-th clause is satisfied. The object
〈Fj , k, f〉 is also moved to the inner membrane.

After all input objects are moved to the inner membrane, object 〈M1,m+1, 0〉 is created, and
then, object 〈S1〉 and 〈m〉 are created in the inner membrane. Object 〈m〉 denotes the the number
of unsatisfied clauses, and object 〈S1〉 triggers Step 2.

In Step 2, object 〈Si〉 is used as a trigger for membrane division, and object 〈Ai, 0〉 and 〈Ai, 1〉
are used for assignments such that xi = 0 and xi = 1, respectively. In addition, object 〈Ci,j , i〉 is
used for checking if an assignment for the i-th literal satisfies the j-th clause.

In (2-1), a truth assignment for a variable is created by dividing the inner membrane. The
sub-step is executed by applying the following set of evolution rules.

(Evolution rules for the outer membrane)

R2,2,1 = {[〈Si〉]2 → [〈Ai, 0〉〈Ci,1, i〉]2[〈Ai, 1〉〈Ci,1, i〉]2 | 1 ≤ i ≤ n}

146

International Journal of Networking and Computing

In (2-2), satisfiability for a truth assignment in each divided membrane is checked. The sub-step
is executed by applying the following sets of evolution rules.

(Evolution rules for the inner membrane)

R2,2,2 = R2,2,2,1 ∪R2,2,2,2 ∪R2,2,2,3

R2,2,2,1 = {〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V
′〉〈Fj , k, f〉 → 〈Ci,j+1, i〉〈Xi,j , V 〉〈Ai, V

′〉〈Fj , k, f〉
| 1 ≤ i ≤ n, 1 ≤ j ≤ m, i 6= k, f ∈ {0, 1}, V ∈ {0, 1, N}, V ′ ∈ {0, 1}, V 6= V ′}
∪{[〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V

′〉〈Fj , i, 0〉]2 → []2〈FALSE, 2n−i〉
| 1 ≤ i ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1, N}, V ′ ∈ {0, 1}, V 6= V ′}

∪{〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V 〉〈Fj , k, 0〉〈l〉 → 〈Ci,j+1, i〉〈Xi,j , V 〉〈Ai, V 〉〈Fj , k, 1〉〈l − 1〉
| 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ m, 1 ≤ k ≤ n, V ∈ {0, 1}}

∪{〈Ci,j , i〉〈Xi,j , V 〉〈Ai, V 〉〈Fj , k, 1〉 → 〈Ci,j+1, i〉〈Xi,j , V 〉〈Ai, V 〉〈Fj , k, 1〉
| 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ n− 1, i 6= k, V ∈ {0, 1}}

R2,2,2,2 = {〈Ci,m+1, i〉〈l〉 → 〈Si+1〉〈l〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ m}
∪{[〈Ci,m+1, i〉〈0〉]2 → []2〈TRUE〉 | 1 ≤ i ≤ n}

R2,2,2,3 = {[〈Sn+1〉]2 → []2〈FALSE, 1〉}

In the above evolution rules, satisfiability of each clause is checked in order of Xi,1, Xi,2, · · ·Xi,m,
and the number of satisfied clauses is computed using evolution rules in R2,2,2,1. If all clauses are
satisfied, 〈TRUE〉 is outputted to the outer membrane, and membrane division is terminated. On
the other hand, if a clause cannot be satisfied by a truth assignment in the divided membrane, object
〈FALSE, 2n−i〉 is outputted to the outer membrane, and membrane division is also terminated.

Otherwise, if truth assignments are created for all variables, object 〈Sn+1〉, which indicates that
all checks for variables are completed, is created, and object 〈FALSE, 1〉 is outputted to the outer
membrane. If the check is not completed for all variables, object 〈Ci,m+1, i〉 is changed into object
〈Si+1〉, and Step 2 is repeated by executing evolution rules in R2,2,2,1.

In Step 3, a final result is sent out from the outer membrane. The Step 3 is executed applying
the following set of evolution rules.

(Evolution rules for the outer membrane)

R1,3 = {{[〈TRUE〉]1 → []1〈TRUE〉}
∪{〈FALSE, 2p〉〈FALSE, 2p〉 → 〈FALSE, 2p+1〉 | 0 ≤ p ≤ n− 1}
∪{[〈FALSE, 2n〉]1 → []1〈FALSE〉}}

If object 〈TRUE〉 is in the outer membrane, there is an assignment that satisfies the in-
put formula, and the object is sent out from the membrane immediately applying [〈TRUE〉]1 →
[]1〈TRUE〉. On the other hand, 2n objects, 〈FALSE, 1〉, are sent out from the divided inner
membranes to the outer membrane in case that the formula cannot be satisfied in Step 2. Since we
assume the P system is asynchronous, the sum of the objects must be counted asynchronously, and
a final 〈FALSE〉 is outputted if 2n FALSE objects are obtained.

We now summarize the asynchronous P system ΠBB−SAT for solving SAT as follows.

ΠBB−SAT = (O,µ, ω1, ω2, R1, R2)

• O = OL ∪ {〈TRUE〉, 〈FALSE〉}

OL = {〈Xi,j , V 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m,V ∈ {0, 1, N}}

• µ = [[]2]1

• ω1 = ω2 = φ

• R1 = R1,1 ∪R1,3, R2 = R2,1 ∪R2,2,1 ∪R2,2,2

147

An asynchronous P system with branch and bound for solving SAT

1

2

1

2

2

1
2

2

1
2

Figure 3: An example of execution of ΠBB−SAT (Step 1 and Step 2)

3.4 An example of P system

Figure 3 and Figure 4 illustrate an example execution of the proposed P system ΠBB−SAT . An
input formula for the example is (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1), and n = 3, m = 3.

Figure 3 illustrates an execution of Step 1 and Step 2. A set of objects OL is given from the
outside region into the outer membrane. By applying evolution rules R1,1 and R2,1, objects in OL

and other objects are moved to the inner membrane.

Next, by applying the evolution rule in R2,2, 〈A1, 0〉 and 〈A1, 1〉, which indicate a truth assign-
ment for the first variable x1, are created. Then, satisfiability for a truth assignment, x1 = 0 or
x1 = 1, is checked by applying the evolution rule in R2,2,2. Since the last clause cannot be satisfied
in case of x1 = 1, object 〈FALSE, 4〉 is sent out to the outer membrane, and membrane division is
terminated for the membrane.

Figure 4 illustrates an execution of Step 2 and Step 3. The evolution rules of Step 2 are applied to
the inner membranes repeatedly until inner membrane outputs all solutions to the outer membrane.
Then, the final solution object 〈TRUE〉 is outputted from the outer membrane to the outside region.

148

International Journal of Networking and Computing

2

1

2 2 2

1

2 2 2

2

2
1

Figure 4: An example of execution of ΠBB−SAT (Step 2 and Step 3)

3.5 Complexity of the P system

We now consider the complexity of asynchronous P system ΠBB−SAT . Since O(mn) objects are
moved from the outer membrane into the inner membrane sequentially, Step 1 can be executed in
O(mn) parallel steps and O(mn) sequential steps using O(mn) kinds of objects and O(mn) kinds
of evolution rules.

In Step 2, O(2n) membranes are created in the worst case, and evolution rules are applied
sequentially at most O(m) times in each membrane. Therefore, Step 2 can be executed in O(mn)
parallel steps and O(m2n) sequential steps using O(mn2) kinds of objects and O(m2n2) kinds of
evolution rules.

In the final step, O(n) evolution rules are applied sequentially in case that the output is “FALSE”,
and Step 3 can be executed in O(n) parallel steps and O(2n) sequential steps using O(n) kinds of
objects and O(n) kinds of evolution rules.

Therefore, we obtain the following theorem for the asynchronous P system ΠBB−SAT .

Theorem 1 The asynchronous P system ΠBB−SAT , which computes the satisfiability problem,

149

An asynchronous P system with branch and bound for solving SAT

0

200

400

600

800

1000

1200

5 6 7 8 9 10

nu
m

be
r

of
 m

em
br

an
es

number of variables

existing algorithm proposed algorithm

Figure 5: Experimental results

works in O(m2n) sequential steps or O(mn) parallel steps by using O(mn2) types of objects and
evolution rules of size O(m2n2). 2

4 Experimental simulation

We develop an original simulator for asynchronous P systems using C++ language, and compare
the number of membranes used in executions of an existing P system for SAT [16] and our proposed
P system.

Since the simulator executes P systems with asynchronous parallelism, all of the evolution rules
are applied in fully asynchronous manner, in other words, any number of applicable evolution rules
are applied in each step of executions on the simulator. Therefore, applied evolution rules are
different among executions on the simulator, and output of the simulation may be different for the
same input. We first implement the existing P system and the proposed P system for SAT on the
simulator, and execute simulations for various inputs. In the simulation, valid results are obtained
for all inputs, that is, both P systema output same objects for all inputs.

Next, we compare the number of membranes used on the existing P system and the proposed P
system for SAT. Inputs of the simulation are CNFs with n variable and 3 clauses. For example, the
following is an input of the simulation in case of n = 3.

OL = { 〈X1,1, V1,1〉, 〈X1,2, V1,2〉, 〈X1,3, V1,3〉,
〈X2,1, V2,1〉, 〈X2,2, V2,2〉, 〈X2,3, V2,3〉,
〈X3,1, V3,1〉, 〈X3,2, V3,2〉, 〈X3,3, V3,3〉 }

In the above input, each Vi,j (1 ≤ i ≤ n, 1 ≤ j ≤ 3) is set to 0, 1, or N with equal probability.

For the simulations, 100 inputs are randomly created for each n (5 ≤ n ≤ 10), and the existing
P system and the proposed P system are simulated for the given inputs.

Figure 5 shows that average values of the number of membranes on the simulation. The number of
membranes of the existing P system increases exponentially to the number of variables n. Although
the number of membranes on the proposed P system also increases according to n, the number of
membranes on the proposed P system is 75 percent less than the number of membranes on the
existing P system.

150

International Journal of Networking and Computing

5 Conclusions

In this paper, we proposed the asynchronous P system with branch and bound for solving SAT. The
P system with branch and bound reduces the number of membranes by omitting value assignments
if all clauses are satisfied or one of clauses cannot be satisfied for the partial assignment.

The proposed P systems are fully asynchronous, i.e. any number of applicable rules may be
applied in one step of the P systems. The proposed P systems works in a polynomial number of
steps in the maximal parallel manner and also works sequentially. Although the number of sequential
steps is exponential, the result means that the proposed P system works for any combinations of
sequential and asynchronous applications of evolution rules, and guarantees that the P systems can
output a correct solution in the case that any number of evolution rules are synchronized.

We experimented with the proposed P system and the existing P system. The experimental
results show that the proposed P system outputs valid results, and also show that the number of
the membrane on the proposed P system is at most 75 percent less than the number of membranes
on the existing P system for SAT.

In our future research, we are considering reduction of the number of objects and evolution rules
used in the proposed P system. We are also considering asynchronous P systems with branch and
bound for other computationally hard problems.

Acknowledgments

This research was partially supported by JSPS KAKENHI, Grand-in-Aid for Scientific Research
(C), 24500019. The authors would also like to thank the anonymous reviewers for giving us detailed
comments that helped improve the readability of the paper.

References

[1] R. Freund. Asynchronous P systems and P systems working in the sequential mode. In Inter-
national workshop on Membrane Computing, pages 36–62, 2005.

[2] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez. A fast P system for
finding a balanced 2-partition. Soft Computing, 9(9):673–678, 2005.

[3] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J. Romero-Campero. A uniform solution
to SAT using membrane creation. Theoretical Computer Science, 371(1-2):54–61, 2007.

[4] J. Imatomi and A. Fujiwara. An asynchronous P system for MAX-SAT. In 8th International
Workshop on Parallel and Distributed Algorithms and Applications, pages 572–578, 2016.

[5] A. Leporati, C. Zandron, and G. Mauri. Solving the factorization problem with P systems.
Progress in Natural Science, 17(4):471–478, 2007.

[6] V. Manca. DNA and membrane algorithms for SAT. Fundamenta Informaticae, 49(1-3):205–
221, 2002.

[7] T. Murakawa and A. Fujiwara. Arithmetic operations and factorization using asynchronous P
systems. International Journal of Networking and Computing, 2(2):217–233, 2012.

[8] L. Q. Pan and A. Alhazov. Solving HPP and SAT by P systems with active membranes and
separation rules. Acta Informatica, 43(2):131–145, 2006.

[9] G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–
143, 2000.

[10] G. Păun. P systems with active membranes: Attacking NP-complete problems. Journal of
Automata, Languages and Combinatorics, 6(1):75–90, 2001.

151

An asynchronous P system with branch and bound for solving SAT

[11] G. Păun. Introduction to Membrane Computing. Springer, 2006.

[12] M. J. Pérez-Jiménez and A. Riscos-Núñez. A linear-time solution to the knapsack problem
using P systems with active membranes. Membrane Computing, 2933:250–268, 2004.

[13] M. J. Pérez-Jiménez and A. Riscos-Núñez. Solving the subset-sum problem by P systems with
active membranes. New Generation Computing, 23(4):339–356, 2005.

[14] M. J. Pérez-Jiménez and F.J. Romero-Campero. Solving the BIN PACKING problem by rec-
ognizer P systems with active membranes. In The Second Brainstorming Week on Membrane
Computing, pages 414–430, 2004.

[15] M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini. A polynomial complexity
class in P systems using membrane division. Journal of Automata, Languages and Combina-
torics, 11(4):423–434, 2003.

[16] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle problem using asynchronous
p systems. IEICE Transactions on Information and Systems (Special section on Foundations
of Computer Science), E95-D(3), 2012.

[17] K. Tanaka and A. Fujiwara. Asynchronous P systems for hard graph problems. International
Journal of Networking and Computing, 4(1):2–22, 2014.

[18] C. Zandron, C. Ferretti, and G. Mauri. Solving NP-complete problems using P systems with
active membranes. In Unconventional Models of Computation, pages 289–301, 2000.

152

