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Abstract

Methods for improving learning accuracy by utilizing a plurality of data sets with different
reliabilities have been studied extensively. Unreliable data sets often include data with incorrect
labels, and the accuracy of learning from such data sets is thus affected. Here, we focused on a
learning problem, Taming, which deals with two kinds of data sets with different reliabilities. We
propose a label estimation method for use in data sets that include data with incorrect labels.
The proposed method is an extension of BaggTaming, which has been proposed as a solution to
Taming. We conducted experiments to verify the effectiveness of the proposed method by using
a benchmark data set in which the labels were intentionally changed to make them incorrect.
We confirmed that learning accuracy could be improved by using the proposed method and data
sets with modified labels.
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1 Introduction

In recent years there have been attempts to obtain new knowledge from large scale-data sets by
using machine learning. Deep learning has attracted particular attention as a learning method for
acquiring meaningful knowledge from large-scale data sets. By using deep learning, it becomes
possible to learn with high accuracy from large amounts of labeled data ; the resulting performance
exceeds those of existing methods in various fields. For example, speech recognition using DNN-
HMM has realized a reduction in error rate of more than 10% compared with those of existing
methods [1]. These techniques are used for voice operation of today’s mobile phones. In image
recognition using DCNN, the error rate has been reduced by 10% or more compared with those of
other methods [2]. Thanks to the success in these fields, demand for new knowledge from large-scale
data is increasing. However, there are some obstacles to utilizing deep learning in the field, for
example at manufacturing sites. A problem that often arises in reality is difficulty in managing the
large-scale data that are acquired. To obtain a reliable learning result, the data used for learning
must have a high degree of reliability, such that labeling is accurate. Furthermore, various data
must be acquired to judge various products. To obtain highly reliable knowledge, we need to learn
from a wide variety of data with high reliability. However, to accurately label all of a large number
of data is not realistic, because it is extremely expensive in terms of human resources and time. In
actual environments, such as at manufacturing sites, it is also expensive in terms of cost. To lower
the cost of data collection it is possible to obtain web-based data-for example, by web scraping.
The use of web scraping makes the cost of data collection very low. However, because there are
many subjective opinions and items of false information mixed in with the data on the web, it is
very difficult to collect only highly reliable data. Therefore, the trade-off between data quality and
quantity is a big problem.

To resolve this trade-off, methods of dealing with data sets with different reliabilities have been
studied widely. Taming [3] has been proposed as a method of handling data sets with different
reliabilities. Taming deals with two types of data : tame data and wild data. Tame data are labeled
by using strict standards. Therefore, tame data sets are highly reliable. On the other hand, strictly
no label management is used in the case of wild data. In other words, training examples with correct
labels and training examples with incorrect labels are mixed in together in the case of wild data.
It is therefore not known which items of wild data are training examples with correct labels. It is
difficult to secure an abundance of training examples from tame data, because the costs of managing
these data are high. On the other hand, it is easy to secure an abundance of training examples from
wild data. The aim of Taming is to achieve high learning accuracy by using wild data and tame
data in combination. Taming deals with the situation in which there are

• A small number of training example sets that have reliable labels and take a long time to
collect; and

• An abundance of training example sets that have unreliable labels and take little time to
collect.

This situation occurs frequently, not only in web scraping or in actual environments such as man-
ufacturing, but also in natural science experiments. BaggTaming has been proposed as a solution
to Taming. BaggTaming is a method based on the ensemble learning technique of Bagging [4].
BaggTaming creates multiple weak classifiers by bootstrap sampling from wild data. The weak
classifiers are filtered by using the accuracy rate on the tame data. BaggTaming improves learning
accuracy by aggregating the adopted classifiers. To achieve high learning accuracy, it is necessary to
aggregate a variety of weak classifiers. When learning is performed by using data that have incorrect
labels, learning accuracy is adversely affected. If we can modify wild data with incorrect labels, then
we can learn from a greater variety of training examples. Therefore, we can expect to improve the
learning accuracy of BaggTaming by modifying labels.

Here, we propose a method of making effective use of wild data. Specifically, we 1) estimate
some training examples by using wild data with incorrect labels; and 2) modify the labels of the
estimated training examples.
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The paper is organized as follows: in section 2, we describe Taming and BaggTaming proposed
as solution Taming. In section 3, we extend the BaggTaming algorithm described in section 2 and
propose a method to identify and modify training examples with incorrect labels from wild data. In
section 4, we evaluate the effectiveness of the proposed method by experiments using a benchmark
dataset in both scenes of binary and multi-value classification problems. In section 5, we survey the
related works for Taming. In section 6, we present the summary of the paper and describe some
possible future works.

2 Taming-Learning problem

2.1 Taming

Taming [3] has been proposed by Kamishima et al. as a learning problem that combines two kinds
of training examples, namely tame data and wild data. Training examples of tame data are carefully
labeled, with strict standards; these examples and their labels are thus highly reliable. Here, we call
the label associated with the target concept that we want to learn the correct label. Conversely, a
label associated with a criterion different from the target concept is called an incorrect label.

Unlike in the case of tame data, training examples of wild data have labels that are not strictly
managed. In other words, two types of training examplesthose with correct labels and those with
incorrect labelsare mixed together in wild data. It is not known which training examples in the wild
data are correctly labeled. Furthermore, it is also not known how many of the data are correct. It is
difficult to prepare an abundance of tame data, but it is easy to prepare an abundance of wild data.
The aim of Taming is to make it possible to achieve high learning accuracy by using these data in
combination.

2.2 BaggTaming: the Solution to Taming

BaggTamingan algorithm based on the principle of Bagginghas been proposed as a solution to
Taming. In BaggTaming, the first step is bootstrap sampling from wild data, and a plurality of
classifiers is generated. The learned classifiers are filtered by the accuracy rate of the tame data,
and a judgment on adoption or non-adoption is made. The final result is computed by aggregation
of the adopted classifier. The algorithm and points reached in BaggTaming are shown in Figure 1.

Normally, machine learning is performed only by using highly reliable examples. Generally,
examples with high reliability are expensive to collect and manage, so it is difficult to secure an
abundance of such examples. Examples with high reliability are called tame data in Taming. The
Figure 2 is a pseudo data set obtained by adding a random number to the XOR distribution in the
two-dimensional feature amount. Red represents positive examples, and blue represents negative
examples. Circle represents tame data, and cross represents wild data. When learning is performed
by using only tame data, the decision boundary shown in Figure 2a is plotted. This boundary is
fitting for only learning data, however it is different from an intuitive decision boundary. Also,
because the decision boundary is too close to the learning examples, the generalization performance
in regard to unknown data is low.

Next, the decision boundary in the case of learning using an abundance of secured data is shown
in the Figure 2b. When many data are used, correct decision boundaries can be obtained more
intuitively than when learning from less data. By using more data, BaggTaming aims to obtain
decision boundaries with high generalization performance.

In ensemble learning, the planning of improvements in generalization performance is based on
biasvariance theory [5]. Biasvariance theory is expressed in terms of an error derived from each
classifier, a variance representing the error derived from the training example, and a covariance
term that models the correlation between individual learners. According to biasvariance theory, the
squared error Err(H) of ensemble learning (H) for classifier T is calculated as follows by using the
bias b(H), variance v(H), and covariance c(H):

Err(H) = b(H)2 +
1

T
v(H) + (1− 1

T
)c(H) (1)
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1. Calculate the Accuracy rate AccT using the standard classifier learned from tame data.

2. Bootstrap sampling from wild data and generate N data sets as W1 · · ·WN.

3. a = 0

4. for i in 1:N

• Generate a classifier fi learned from Wi.

• Calculate the Accuracy rate Acci using the classifier f i for tame data.

• if Acci > AccT

a = a + 1

Adopt fi as Fa

• else

Discard fi

5. Calculate the final result by aggregating the classifiers F1 · · ·Fa.

Figure 1: Algorithm of BaggTaming

Where,

b(H) =
1

T

T∑
i=1

(E[hi]− f) (2)

v(H) =
1

T

T∑
i=1

E(hi − E[hi])
2 (3)

c(H) =
1

T (T − 1)

T∑
i=1

T∑
j=1

E(hi − E[hi])E(hj − E[hj ]) (4)

Here, E[h] represents an expected value at which the function f becomes h. From equation (1),
we see that the squared error of ensemble learning depends strongly on the covariance term modeling
the correlation between individual learners. Therefore, by constructing more diverse learners, it is
possible to reduce the squared error of ensemble learning. BaggTaming generates more diverse
learners by learning from wild data, which contain a more diverse set of training examples than
tame data. Furthermore, training examples with incorrect labels are included in the wild data, so
if the data are aggregated by using all learning instruments, the frequency of errors will increase.
Therefore, if filtering using the accuracy rate on the tame data is applied, only those classifiers
effective for learning tame data will be used for learning.

3 Proposed Method

3.1 Motivation

Through bootstrap sampling of wild data, BaggTaming has succeeded in generating a greater variety
of classifier than learned only from tame data. However, the classifiers learned from examples with
incorrect labels included in the wild data have a lower accuracy rate. When such a classifier is used,
the learning accuracy decreases. Therefore, by using the accuracy rate of the tame data to filter the
learners learned from the wild data, the deterioration of learning accuracy is suppressed. However,
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Figure 2: Taming’s concept : (a) shows the decision boundary learned from tame data. (b) shows
the decision boundary learned from wild data.

if there are many training examples with incorrect labels included in the wild data, we cannot make
full use of the benefits of the wild data (such as the opportunity to learn from a large number of
training examples). Therefore, the performance of BaggTaming in improving learning accuracy is
lowered. It would be possible to encourage the use of wild data if appropriate labels were to be given
to those training examples that were incorrectly labeled and were included in the wild data.

Here, we proposed a method of modifying training examples with incorrect labels in wild data
by expanding BaggTaming. In the proposed method, we focus on classifiers that have been rejected.
For such classifiers, the accuracy rate of tame data is bad. There are two reasons for this. One is
the situation in which the training examples from bootstrap sampling of wild data are biased. The
other is the situation in which the training examples from bootstrap sampling of wild data include
many with incorrect labels.

As an example, consider the situation in which tame data are distributed as shown in Figure 3. As
a simple example, we take the classification of two classes of two-dimensional feature quantities as in
the Figure 2. When the wild data are uniformly sampled, the discrimination boundary learned from
the sampled wild data is shown by the solid line in the Figure 3a. As can be seen, the classification
of tame data works well.

Next, consider the situation in which the sampled wild data are biased. In the example shown
in the Figure 3b, the positive example of tame data has two sets, whereas the positive example of
sampled wild data is biased toward one side. In this case, the discrimination boundary learned from
the sampled wild data is shown by the solid line in the Figure 3b. Despite all the labels of the
wild data being correct, it can be seen that positive examples and negative examples are not well
classified. Although this example shows an extreme situation, the same can be said even if the data
dimension and class label increase. Therefore, if there is bias in the sampled wild data, the accuracy
rate of the tame data will not improve, even if the labels of the wild data are correct.

Consider the case in which many of the training examples bootstrap-sampled from the wild
data have incorrect labels. The Figure 3c shows a case where approximately half of the training
examples with incorrect labels are included in the sampled wild data. As with the phenomenon
called “negative transfer” [6] in transfer learning, this may have occurred because we have been
unable to correctly learn the target concept that we wanted to learn from the wild data. Thus the
accuracy rate of the tame data has decreased because of “negative transfer”.

The most noteworthy problem is that training examples with correct labels and training examples
with incorrect labels coexist in learners that have been rejected. Therefore, an algorithm that
modifies only training examples with incorrect labels is desirable.
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Figure 3: Decision boundary obtained from wild data : (a) represents a state in which wild data is
evenly distribute. (b) represents a state in which wild data is biased toward one side. (c) indicates
that many wild data have incorrect labels.

In the proposed method, training examples of learners that have been rejected are preserved, and
labels are estimated for them in an attempt at label correction. As a result, training examples with
correct labels are not changed, and only training examples with labels considered to be incorrect
can be modified. Learning from label-modified training examples in wild data makes it possible to
utilize more training examples than with the conventional method, BaggTaming. In addition, wild
data can be corrected efficiently by investigating the training examples used for learning classifiers
that have been rejected. Therefore, it is possible to construct a variety of classifiers and to thus
improve learning accuracy.

3.2 Algorithm

Here, we explain the specific flow of the proposed method. First, similar to what is done in the
conventional method, BaggTaming, bootstrap sampling is performed on wild data to create multiple
classifiers. The accuracy rate for the tame data of each classifier is calculated, and an adoption or
non-adoption judgment is made. In BaggTaming, classifiers that are rejected are discarded and do
not affect future procedures. In contrast, in the proposed method, a set of training examples used
for the learning of learners that have become unused is stored. Next, label estimation is performed
on these sets of stored training examples through aggregation of the adopted learners. Aggregation
of adopted learners better expresses the target concept that we want to learn, because it can reduce
the squared error with respect to the tame data, compared with that of the classifier learned from
the tame data by the ensemble.
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1. Calculate the Accuracy rate AccT using the standard classifier learned from tame data.

2. Bootstrap sampling from wild data and generate N data sets as W1 · · ·WN.

3. a = 0,d = 0

4. for i in 1:N

• Generate a classifier fi learned from Wi.

• Calculate the Accuracy rate Acci using the classifier f i for tame data.

• if Acci > AccT

a = a + 1

Adopt fi as Fa

• else

d = d + 1

discardfi, save Wi as Wd

5. Label estimate of Wf = {W1 · · ·Wd} by aggregation of F1 · · ·Fa

6. Learning again using W1 · · ·WN given the estimated label, and repeat steps 3) to 4)

7. Calculate the final result by aggregating the classifiers F1 · · ·Fa.

Figure 4: Algorithm of proposed method

Therefore, by performing label estimation using aggregation of the adopted learners, it is possible
to label by using criteria close to the target concept. Next, all learners are discarded, and learning
is done again using the wild data including those training examples in which the labels have been
modified. The learned classifiers are then filtered by using the accuracy rate of the tame data and
a judgment of adoption or non-adoption is made. Thus, by performing aggregation of the adopted
classifiers, the final result is calculated. The specific algorithm of the proposed method is shown in
Figure 4.

4 Experiment

To confirm the effectiveness of the proposed method, we performed experiments using a benchmark
data set. For this purpose, a quantitative data set is desirable; we used the abalone data set [7].
This data set summarizes the physical characteristics and age of abalone. The physical features are
7 dimensions. Items measured as physical features, together with age ranges, are shown in Table
2. Age is classified by using physical features as input variables. AccT is obtained by using the
leave-one-out method. The number of data extracted from the wild data differs with the design,
depending on the data set. However, because the enough sampling size is usually unknown, it is
set to 50% of the number of tame data, NT, as an intermediate value. A decision tree is used for
learning. The number of samplings is set to 100 times. As a criterion for adopting classifiers, we use
the accuracy rate on training data (tame data).

The calculation environment used for experiments is as shown in the table 1.

4.1 Binary classification

We examined the effectiveness of the proposed method in binary classification. The above data set
was classified as binary and the proposed method was applied. The data set is shown in the table.
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Table 1: Calculation environment used for experiments

CPU Core i-7
OS windows 10 64bit

Memory 16GB

Table 2: Abalone dataset

Name Data Type Description
Sex nominal M,F,and I(infant)

Length continuous Longest shell measurement
Diameter continuous perpendicular to length

Height continuous with meat in shell
Whole weight continuous whole abalone

Shucked weight continuous weight of meat
Viscera weight continuous gut weight (after bleeding)
Shell weight continuous after being dried

Rings integer the age in year

This data set is classified as tame data and wild data. First, training examples of tame data were
randomly extracted from the data set. The number of tame data was NT = {40, 60, 80, 100}. Next,
training examples remaining in the data set were taken as wild data. Some data were extracted
randomly from the wild data. The labels of the extracted training examples were changed, and the
relabeled sample were incorporated back into the wild data set. Here, we define training examples
after their labels have been changed as intentionally modified label data. Intentionally modified
label data accounted for Fr = {20%, 40%, 60%} of the wild data. The proposed method was then
applied to these data sets.

First, we examined whether the label changes in the proposed method worked effectively. Table
4 indicates the correct answer rate when the estimated label and the original label were compared.
In Table 4, all patterns had accuracy rates exceeding 70%. Also, as the number of Fr increased, the
accuracy rates of label estimation decreased. This finding was associated with the type of classifier
used for label estimation. The classifier was learned from the training examples that were bootstrap-
sampled from the wild data according to the BaggTaming process. The decrease in label estimation
accuracy likely occurred because it becomes difficult to get the target concept according to increase
Fr.

Next, we considered the validity of the wild data, the labels of which we had changed by using the
proposed method. If the proposed method works effectively, we can expect BaggTaming using wild
data after label correction to have a higher rate of detection of tame data than before. Therefore,
we can verify the effectiveness of the proposed method by learning using wild data after application
of the proposed method. Table 5 shows the rates of accuracy of differentiation of tame data from
wild data before and after we applied the proposed method. Table 5 revealed that the proposed
method improved the rate of accuracy of discrimination of tame data in many cases. The average
execution time of each experiment is shown in the table 6.

Table 3: Binary dataset

Original labels Number of data New label
1∼9 2096 1

10∼29 2081 2
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Table 4: Label estimate accuracy rate

NT

40 60 80 100
20% 71.22 72.64 72.71 75.70

Fr 40% 70.93 72.47 72.44 74.43
60% 70.56 72.06 71.13 71.64

Table 5: Experimental result of binary classification

NT Fr AccT Conventional method Proposed method
20% 75.00 80.00 82.50

40 40% 57.50 67.50 75.00
60% 72.50 77.50 82.50
20% 76.67 81.67 81.67

60 40% 61.67 63.33 68.33
60% 70.00 75.00 81.67
20% 77.50 82.50 85.00

80 40% 73.75 76.25 76.25
60% 71.25 71.25 75.00
20% 62.00 70.00 74.00

100 40% 66.00 72.00 76.00
60% 70.00 73.00 78.00

Table 6: execution time of binary classification [sec]

NT Fr Conventional method Proposed method
20% 3.819 6.417

40 40% 3.653 7.040
60% 3.607 5.934
20% 5.292 8.374

60 40% 5.498 8.188
60% 5.541 7.202
20% 6.999 10.346

80 40% 7.128 9.644
60% 7.326 8.770
20% 9.301 12.722

100 40% 9.402 11.870
60% 9.478 10.632
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Table 7: Multi-class dataset

Original labels Number of data New label
1∼8 1407 1
9∼10 1323 2
11∼29 1447 3

Table 8: Label estimate accuracy rate

NT

60 90 120
20% 57.16 60.09 61.08

Fr 40% 56.87 58.41 59.31
60% 54.69 55.60 55.91

4.2 Multi-class Classification

We then examined the effectiveness of the proposed method for multi-class classification. We classi-
fied the abalone data set mentioned above into multi-class values. We applied three types of labels
to verify the effectiveness of the proposed method. The data set is shown in Table 7.

First, training examples of tame data were randomly extracted from the data set. The number
of tame data was NT = {60, 90, 120}. Next, training examples remaining in the data set were
taken as wild data. Some data were randomly extracted from these wild data; the labels of these
extracted training examples were then changed, and the data were incorporated back into the wild
data. The labels were completely randomly changed. Intentionally modified label data accounted
for Fr = {20%, 40%, 60%} of the wild data.

The proposed method was applied to these data sets. As in the binary classification, we then
examined the label estimation accuracy of the proposed method. Table 8 shows the accuracy rate
in a comparison of the estimated labels and the original labels. More than half of the accuracy rates
are shown for all patterns. In this experiment, we divided into three class, and the rate of each
label were same; thus the rate was higher than if the labels were estimated randomly. Also, as with
the binary classification, the accuracy rate of label estimation decreased as Fr increased. As in the
case of binary classification, label estimation accuracy likely decreased because as the number of Fr

increased it became more difficult to get the same concept as for tame data.
Next, we considered the validity of the wild data, the labels of which had been changed by using

the proposed method. As with binary classification, we expected that BaggTaming using wild data
after label correction would have a higher accuracy rate for discrimination of tame data than before
if the proposed method were to work effectively. Table 9 shows the rates of accurate discrimination
of tame data when wild data before and after label estimation were used. In many cases, the rate
of accurate discrimination of tame data improved. The average execution time of each experiment
is shown in the table 10.

4.3 Discussion

We compared the effects of the proposed method in a binary classification problem and a multi-class
classification problem. First, we discuss the accuracy of label estimation. In the binary classification,
we could correctly estimate more than 70% of labels, but in the multi-class classification the accuracy
rate dropped to about 50% of labels. The likely reason for the decrease in label estimation accuracy
in the multi-class classification is that the result depended on the correct discrimination rate of the
classifier adopted in BaggTaming.

Next, we consider the rate of correct discrimination of tame data when we learned by using wild
data after label correction. In the binary classification problem, the rate of accurate discrimination
of tame data improved by up to 7.5 points between before and after label change. On the other hand,
in the multi-class classification problem, the improvement was only 4.5 points. This was likely due
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Table 9: Experimental result of multi-class classification

NT Fr AccT Conventional method Proposed method
20% 48.90 51.10 54.40

60 40% 58.90 68.90 70.00
60% 58.90 61.10 65.60
20% 60.00 64.40 66.70

90 40% 71.10 77.80 77.80
60% 60.00 62.20 64.40
20% 56.10 66.70 68.20

120 40% 50.00 60.60 60.60
60% 57.60 57.60 59.10

Table 10: execution time of multi-class classification [sec]

NT Fr Conventional method Proposed method
20% 5.172 7.203

60 40% 5.446 8.351
60% 5.596 7.626
20% 8.817 12.278

90 40% 9.117 11.808
60% 9.260 11.607
20% 12.344 15.712

120 40% 12.916 15.348
60% 11.871 13.021

to differences in label estimation accuracy: in the multi-class classification problem, the accuracy
of label estimation was lower than that in the binary classification problem, so the classification
accuracy of the proposed method was lower than in the binary classification problem.

Thus the final result of the proposed method also depends on the BaggTaming classifier. The
rate of accurate detection of tame data using BaggTaming classifiers can be improved by optimiz-
ing the sampling and adjusting the criteria used to adopt classifiers. However, in many cases this
optimization is a trade-off with generalization performance. Bagging is greatly influenced by en-
semble sizethat is, the number of learning devices [8]. It is possible that both the proposed method
and BaggTaming could not secure enough classifiers. This is because selectable classifiers are used
selectively. In future work, we intend to design a method that takes into account generalization
performance.

Finally, we consider the execution time of the conventional and proposed method. According
to the conventional method, the execution time also increases as NT increases. In the conventional
method, since the sampling size is set to NT/2, the larger NT is, the longer it takes time to calculate
classifiers. There is no correlation between Fr and execution time. In the proposed method,The
execution time also increases as the NT increases. However, unlike the conventional method, the
proposed method shortens the execution time with an increase in Fr and shortens it by 2 seconds at
the maximum. Since the proposed method modified labels by classifiers adopted in the conventional
method, the execution time gets faster as the number of classifiers adopted becomes small. Therefore,
the smaller the number of wild data available in the conventional method, the shorter the execution
time of the proposed method.

5 Related works

As with the Taming described here, there are a number of learning problems that deal with training
example sets with different properties.

Semi-supervised learning [9] is a problem of learning using both labeled training example sets
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and unlabeled training example sets. Many methods of semi-supervised learning assume class labels
based on models for unlabeled training examples. In many cases, class labels are determined by
assuming the distribution of data. In semi-supervised learning, the point of dealing with unlabeled
training examples clearly differs from that of Taming. In addition, self-training [10] a semi-supervised
learning methodclassifies unlabeled training cases by using classifiers learned from labeled training
example sets. Indices called confidence predictions are predicted for classified unlabeled training
examples; unlabeled training examples with high confidence predictions are considered as labeled
training examples, and learning is then conducted again. In terms of estimating labels, self-training
involves learning from reliable, labeled training examples, whereas the proposed method learns from
unreliable wild data. There is thus a difference.

Active learning [11] a method used to deal with situations in which there are few reliable data.
Supervised data are selected in such a way as to exert the maximum effect when teacher data
are created. Pool-based active learning [12], which is a typical release of active learning, pools an
abundance of unlabeled data and selectively supervises the most effective data for learning in the
current model, thereby reducing the cost of labeling. It is similar to Taming in that it selectively
uses data useful for learning from among a large amount of unreliable data but uses unlabeled data.

As with Taming, transfer learning [13] is a method of dealing with multiple training example sets.
In transfer learning, we deal with a training example set called the target domain and a training
example set called the source domain. The problem presented by the target domain and that of the
source domain are labeled by a process called induction transfer learning [14]. In induction transfer
learning, the target domain is a problem we want to solve now, whereas the source domain is similar
to the problem we want to solve, but it is not the same. In the source domain, sufficient data for
solving the problem are secured, but enough data for solving the problem are not prepared in the case
of the target domain. The goal of induction transfer learning is to transfer the knowledge acquired
from the source domain and thus improve learning accuracy in the case of the target domain. The
attachment of labels to each target domain and original domain in induction transfer learning is
similar to the process used in Taming. However, in induction transfer learning, the target domain
and source domain are given labels for different problems, whereas Taming shows the tame data,
and the wild data are included as training examples representing problems to be solved. Therefore,
inductive transfer learning treats similar distributions in the target domain and source domain, but
essentially treats different distribution, target distribution of domesticated learning is the same for
tame data and wild data. In addition, in induction transfer learning, the target domain and source
domain are all given correct labels for each problem, whereas in Taming, wild data labels included
as incorrect labels are decisively different.

6 Conclusion

Here, we proposed a method focusing on Taming that aimed to correct incorrect labels in wild
data. Our experiments dealt with both binary classification problems and multilevel classification
problems. To determine the validity of the proposed method, we experimented with a benchmark
dataset and confirmed that the labels of wild data could be modified. Furthermore, we confirmed
that, by using wild data, the labels of which were modified by using the proposed method, we were
able to improve the accuracy of detection of tame data.

In future we intend to improve the accuracy of label estimation. Label estimation is performed
by aggregating classifiers, as obtained in this paper by BaggTaming. Therefore, label estimation
accuracy depends on the learning accuracy of BaggTaming. By improving the learning accuracy
of BaggTaming, we expect to improve label estimation accuracy. As a method of improving the
learning accuracy of BaggTaming, it may be possible to change the criteria of adoption of weak
classifiers and to appropriately design the sampling size. Adjustment of label change criteria is also
considered effective.
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