
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 8, Number 2, pages 166–185, July 2018

Optimal Representation for Right-to-Left Parallel Scalar
and Multi-Scalar Point Multiplication

Kittiphon Phalakarn

Department of Computer Engineering
Chulalongkorn University, Bangkok, Thailand

Kittiphop Phalakarn

Department of Computer Engineering
Chulalongkorn University, Bangkok, Thailand

Vorapong Suppakitpaisarn

Department of Computer Science
The University of Tokyo, Tokyo, Japan

Received: January 26, 2018
Revised: April 19, 2018
Accepted: May 31, 2018

Communicated by Yasuyuki Nogami

Abstract

This paper introduces an optimal representation for a right-to-left parallel elliptic curve
scalar point multiplication. The right-to-left approach is easier to parallelize than the conven-
tional left-to-right approach. However, unlike the left-to-right approach, there is still no work
considering number representations for the right-to-left parallel calculation. By simplifying the
implementation by Robert, we devise a mathematical model to capture the computation time of
the calculation. Then, for any arbitrary amount of doubling time and addition time, we propose
algorithms to generate representations which minimize the time in that model. As a result, we
can show a negative result that a conventional representation like NAF is almost optimal. The
parallel computation time obtained from any representation cannot be better than NAF by more
than 1%. In addition to that, we devise a time model and propose an algorithm to generate
optimal representations for multi-scalar point multiplication (under a condition). Similar to the
result of scalar point multiplication, NAF is almost optimal also for multi-scalar point multipli-
cation as the difference of parallel computation time obtained from optimal representation and
NAF is less than 1% in all experimental settings.

Keywords: information and communication security, efficient implementation, elliptic curve cryp-
tography, scalar point multiplication, binary representation, parallel algorithms

0This paper is an extended version of [18] presented at CANDAR 2017.

166

International Journal of Networking and Computing

1 Introduction

Scalar point multiplication, where we want to compute nP for some integer n and elliptic curve
point P , is one of the most important operations in elliptic curve cryptography. Many techniques
were proposed to improve this operation. Since binary representation of n affects the speed of
“double-and-add” scalar point multiplication, there are techniques, including sliding window [9, 25],
non-adjacent form (NAF) [19], window NAF (wNAF) [13], and fractional wNAF (f-wNAF) [15],
trying to improve the binary representations. Among them, some of the algorithms are vulnerable
to side-channel attacks [10], which are attacks that allow attackers to use computational information
such as time or power to obtain secrets of cryptosystems. However, those schemes can still be used as
tools for cryptanalysis, which is an analysis to find weakness of a proposed cryptographic protocol [2].
Because of that, it is still useful to speed up scalar point multiplication without considering the side-
channel attacks.

It is known that the elliptic curve scalar point multiplication is a special case of exponentiation,
where we want to compute gn for some integer n and a group member g. When the inverse of g
can be calculated easily, many algorithms for the double-and-add method, including those proposed
in this paper, can be also applied for reducing the computation of the square-and-multiply method
for the exponentiation. Although all notations in this paper are for scalar point multiplication, our
contribution also includes those general arithmetic operations.

To improve scalar point multiplication further, parallelism is used instead of sequentiality. Garcia
and Garcia [8] proposed a scheme that parallelizes a part of computations for scalar point multi-
plication. However, the part that is not parallelized becomes a bottleneck of their algorithm. The
algorithm can be significantly improved if that part is parallelized. Nöcker [17] proposed an algo-
rithm to distribute the workload among all processors optimally. Nonetheless, the algorithm can be
significantly improved when the number of processors we have is as small as two (See our proof in
Section 4.1). The similar idea is proposed for multi-scalar point multiplication by Borges, Lara, and
Portugal in [5], but this technique interests in optimizing computation time with a lower bound in
the number of processors used. When using the technique, we cannot specify the maximum number
of processors, and, in many cases, the number of processors required by the algorithm can be up
to 200. A parallel algorithm for scalar point multiplication is also proposed by Izu and Takagi [12].
However, the authors aim to find an algorithm that can resist the side channel attacks in the paper,
and, to resist the attacks, more steps have to be done. By that, the algorithm is slightly slower than
those that do not resist the attacks.

Most of the work for scalar point multiplication, including all of those mentioned in the previ-
ous paragraph, are based on the left-to-right approach, because, when the operation is calculated
sequentially, the left-to-right technique can be sped up using precomputation points [24]. However,
when scalar point multiplication is calculated in parallel, the right-to-left technique is known to be
an easier way [20]. The right-to-left technique is also useful when the integer n is produced in a
serial fashion from right to left, e.g. as a result of a calculation. From our best knowledge, no work
in literature can speed up the right-to-left technique using precomputation.

There is not many works considering number representations for the right-to-left technique.
The only technique we know can be found in [6], which we will call as “parallel double-and-add”
algorithm in this paper. Although the technique is optimal, the model assumes that point doubling
and addition use the same amount of time. However, this assumption is not true for scalar point
multiplication. For example, in the fastest recorded elliptic curve scalar point multiplication, twisted
Edwards curve, addition takes 50% more time than doubling [3]. In other curves, it is also found
that addition takes significantly more time than doubling [1]. Thus, this algorithm is not optimal
for scalar point multiplication.

That motivates us to consider an optimal representation for the parallel right-to-left scalar point
multiplication in this paper. Based on the right-to-left technique by Moreno and Hasan in [16] and
its implementation by Robert in [20], in this paper, we propose a new time model and problem for
parallel scalar point multiplication with arbitrary amount of doubling time D and addition time A.
Then, we show a negative result that a conventional representation like NAF is almost optimal for
any arbitrary amount of doubling time and addition time.

167

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

To show that NAF is almost optimal, we propose algorithms to generate optimal representations
for all cases. Our algorithms have O(log2 n) complexity and use O(1) additional space. Then, we
prove and perform a numerical experiment to show that the average computation time obtained from
NAF is very close to the optimal computation time obtained from our algorithms. The difference
between the average time from the algorithms is not more than 1% in all experimental settings.

Although techniques such as wNAF or f-wNAF provide much faster scalar point multiplications
than NAF in the left-to-right setting, they do not perform better in our parallel setting. Our
results indicate that there is no representation can improve the average computation time of NAF
by more than 1%, while, in those schemes, we have to perform some precomputation tasks before
the calculation for scalar point multiplication.

Another important operation in elliptic curve cryptography is multi-scalar point multiplication
where we want to compute nP+mQ for some integers n,m and elliptic curve points P,Q. Improving
multi-scalar point multiplication can be done by many techniques, e.g. using joint sparse form (JSF)
[21], and minimal joint Hamming weight representations [23]. In this paper, we also propose a time
model for multi-scalar point multiplication and an algorithm to find optimal representations for the
model, under a condition that three processors are used and only canonical binary representations
are considered. Again, the difference between the average computation time obtained from the
algorithms and NAF is not more than 1% in all experimental settings, which means that NAF is
nearly optimal in the case of multi-scalar point multiplication.

This paper is organized as follows. In Section 2, we formally define binary representations, NAF
technique, and parallel double-and-add scalar point multiplication. In Section 3, we define our
calculation model, and in Section 4, we give properties of the model. Then, in Section 5 and 6,
we use the properties to devise algorithms for the case when 0 < 2D ≤ A and 0 < D ≤ A < 2D,
respectively. We discuss in Section 5.2 and 6.2 why NAF is almost optimal for the case. We give
our experimental results in Section 7. In Section 8, we define the time model for multi-scalar point
multiplication, propose the algorithm to find the optimal representations (under the condition), and
show experimental results in this case. Finally, we conclude the paper in Section 9.

2 Preliminaries

2.1 Binary Representation

We first introduce the notation of binary representation used in this paper. We assume that n is an
input and all representations are of n if not state otherwise.

Definition 1 (Binary representation of n using digit set S). Let n, λ ∈ Z≥0 and {0, 1} ⊆ S ⊆ Z.
The set of all possible binary representations of n using digit set S is NS = {NS = nλ...n0} such

that

λ∑
i=0

ni2
i = n, ni ∈ S for all 0 ≤ i ≤ λ. We use s̄ instead of −s to simplify the notation. If

S = B = {0, 1}, we call NB = {NB} set of all binary representations of n. If S = C = {1̄, 0, 1}, we
call NC = {NC} set of all canonical binary representations of n.

Note that NB is unique while NC is not. In this paper, we use regular expression to represent
sequences or patterns of digits, e.g. 1031̄ means 10001̄, and 1∗ means zero or more ‘1’s.

2.2 Non-Adjacent Form (NAF) Technique

NAF technique [19] is one of the techniques used to improve scalar point multiplication. It changes
binary representation to canonical binary representation with no consecutive non-zero digits which
is proved to have minimal Hamming weight [19]. The algorithm can be described as in Algorithm 1.
Note that NAF representation is unique, and we have a starting index i as input for further use in
our proposed algorithms.

In short, Algorithm 1 changes 01p to 10p−11̄ for p ≥ 2 from n′i to n′λ+1. To get NAF representa-
tion, we set i = 0.

168

International Journal of Networking and Computing

Algorithm 1: Transform binary representation to non-adjacent form (toNAF)

input : NB = nλ...n0, starting index i
output: N ′C = n′λ+1...n

′
0 with no consecutive non-zero digits in n′λ+1...n

′
i

begin
N ′C ← NB
n′λ+1 ← 0

while i < λ do
if n′i = 1 and n′i+1 = 1 then

n′i ← 1̄
i← i+ 1
while n′i = 1 do

n′i ← 0
i← i+ 1

n′i ← 1

else i← i+ 1

return N ′C

Example 1. Consider n = 371 with NB = 101110011. If i = 0, we have N ′C = 101̄001̄0101̄, and if
i = 5, we have N ′C = 101̄01̄10011. �

2.3 “Parallel Double-and-Add” Scalar Point Multiplication

Borodin and Munro (cf. [6]) presented Theorem 1 with a technique we can apply to “parallel double-
and-add” technique. This technique does scalar point multiplication in dlog2 ne steps. Notice that
the time is measured in “steps” which means that point doubling and addition use same amount of
time.

Theorem 1 (adapt from Lemma 6.1.1 in [6]). Let n ∈ Z+ and P be elliptic curve point. nP can be
computed from P using two processors in dlog2 ne steps.

“Parallel double-and-add” technique uses two processors: doubling processor and addition pro-
cessor. Doubling processor calculates 2P, 4P, ..., 2iP , and addition processor adds the result from
doubling processor cumulatively according to NB = nλ...n0. See Example 2 for more understanding.
Note that for the least significant ‘1’, e.g. n0 in Example 2, addition processor can “copy” the result
from doubling processor with no addition.

Example 2. To calculate 87P using NB = 1010111, we need 7 steps as depicts in Figure 1. �

Figure 1: “Parallel double-and-add” scalar point multiplication for NB = 1010111

It is known that, in every elliptic curves, point addition takes more computation time than
doubling. Hence, this applied model may not be practical for scalar point multiplication.

169

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

3 Our Calculation Model

We improve the model in Section 2.3 by defining the time used in “parallel double-and-add” scalar
point multiplication as follows.

Let D ∈ R≥0 be the amount of time doubling processor uses for one doubling, and A ∈ R≥0 be
the amount of time addition processor uses for one addition. To calculate nP using NS , addition
processor considers each digit from n0 to nλ. Before we encounter the least significant non-zero digit,
the time used is 0. At the least significant non-zero digit ni, we wait for 2iP to be finished at time
iD, copy 2iP or −2iP to addition processor using negligible additional time, and add/subtract 2iP
to/from addition processor |ni|−1 times, so the computation time is now iD+(|ni|−1)A. For later
zero digits, the computation time is unchanged. And, for other non-zero digits nj , we need to wait
until doubling processor finishes 2jP at time jD and until addition processor finishes its previous
work, then we add/subtract 2jP to/from the current result |nj | times which uses |nj |A time units.
Consider the following example for more understanding.

Example 3. The calculation of 87P using S = {3̄, 2̄, 1̄, 0, 1, 2, 3} and NS = 2201̄3̄1 with D = 2 and
A = 3 is shown in Figure 2. Doubling processor have the point P at time 0. Then, the processor
keeps doubling the point to 2P, 4P, . . . , 32P , and send those points to addition processor. Since the
point 2P is available after we perform one point doubling on P and one doubling takes two time
units, we have 2P at time 2. By the same argument, we have 4P, 8P, 16P, 32P at time 4, 6, 8,
10. Consider addition processor, after the processor receives 2P from doubling processor at time 2,
it adds −2P to P . Since the addition takes 3 time units, we have −P = P + (−2P) at time 5.
Then, the processor adds −2P to −P , and have −3P at time 8. After that, the processor adds −2P
to −3P , and have −5P at time 11. Next, addition processor calculates −9P from −4P and −5P .
Although, the processor has 4P from doubling processor since time 4, it has to wait until −5P is
available at time 11. Because of that, we have −9P at time 14. After we continue the process in the
way shown in Figure 2, we have 87P at time 26. �

Figure 2: “Parallel double-and-add” scalar point multiplication for D = 2, A = 3, and NS = 2201̄3̄1

Hence, we define the time model as follows:

Definition 2 (Computation time of parallel scalar point multiplication). Let D ∈ R≥0 be the time
processor used for one doubling, A ∈ R≥0 be the time used for one addition, and n ∈ Z+ with
binary representation NS = nλ...n0 using digit set S. The computation time of parallel scalar point
multiplication nP using NS after calculating from n0 up to ni is T (NS , i) which can be calculated
by:

T (NS , i) :=


0 if i = 0 and ni = 0;

T (NS , i− 1) if i > 0 and ni = 0;

iD + (|ni| − 1)A if i ≥ 0, ni 6= 0, and nj = 0;∀j, 0 ≤ j < i;

max(T (NS , i− 1), iD) + |ni|A otherwise.

170

International Journal of Networking and Computing

From Definition 2, the time used to calculate nP using NS is T (NS , λ). Our problem is to
find a representation NS which uses minimum time T (NS , λ) for given inputs n,D and A. In this
paper, we will consider only the case where 0 < D ≤ A since when D = 0, minimal total Hamming
weight representation, which is discussed in [11], is optimal; and D ≤ A for most elliptic curve
implementations that have been proposed up to this state [1].

We do not consider the communication time between two processors in our model, and will
consider them as future work. Because the communication time, denoted as S, is usually larger than
10D, one might think that we should add that communication time into the communication time
of double, i.e. we should use D′ = D + S to denote the calculation time for one double. However,
doing that is clearly too pessimistic. By pipelining, we need only D + D + S = 2D + S to obtain
two double results, not D′ + D′ = 2D + 2S. It is straightforward to show that the time until the
point 2iP is no more than i(D + S). Hence, by assigning D to D + S, one can calculate an upper
bound of the computation time in our model. We strongly believe that the optimal representation
will not significantly change by the additional communication time.

Unlike the implementation in [20], we assume that doubling processor does not wait for addition
processor in any cases. It is proved in [16] that, even without waiting, the buffer size required is at
most O(

√
λ).

Moreover, we can see that T (NS , i) is always in the form pA+ qD for some integers p and q, so
from now on we will normalize A and D by assuming that D = 1.

Example 4. Consider the case where D = 1, A = 3, and n = 29. If we calculate 29P using
NB = 11101, we have T (NB, λ) = 11. If we use NC = 10001̄1̄, we have T (NC , λ) = 8. In Section 5.2,
we will show that this is optimal among all representations. We note that the computation time for
the sequential double-and-add method is 13 when we use NB, and 11 when we use NC. �

4 Properties of Our Model

In this section, we will show properties of the model proposed in the previous section. In Section 4.1,
we show that this computation model is faster than the model considered in previous works, when
the number of processors is two. Then, we show in Section 4.2 that the digit set {1̄, 0, 1} is sufficient
for having the optimal representation. By the property, when we devise an algorithm for finding the
optimal representation in Section 5 and 6, we do not need to consider numbers which are not in the
set. And, in Section 4.3, we introduce a concept about delay which is used to prove the optimality
of our algorithms.

4.1 Comparing Computation Time with Nöcker’s Algorithm

Nöcker [17] proposed an algorithm to distribute the workload to compute nP among all processors.
The computation time used by his algorithm is as follows.

Theorem 2 (adapt from Theorem 1 in [17]). Let p ≥ 2 be the number of processors used to compute
nP , NB = nλ...n0, and c = D/A. For 0 < D ≤ A, the computation time used by Nöcker’s algorithm
is

T ≤ λD +

(
c

(1 + c)
p − 1

(λ+ 1)− 1 + dlog2 pe
)
A.

Furthermore, this bound is tight since there is an integer n which achieves this computation time.

When we use p = 2 processors with normalized D = 1, we have

T ≤ λ+

(
A

2A+ 1
(λ+ 1)

)
A.

We will show in Corollary 1 that, when 0 < 2D ≤ A, the computation time from our model is no
more than 1

2λA+A+1, and, in Corollary 2, we show that, when 0 < D ≤ A < 2D, the computation
time from our model is no more than A+λ+ 1. Using these facts, we will show in the next theorem
that our representations give better computation time.

171

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

Theorem 3. Algorithm 2 and 3 generate representations which have better worst case computation
time than Nöcker’s algorithm when A ≥ 1 and λ ≥ max

(
4
3A+ 4

3 , 3 + 3
A

)
.

Proof. Since A ≥ 1 and λ ≥ 4

3
A+

4

3
, we have

λ+

(
A

2A+ 1
(λ+ 1)

)
A ≥ λ+

(
1

2
− 1

4A+ 2

)
λA

≥ 1

2
λA+ λ−

(
A

4A+ 2

)
λ

≥ 1

2
λA+

3

4
λ

≥ 1

2
λA+A+ 1,

and since A ≥ 1 and λ ≥ 3 +
3

A
, we have

λ+

(
A

2A+ 1
(λ+ 1)

)
A ≥ λ+

1

3
λA ≥ A+ λ+ 1.

Hence, it is proved that the upper bound of Nöcker’s algorithm is larger than our algorithms. �

We note that λ is usually larger than max

(
4

3
A+

4

3
, 3 +

3

A

)
, since A is usually less than 10 and λ

is usually more than 100.

4.2 Optimality Proof for Digit Set {1̄, 0, 1}
Before analyzing the time model further, we have a proposition that using digit set S = C = {1̄, 0, 1}
is sufficient.

Proposition 1. If 0 < D ≤ A, binary representation of n using digit set S = C = {1̄, 0, 1} has no
larger T (NS , λ) than all other S ′ ⊇ {1̄, 0, 1}.

Proof. We prove this proposition by contradiction. Suppose there is a binary representation NS =
nλ...n0 with some |ni| > 1 that has smallest T (NS , λ). Define t := T (NS , i− 1) (we define t := 0 if
i = 0) and consider ni+1ni.

Case ni ≡ 1 (mod 2): We can construct new binary representation N ′S = n′λ...n
′
0 with n′k = nk

for all 0 ≤ k ≤ λ except n′i = sgn(ni) and

n′i+1 = ni+1 +
ni − sgn(ni)

2
≤ |ni+1|+

|ni| − 1

2
.

In the case where ni is not the least significant non-zero digit of NS , we have T (NS , i) = max(t, iD)+
|ni|A ≥ (i+ 1)D. By that,

T (NS , i+ 1) = max(T (NS , i), (i+ 1)D) + |ni+1|A
= max(t, iD) + |ni|A+ |ni+1|A.

By the above equation and the fact that T (N ′S , i) = max(t, iD) + A ≥ (i + 1)D, the computation
time of parallel scalar point multiplication of N ′S at ni+1 is

T (N ′S , i+ 1) ≤ max(T (N ′S , i), (i+ 1)D) +

(
|ni+1|+

|ni| − 1

2

)
A

≤ max(t, iD) +A+

(
|ni+1|+

|ni| − 1

2

)
A

≤ T (NS , i+ 1).

172

International Journal of Networking and Computing

We can use the similar argument to prove that T (N ′S , i + 1) ≤ T (NS , i + 1) for the case where
ni is the least significant non-zero digit of NS . Because n′k = nk for all k > i + 1, we have
T (N ′S , λ) ≤ T (NS , λ).

Case ni ≡ 0 (mod 2): We can construct new binary representation N ′S = n′λ...n
′
0 with n′k = nk

for all 0 ≤ k ≤ λ except n′i = 0 and

n′i+1 = ni+1 +
ni
2
≤ |ni+1|+

|ni|
2
.

Then, we can use the similar argument as in the case when ni ≡ 1 (mod 2) to show that T (N ′S , λ) ≤
T (NS , λ).

We can repeat changing ni where |ni| > 1 using the above method to get representation using
only {1̄, 0, 1} with no more T (NS , λ) than the starting representation. This means that using {1̄, 0, 1}
is sufficient. �

From Proposition 1, we can assume without loss of generality that the digit set used is C =
{1̄, 0, 1} and the representation we will consider for optimal representation is canonical binary rep-
resentation.

4.3 Delay and Optimal Representation

Although Definition 2 is not difficult to understand, it is difficult to analyze, so we introduce a
concept of delay when comparing time of doubling processor and addition processor (finished time
of addition processor minus finished time of doubling processor at the same step) as follows:

Definition 3 (Delay of addition processor in parallel scalar point multiplication). Let D = 1 be the
time processor used for one doubling, A ≥ D be the time used for one addition, and n ∈ Z+ with
canonical binary representation NC = nλ...n0. The delay of addition processor after calculating nP
using NC from n0 up to ni is δ(NC , i) which can be calculated by:

δ(NC , i) := T (NC , i)− iD = T (NC , i)− i =
0 if i = 0;

δ(NC , i− 1)− 1 if i > 0 and ni = 0;

0 if i > 0, ni 6= 0, and nj = 0;∀j, 0 ≤ j < i;

max(δ(NC , i− 1) + (A− 1), A) otherwise.

The delay of calculating nP using NC is δ(NC , λ). To calculate the delay, we consider each digit
from n0 to nλ. The delay at n0 is 0. When ni = 0, only doubling processor does its work, so the
delay decreases by D = 1. When we consider the least significant non-zero digit, the delay is 0 as
we wait until doubling processor finishes and copy the result. And, when we consider other non-zero
digits ni, both processors do their works, so the delay increases by A − D = A − 1. But, in the
case where δ(NC , i− 1) < D, doubling processor will finish calculating 2iP after addition processor
finishes calculating up to ni−1. This means addition processor needs to wait for 2iP , and after the
addition, the delay is equal to A.

Example 5. Consider the case where D = 1, A = 3, and n = 29. If we calculate 29P using
NB = 011101 (we add leading ‘0’ for easy comparison with NC), we have δ(NB, λ) = 6. But, if we
use NC = 10001̄1̄, we have δ(NC , λ) = 3. In Section 5.2, we will show that this is optimal among all
representations. �

From Definition 3, we have δ(NC , λ)+λ = T (NC , λ). Hence, a canonical binary representation N∗C
has smallest T (NC , λ) among all NC ∈ NC if and only if it has smallest δ(NC , λ) among all NC ∈ NC
(when compare using the same λ).

Definition 4 (Optimal canonical binary representation of n for parallel scalar point multiplication).
N∗C is an optimal canonical binary representation of n for parallel scalar point multiplication with
addition time A if for all NC ∈ NC, δ(N∗C , λ) ≤ δ(NC , λ). We use N ∗

C to represent the set of all N∗C .

173

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

5 Optimal Representation when 0 < 2D ≤ A

5.1 Algorithm

In the case where A ≥ 2 (normalize D = 1), we can construct N∗C ∈ N ∗
C from NB using Algorithm 2.

Algorithm 2: Changing binary representation to optimal representation when 0 < 2D ≤ A
input : NB = nλ...n0
output: N∗C = n′λ+1...n

′
0 ∈ N ∗

C
begin

`← index of the least significant ‘1’ of NB
if NB ends with 11(01)∗010∗ then

n` ← 1̄
n`+1 ← 1
return toNAF(NB, `+ 1)

else if NB ends with 0(01)∗0110∗ then
return toNAF(NB, `+ 1)

else return toNAF(NB, `)

To increase understanding in Algorithm 2, consider an example below:

Example 6. Consider n = 29 with NB = 11101. From Algorithm 2, we have ` = 0 and NB ends
with 11(01)∗010∗. We change the representation to 11111̄ and then transform to NAF consider only
nλ+1...n1 using Algorithm 1. The new representation N∗C is 10001̄1̄ which has smallest scalar point
multiplication time and delay for any A ≥ 2D. �

We can see that Algorithm 2 has O(log2 n) complexity and uses O(1) additional space. Note
that Algorithm 2 generates optimal representations not depends on the value A.

5.2 Optimality Proof for Algorithm 2

We begin our proof with three lemmas.

Lemma 1. Let D = 1, A ≥ 1, NC = nλ...n0, and N ′C = n′λ...n
′
0. If nk = n′k for all 0 < i ≤ k ≤ j with

some np 6= 0, n′q 6= 0 for some 0 ≤ p, q < i, and δ(NC , i−1) ≥ δ(N ′C , i−1), then δ(NC , j) ≥ δ(N ′C , j).
Proof. We prove this lemma by induction on index k from i to j. Assume that nk = n′k and
δ(NC , k − 1) ≥ δ(N ′C , k − 1). If nk = n′k = 0, then

δ(N ′C , k) = δ(N ′C , k − 1)− 1

≤ δ(NC , k − 1)− 1 = δ(NC , k).

If nk = n′k = 1 or 1̄, because both are not the least significant non-zero digits, then

δ(N ′C , k) = max(δ(N ′C , k − 1) + (A− 1), A)

≤ max(δ(NC , k − 1) + (A− 1), A) = δ(NC , k). �

Lemma 2. Let D = 1, A ≥ 2, k ≥ 1, NC = nλ...n0, and N ′C = n′λ...n
′
0. If ni+k...ni = 01k,

n′i+k...n
′
i = 10k, and δ(NC , i− 1) ≥ δ(N ′C , i− 1) ≥ 2, then

δ(NC , i+ k) ≥ δ(N ′C , i+ k) ≥ 2.

Proof. Define di−1 := δ(NC , i−1), d′i−1 := δ(N ′C , i−1), di+k := δ(NC , i+k), and d′i+k := δ(N ′C , i+k).
Because di−1 ≥ d′i−1 ≥ 2, we know that ni and n′i+k are not the least significant non-zero digits.
From Definition 3, we have

di+k = di−1 + k(A− 1)− 1

d′i+k = max(d′i−1 − k + (A− 1), A).

174

International Journal of Networking and Computing

Case d′i−1 − k < 1 : Because di−1 ≥ 2, we have di−1 − 1 ≥ 1 and

2 ≤ d′i+k = A ≤ (di−1 − 1) + (A− 1)

≤ di−1 − 1 + k(A− 1) = di+k.

Case d′i−1 − k ≥ 1 : We have

2 ≤ d′i+k = d′i−1 − k + (A− 1)

≤ di−1 − k + (A− 1)

≤ di−1 − 1 + k(A− 1) = di+k. �

Lemma 3. If A ≥ 2, considering from the second least significant non-zero digit, NAF representation
has smallest delay among all canonical binary representations.

Proof. We prove this lemma by contradiction. Suppose there is canonical binary representation
NC = nλ...n0 with consecutive non-zero digits (not consider the least significant non-zero digit) that
has smallest delay. Consider the consecutive non-zero digits in four following cases with k ≥ 2.

Case ni+k...ni = 01k : Consider N ′C with n′j = nj for all 0 ≤ j ≤ λ except n′i+k...n
′
i = 10k−11̄.

Because δ(NC , i − 1) = δ(N ′C , i − 1), then δ(NC , i) = δ(N ′C , i) ≥ A ≥ 2 and by Lemma 2, we can
conclude that δ(NC , i+ k) ≥ δ(N ′C , i+ k) ≥ 2. Since n′λ...n

′
i+k+1 = nλ...ni+k+1, by Lemma 1, we get

δ(NC , λ) ≥ δ(N ′C , λ). Hence, in this case, we have NAF representation with no higher delay.
Case ni+k...ni = 01̄k : The proof is similar to case 01k.
Case ni+1ni = 11̄ : Consider N ′C with n′j = nj for all 0 ≤ j ≤ λ except n′i+1n

′
i = 01. Because

δ(NC , i− 1) = δ(N ′C , i− 1), then

δ(NC , i+ 1) = max(δ(NC , i− 1) + (A− 1), A) + (A− 1)

δ(N ′C , i+ 1) = max(δ(N ′C , i− 1) + (A− 1), A)− 1

≤ δ(NC , i+ 1).

Since n′λ...n
′
i+2 = nλ...ni+2, by Lemma 1, we get δ(NC , λ) ≥ δ(N ′C , λ). Hence, in this case, we have

NAF representation with no higher delay.
Case ni+1ni = 1̄1 : The proof is similar to case 11̄. �

Lemmas 1-3 show that NAF representation, which is unique, has the smallest delay but only
when we consider from the second least significant non-zero digit. However, we can choose where
the second least significant non-zero digit will be from two options: if the ending is 010∗, it could be
changed to 11̄0∗, and if the ending is 01p110∗ for some p ≥ 0, it could be changed to 10p01̄0∗. This
change in the second least significant non-zero digit’s position may decrease the delay. We prove
this in Theorem 4.

Theorem 4 (Optimal representation when 0 < 2D ≤ A). Algorithm 2 produces an optimal canonical
binary representation N∗C ∈ N ∗

C for 0 < 2D ≤ A. That is, if D = 1 and A ≥ 2, the representation
according to the following rules has the smallest delay.

• If NB ends with 11(01)∗010∗, change the ending 01 to 11̄ and change this representation to
NAF starting at ‘1’ in this 11̄ (the second least significant non-zero digit’s position is changed).

• If NB ends with 0(01)∗0110∗, change this representation to NAF starting at the second least
significant ‘1’ (the second least significant non-zero digit’s position is not changed).

• Otherwise, change the representation to NAF starting at the least significant ‘1’ (the second
least significant non-zero digit’s position is changed if the ending is 11(01)∗0110∗ or 1110∗,
and is not changed if the ending is 0(01)∗010∗).

Proof. Let N and N ′ be some consecutive digits in canonical binary representation and the least
significant ‘1’ of NB is at index `, we will consider each case as follows:

175

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

Case 11(01)∗010∗ ending: Let NB = N11(01)p010∗ for some p ≥ 0. Following Theorem 4,
we change NB to N11(01)p11̄0∗, and after changing to NAF, we have N∗C = N ′00(1̄0)p1̄1̄0∗.
Consider the case where we do not change the position, after changing NB to NAF, we have
N ′C = N ′01̄(01)p010∗. Hence,

δ(N ′C , `+ 2p+ 3) = (A− 1) + p(A− 2)

δ(N∗C , `+ 2p+ 3) = A+ p(A− 2)− 2

≤ δ(N ′C , `+ 2p+ 3).

Because both prefixes are N ′, by Lemma 1, we can conclude that Theorem 4 gives representation
N∗C with smaller delay in this case.

Case 0(01)∗0110∗ ending: Let NB = N0(01)p0110∗ for some p ≥ 0. Following Theorem 4, we
do not change the position of the second least significant ‘1’ and after changing NB to NAF, we
have N∗C = N ′0(01)p0110∗. Consider the case where we change the position to N0(01)p101̄0∗, after
changing to NAF, we have N ′C = N ′01(01̄)p01̄0∗. Hence,

δ(N ′C , `+ 2p+ 3) = (A− 1) + p(A− 2)

δ(N∗C , `+ 2p+ 3) = (A− 1) + p(A− 2)− 1

≤ δ(N ′C , `+ 2p+ 3).

Because both prefixes are N ′, by Lemma 1, we can conclude that Theorem 4 gives representation
N∗C with smaller delay in this case.

Case 11(01)∗0110∗ ending: Let NB = N11(01)p0110∗ for some p ≥ 0. Following Theorem 4, we
change NB to NAF and have N∗C = N ′00(1̄0)p1̄01̄0∗. Consider the case where we do not change the
position, after changing NB to NAF, we have N ′C = N ′01̄(01)p0110∗. Hence,

δ(N ′C , `+ 2p+ 4) = (A− 1) + (p+ 1)(A− 2)

δ(N∗C , `+ 2p+ 4) = A+ p(A− 2)− 2

≤ δ(N ′C , `+ 2p+ 4).

Because both prefixes are N ′, by Lemma 1, we can conclude that Theorem 4 gives representation
N∗C with smaller delay in this case.

Case 1110∗ ending: Let NB = N1110∗. Following Theorem 4, we change NB to NAF and have
N∗C = N ′001̄0∗. Consider the case where we do not change the position, after changing NB to NAF,
we have N ′C = N ′01̄10∗. Hence,

δ(N ′C , `+ 2) = A− 1

δ(N∗C , `+ 2) = −2 ≤ δ(N ′C , `+ 2).

Because both prefixes are N ′, by Lemma 1, we can conclude that Theorem 4 gives representation
N∗C with smaller delay in this case.

Case 0(01)∗010∗ ending: Let NB = N0(01)p010∗ for some p ≥ 0. Following Theorem 4, we
do not change the position of the second least significant ‘1’ and after changing NB to NAF, we
have N∗C = N ′0(01)p010∗. Consider the case where we change the position to N0(01)p11̄0∗, after
changing to NAF, we have N ′C = N ′01(01̄)p1̄0∗. Hence,

δ(N ′C , `+ 2p+ 2) = (A− 1) + p(A− 2)

δ(N∗C , `+ 2p+ 2) =

{
−2 if p = 0;

p(A− 2) otherwise

≤ δ(N ′C , `+ 2p+ 2).

Because both prefixes are N ′, by Lemma 1, we can conclude that Theorem 4 gives representation
N∗C with smaller delay in this case which concludes the proof. �

176

International Journal of Networking and Computing

From Theorem 4, since our N∗C is in NAF (except the least significant non-zero digit), we have an
upper bound of computation time used by our optimal representation when 0 < 2D ≤ A as follows.

Corollary 1. Let D = 1, A ≥ 2, and NB = nλ...n0. The upper bound of the parallel scalar point
multiplication time using N∗C = n′λ+1...n

′
0 from Algorithm 2 is

T (N∗C , λ+ 1) ≤
(

1

2
λ+ 1

)
A+D.

Proof. Since our N∗C is in NAF except the least significant non-zero digit, the worst optimal repre-

sentation could be in the form (10)λ/211 which has T (N∗C , λ+ 1) =

(
1

2
λ+ 1

)
A+D. �

Note that T (NB, λ) ≤ λA+D. This bound is tight since it can be achieved from 1λ+1. This means
Algorithm 2 generates representations with lower upper bound of computation time.

Moreover, we can see that if we change NB to NAF regardless of the position of the second least
significant non-zero digit, the delay of NAF is different from the optimal no more than 1 (consider
case 11(01)∗010∗ and 0(01)∗0110∗). Hence, NAF is almost optimal in this case.

6 Optimal Representation when 0 < D ≤ A < 2D

6.1 Algorithm

In the case where 1 ≤ A < 2 (normalize D = 1), we cannot use Algorithm 2 to have optimal
canonical binary representation because Lemmas 2 and 3 do not hold in this case. Consider an
example below to see that NAF and minimal Hamming weight representations may not be optimal
when 1 ≤ A < 2.

Example 7. Consider the case where D = 1, A = 1.2, and n = 29. If we calculate 29P using NB =
011101, we have δ(NB, λ) = 0.6. If we use NC = 10001̄1̄, which is optimal when A ≥ 2, we have
δ(NC , λ) = 1.2 which is not optimal in this case. Using NC = 1001̄01 also gives δ(NC , λ) = 1.2. �

Fortunately, we can construct N∗C ∈ N ∗
C from NB in the case where 1 ≤ A < 2 using Algorithm 3.

In Algorithm 3, we consider each digit from the least significant ‘1’ to n′λ+1 and calculate the delay
at each digit using Definition 3. We use ` to keep the index of the least significant digit still in
consideration. When we encounter ni = 0, if delay d > A, we flip n′i...n

′
` from 01...11 to 10...01̄, set

d← A, and set `← i (start new considering sequence at ni). If delay d ≤ 1, we set `← i+ 1 (start
new sequence at ni+1). In the case where 1 < d ≤ A, we keep going until one of the previous cases
occurs. See the following as an example:

Example 8. Consider the case where D = 1, A = 1.7, and n = 13911. NB = 011011001010111
with nλ+1 = 0. From Algorithm 3, consider when ni = 0, we have

i = 3; d = 1.4 ∈ (1, A] ` = 0

i = 5; d = 1.1 ∈ (1, A] ` = 0

i = 7; d = 0.8 ≤ 1 ` = 8

i = 8; d = −0.2 ≤ 1 ` = 9

i = 11; d = 1.4 ∈ (1, A] ` = 9

i = 14; d = 1.8 > A.

We have d = 1.8 > A, so we flip n14...n9 from 011011 to 1001̄01̄ and get N∗C = 1001̄01̄001010111.
We also set ` = 14 and then algorithm terminates. �

We can see that Algorithm 3 has O(log2 n) complexity and uses O(1) additional space.

177

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

Algorithm 3: Changing binary representation to optimal representation when 0 < D ≤ A <
2D

input : NB = nλ...n0
output: N∗C = n′λ+1...n

′
0 ∈ N ∗

C
begin

N∗C ← NB
`← index of the least significant ‘1’ of N∗C
n′λ+1 ← 0

d← 0
for i← `+ 1 to λ+ 1 do

if n′i = 1 then d← max(d+ (A− 1), A)
else

d← d− 1
if d > A then

// "flipping" n′i...n
′
`

n′` ← 1̄
for j ← `+ 1 to i− 1 do

n′j ← n′j − 1

n′i ← 1
d← A
`← i

else if d ≤ 1 then `← i+ 1

return N∗C

6.2 Optimality Proof for Algorithm 3

We prove the optimality of Algorithm 3 using three lemmas and Theorem 5.

Lemma 4. Let D = 1, 1 ≤ A < 2, NB = nλ...n0 and delay d at `− 1 is no more than 1. Following
Algorithm 3, if ni = 0, d > A, and we flip ni...n`, we have delay d at i equals to A.

Proof. We first define d(0) ≤ 1 as the delay at ` − 1. We can see that the sequence ni...n` must
be in the form 01pk ...01p201p1 for some k > 0 and pj > 0 for all 1 ≤ j ≤ k. The sequence has no
consecutive zeros because if 1 < d ≤ A at the first zero, d is then less than 1 after the second zero
and ‘00’ is not in the sequence.

We prove this lemma by induction on j from 1 to k. We define d(j) as the delay after considering
up to 01pj . We first consider 01p1 where the least significant ‘1’ of 01p1 is not the least significant
‘1’ of NB. If p1 = 1, when consider 01p1 , we have d(1) ≤ 1, which means this case cannot happen.
For p1 > 1, changing 01p1 to 10p1−11̄ makes

d(1) = max(A− (p1 − 1) + (A− 1), A) = A

since A− (p1 − 1) < 1. In the case where the least significant ‘1’ of 01p1 is also the least significant
‘1’ of NB, we also have d(1) = A for all p1 > 0.

For 01pj where j > 1, by induction, we have that flipping 01pj−1 ...01p1 gives 10pj−1 ...1̄0p1−11̄ with
d(j−1) = A. When we change 01pj1 to 10pj 1̄ with ‘1’ from 10pj−1 , since d(j−1) − pj = A− pj < 1,
we also have

d(j) = max(d(j−1) − pj + (A− 1), A) = A. �

Lemma 5. Let D = 1, 1 ≤ A < 2, and NB = nλ...n0. Following Algorithm 3, all sequences ni...n`
have delay d at `− 1 no more than 1.

178

International Journal of Networking and Computing

Proof. We prove this lemma by induction on each sequence nij ...n`j from the least to the most
significant digit. We first consider the least significant sequence ni0 ...n`0 . Since n`0 is the least
significant non-zero digit of NB, the delay d at `0 − 1 is definitely no more than 1. The base case is
proved.

By induction, we assume that the considering sequence nij ...n`j has delay d at `j − 1 no more
than 1. If we do not flip this sequence, we have d at ij no more than 1. Because nk = 0 for all
ij +1 ≤ k ≤ `j+1−1 (since the next sequence starts at n`j+1

), we have d at `j+1−1 no more than 1.
If we flip nij ...n`j , by Lemma 4, we have d at nij equals to A and from Algorithm 3, the next

sequence starts at nij (we have `j+1 = ij). Since nij = 1 and nij−1 = 0 with d at ij equals to A,
by Definition 3, we have that d at ij − 1 = `j+1 − 1 must be no more than 1. The induction step is
completed. �

Lemma 6. Let D = 1, 1 ≤ A < 2, and NB = nλ...n0. Following Algorithm 3, if ni = 0 and d > A,
there is no representation of ni...n` which gives d at i smaller than A.

Proof. We prove this lemma by contradiction. We consider the sequence ni...n` in the form
01pk ...01p201p1 for some k > 0 and pj > 0 for all 1 ≤ j ≤ k. To have d(k) < A, ‘0’ in 01pk

must be left as ‘0’ because if it is changed to ‘1’, we have d(k) ≥ A. So, we consider ‘0’ in 01pk−1

and it must be left as ‘0’ because if it is changed to ‘1’, we have d(k−1) ≥ A which makes d(k) ≥ A
(since before changing, we have 1 < d(k−1) ≤ A but d(k) > A already). Using the same reason, we
have that ‘0’ in 01p1 must not be changed to have d(k) < A. This contradicts the assumption since
01pk ...01p201p1 has d(k) > A. �

Theorem 5 (Optimal representation when 0 < D ≤ A < 2D). Algorithm 3 produces an optimal
canonical binary representation N∗C ∈ N ∗

C for 0 < D ≤ A < 2D. That is, if D = 1 and 1 ≤ A < 2,
when consider from n0 to nλ+1, flipping ni...n` when d > A gives the representation with the smallest
delay.

Proof. We consider the delay d after considering ni...n` in two cases. If d ≤ 1, changing the sequence
will give us more delay which equals to or more than A, so our algorithm does not change it. This
representation is optimal since there is no other representation with smaller delay than d. Otherwise,
we have d > A, and by Lemmas 4-6, changing the sequence will make d = A which is the smallest
delay we can achieve. The sequence is always classified in one of these two cases since there are
always two consecutive zeros in front of the representation which make d ≤ 1. �

From Theorem 5, we have an upper bound of computation time used by our optimal representa-
tion when 0 < D ≤ A < 2D as follows.

Corollary 2. Let D = 1, 1 ≤ A < 2, and NB = nλ...n0. The upper bounds of the delay and parallel
scalar point multiplication time using N∗C = n′λ+1...n

′
0 from Algorithm 3 are

δ(N∗C , λ+ 1) ≤ A
T (N∗C , λ+ 1) ≤ A+ λ+ 1.

Proof. Consider n′λ+1, if n′λ+1 = 0, it is obvious that δ(N∗C , λ + 1) ≤ A. If n′λ+1 = 1, this happens
from flipping and we have δ(N∗C , λ + 1) = A. Because the delay is no more than A at n′λ+1, hence
T (N∗C , λ+ 1) = δ(N∗C , λ+ 1) + λ+ 1 ≤ A+ λ+ 1. �

Note that T (NB, λ) ≤ λA+D. This bound is tight since it can be achieved from 1λ+1. This means
Algorithm 3 generates representations with lower upper bound of computation time.

Moreover, if we change NB to NAF, its delay after considering nλ+1 is also no more than A but
may not be optimal (as shown in Example 7). We prove this in the following proposition.

Proposition 2. Let NC be a NAF representation of n. When D = 1 and 1 ≤ A < 2, we have
δ(NC , i) ≤ A for all i ≥ 0. Furthermore, if ni = 0, then δ(NC , i) ≤ A− 1.

179

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

Proof. We prove this proposition by induction on i. When i = 0, we know that δ(NC , i) = 0 by
the definition of the function δ. For i ≥ 1, assume that δ(NC , i − 1) ≤ A when ni−1 6= 0, and
δ(NC , i− 1) ≤ A− 1 when ni−1 = 0.

If ni = 0, then δ(NC , i) = δ(NC , i− 1)− 1 ≤ A− 1.

If ni 6= 0, then, because there is not a consecutive non-zeros in NAF representation, we have
ni−1 = 0. Hence, δ(NC , i) = 0, δ(NC , i) = A, or δ(NC , i) = δ(NC , i−1) + (A−1) ≤ δ(NC , i−1) + 1 ≤
(A− 1) + 1 = A. �

Since the delay from the optimal representation is no more than A, the delay from NAF is not
larger than the delay from the optimal representation by more than A < 2. Hence, NAF is also
almost optimal in this case.

7 Experimental Results

We compare the parallel computation time and the buffer size required for scalar point multiplication
when we use binary representations NB, our optimal representations N∗C , and NAFs in Table 1. The
idea of this experiment is similar to the experiments in [4]. The buffer is used when doubling
processor finishes its work before addition processor uses it. For example, from Figure 2, addition
processor finishes calculating −5P at time 11, but 4P , 8P , 16P and 32P are finished before that
time. These results are waiting in addition processor’s buffer. We keep only what is going to be
used, i.e. keep 2iP only when ni 6= 0. The experimental results are obtained from 100,000 random
integers from [1, 2256 − 1].

Table 1: Computation time of scalar point multiplication and buffer space used with 100,000 random
integers from [1, 2256 − 1]

A

D

Computation Time (unit) Buffer Space (number of elliptic curve points)

using NB using N∗C using NAF using NB using N∗C using NAF

avg. max avg. max avg. max avg. max avg. max avg. max

1.00 255.0 256.0 255.0 256.0 255.7 257.0 1.000 1 1.000 1 1.000 1

1.25 255.5 261.0 255.5 257.3 255.9 257.3 2.682 6 2.000 2 1.000 1

1.50 256.3 268.5 255.9 257.5 256.2 257.5 3.854 10 2.000 2 1.000 1

1.75 258.4 291.3 256.3 257.7 256.4 257.7 5.991 22 2.000 2 1.000 1

2.00 268.2 326.0 256.7 258.0 256.7 258.0 10.238 37 1.000 1 1.000 1

2.25 292.2 366.5 257.2 264.3 257.2 264.3 18.817 50 2.043 4 2.044 4

2.50 322.1 407.0 258.0 274.5 258.0 274.5 28.245 61 2.742 7 2.745 7

2.75 353.3 447.5 260.0 289.8 260.0 289.8 36.824 69 3.974 13 3.979 13

We can see from the results that NAFs are not always the optimal representation as the aver-
age computation times from the representation are slightly larger than the optimal one. However,
as discussed previously, the results from NAFs are almost as good as those from our optimal rep-
resentation. The difference between two representations is always less than 1%, and the parallel
computation time when A/D ≥ 2 is nearly same. Also, the buffer size in scalar point multiplica-
tion method obtained from NAF is almost equal to that obtained from our optimal representation.
Hence, NAF is almost an optimal choice for our model. On the other hand, the results from NAF
and N∗C are much better than those obtained from NB, especially when A/D ≥ 2. The improvement
from NB in the parallel computation time is as large as 4.4% when A/D = 2, and the improvement
is as large as 35.9% when A/D = 2.75.

180

International Journal of Networking and Computing

8 Optimal Representation for Multi-Scalar Point
Multiplication (under a condition)

In this section, we focus on multi-scalar point multiplication where we want to calculate nP +mQ
for some integers n,m and elliptic curve points P,Q. We use similar parallel model to scalar point
multiplication with three processors, two for doubling P,Q and another one for adding doubles
cumulatively. We use the same settings as scalar point multiplication (using canonical binary rep-
resentation). See following example for more understanding.

Example 9. To calculate 9P + 13Q using NB = 1001 and MB = 1101, we use three processors as
depicts in Figure 3. �

Figure 3: “Parallel double-and-add” multi-scalar point multiplication for NB = 1001 and MB = 1101

We define the time used in parallel multi-scalar point multiplication as follows:

Definition 5 (Computation time of parallel multi-scalar point multiplication). Let D ≥ 0 be the
time processor used for one doubling, A ≥ 0 be the time used for one addition, and n,m ∈ Z+ with
canonical binary representation NC = nλ...n0 and MC = mλ...m0. The computation time of parallel
multi-scalar point multiplication nP + mQ using NC and MC after calculating from n0,m0 up to
ni,mi is T (NC ,MC , i) which can be calculated by:

T (NC ,MC , i) :=



|nimi|A if i = 0;

T (NC ,MC , i− 1) if i > 0 and ni = mi = 0;

iD + |nimi|A if i > 0, |ni|+ |mi| 6= 0,

and nj = mj = 0;∀j, 0 ≤ j < i;

max(T (NC ,MC , i− 1), iD) + (|ni|+ |mi|)A otherwise.

From Definition 5, the time used to calculate nP + mQ using NC ,MC is T (NC ,MC , λ). If we
consider representation X with xj = |nj | + |mj | for all 0 ≤ j ≤ λ, we have T (NC ,MC , λ) =
T (X,λ). However, finding optimal representations for parallel multi-scalar point multiplication is
more complicated than parallel scalar point multiplication since we have to consider both NC and
MC and changing one may affect other. In this paper, we propose a dynamic programming algorithm
in Algorithm 4 to find optimal time under a condition that three processors are used as described
above, and only canonical binary representations using the digit set {1̄, 0, 1} are considered.

Before we begin the explanation of Algorithm 4, we first define the word “carry-in” and “carry-
out”. When we consider digit ni, “carry-in” is a number that is transferred from the less significant
digit ni−1 and is added to ni, and “carry-out” is a number that is transferred from ni and is added
to the more significant digit ni+1 after the digit ni is changed. For example, if ni = 1 with “carry-in”
equals to 0, ni may not be changed and have “carry-out” 0, or ni may be changed to 1̄ and have
“carry-out” 1 since 1 = 11̄. Another example is when ni = 1 with “carry-in” equals to 1. After

181

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

Algorithm 4: Calculating the smallest parallel multi-scalar point multiplication time of
nP +mQ using dynamic programming

input : NB = nλ...n0, MB = mλ...m0

output: the smallest time t to calculate nP +mQ
begin

`← the smallest index where n` = 1 or m` = 1
t0,0, t0,1, t1,0, t1,1 ←∞
if n` = 0 and m` = 1 then t0,0, t0,1 ← `D
else if n` = 1 and m` = 0 then t0,0, t1,0 ← `D
else t0,0, t0,1, t1,0, t1,1 ← `D +A
for i← `+ 1 to λ do

t′0,0, t
′
0,1, t

′
1,0, t

′
1,1 ←∞

for all CI := (cin, cim) ∈ {0, 1}2 do
n′ ← ni + cin; m′ ← mi + cim
n′′ ← n′ mod 2; m′′ ← m′ mod 2
Sn ← {bn′/2c, dn′/2e}; Sm ← {bm′/2c, dm′/2e}
for all CO := (con, com) ∈ Sn × Sm do

if n′′ = m′′ = 0 then t′′ ← tCI
else t′′ ← max(tCI , iD) + (n′′ +m′′)A
t′CO ← min(t′CO, t

′′)

t0,0 ← t′0,0; t0,1 ← t′0,1; t1,0 ← t′1,0; t1,1 ← t′1,1

t0,1 ← max(t0,1, (λ+ 1)D) +A
t1,0 ← max(t1,0, (λ+ 1)D) +A
t1,1 ← max(t1,1, (λ+ 1)D) + 2A
return t← min(t0,0, t0,1, t1,0, t1,1)

adding the “carry-in”, we have ni = 2 which is then changed to ni = 0 with “carry-out” 1 since
2 = 10. We can say that “carry-out” of ni is “carry-in” of ni+1.

The idea of Algorithm 4 is as follows: we consider each digit from n`,m` to nλ,mλ where ` is
the smallest index that n` = 1 or m` = 1. At n`,m`, we set the time according to Definition 5. If
n` = 1, we can change n` to 1̄ with “carry-out” 1 or leave n` as 1 with “carry-out” 0. This is similar
for m`. We keep all possible results in tx,y which stores the time used up to the current digits with
“carry-out” x for next digit of NB and “carry-out” y for next digit of MB.

For other digits ni,mi, we consider every possibilities of “carry-in” from the previous digits. We
use n′ and m′ to store the result after adding ni,mi with the “carry-in”. If n′ = 0, this digit must
be 0 with “carry-out” 0. If n′ = 1, there are two ways: this digit is unchanged with “carry-out” 0,
or this digit is changed to 1̄ with “carry-out” 1. If n′ = 2, this digit must be 0 with “carry-out”
1. This is similar for m′. We use n′′,m′′ to store the new current digits and Sn, Sm to store all
possible “carry-out” as a set. This can be summarized as in Table 2 (Algorithm 4 treats n′′,m′′ = 1̄
as 1 since there is no difference in time calculation). After that, we compute the time and keep
the minimum time possible for each tCO to use at next digit (we use t′CO as a temporary variable
to calculate tCO for next digit). Because minimum time of every possibilities are considered at all
digits, it is straightforward to see that Algorithm 4 computes the optimal time under the condition.

After calculating up to nλ,mλ, there is still a carry for nλ+1 = 0,mλ+1 = 0 for t0,1, t1,0 and t1,1.
We calculate the time for the remaining carry and return the minimum time among all possibilities.

Example 10. Consider the case where ni = 0,mi = 1 with “carry-in” cin = 1 and cim = 1. After
adding the “carry-in”, we have n′ = 1 and m′ = 2. From Table 2, the new ni can be 1 or 1̄ which
can be treated as 1 when calculating time (n′′ = 1), and the new mi must be 0 (m′′ = 0). All possible
“carry-out” of ni is Sn = {0, 1} and mi is Sm = {1}. In this case, we update the value of t′0,1 and
t′1,1. We need to consider other three cases of “carry-in” before considering ni+1,mi+1. �

182

International Journal of Networking and Computing

Table 2: All possibilities of new current digit and “carry-out” for each value of n′,m′

n′,m′ new current
carry-out Sn, Sm

digit (n′′,m′′)

0 0 0 {0}

1
1 0 {0, 1}
1̄ 1

2 0 1 {1}

Without loss of generality, we assume that n ≥ m. Algorithm 4 has O(log2 n) complexity and
uses O(1) additional space, but to do backtracking, O(log2 n) additional space is required.

We compare the average parallel computation time and the buffer size required for multi-scalar
point multiplication when we use binary representations NB, our optimal representations (under
the condition) N∗C , NAFs, and joint sparse forms (JSFs) in Table 3. The experimental results are
obtained from 100,000 random pairs of integers from [1, 2256 − 1]× [1, 2256 − 1].

Table 3: Computation time of multi-scalar point multiplication and buffer space used with 100,000
random pairs of integers from [1, 2256 − 1]× [1, 2256 − 1]

A

D

Average Computation Time (unit)
Average Buffer Space

(number of elliptic curve points)

NB N∗C NAF JSF NB N∗C NAF JSF

1.00 264.5 256.3 256.7 256.7 14.789 3.000 2.000 2.000

1.25 320.7 257.2 257.4 257.7 54.366 4.299 4.151 5.234

1.50 384.0 264.2 264.4 269.9 87.163 9.329 9.194 12.856

1.75 447.5 300.9 301.0 310.2 111.089 27.463 27.332 32.766

2.00 511.2 342.9 343.0 353.6 128.910 44.661 44.517 50.039

2.25 574.9 385.4 385.5 397.4 143.193 58.762 58.649 64.157

2.50 638.6 427.9 428.0 441.3 154.324 69.847 69.729 75.242

2.75 702.3 470.5 470.6 485.2 163.507 79.047 78.942 84.442

The results show that NAFs are nearly optimal in our model. The difference between optimal
representations and NAFs is always less than 1%, and the buffer size obtained from NAF is slightly
better than that obtained from our optimal representation. Hence, NAF is almost an optimal choice
for our model for multi-scalar point multiplication. On the other hand, the results from NAF and
N∗C are much better than those obtained from JSF, especially when A/D ≥ 2. Nevertheless, it is
not proved that using the digit set C = {1̄, 0, 1} is optimal. We let this be an open problem.

9 Conclusion and Future Work

This paper presents that NAF is almost optimal for our proposed time model for “parallel double-
and-add” scalar and multi-scalar point multiplication (under the condition). This is because NAF
uses a little more time in the model, nearly the same buffer space, and the same time to generate
the representation as our optimal representation. However, there are still some issues left unsolved.
For multi-scalar point multiplication, the optimality of the digit set used is not proved, we still have
not found an algorithm using O(1) space, and the number of processors might affect the optimal
representation, e.g. five processors with one addition and four doublings (start with P , Q, P + Q,
and P − Q) will treat 10, 01, 11, and 11̄ pairs the same. We aim to solve these problems in our
future works. In addition, we might be able to improve the computation time by utilizing the Strauss-
Shamir trick [7, 22] or radix-r NAF representation [24]. Also, we plan to consider the communication
time between processors, and other parallel settings such as SIMD and SIMT paradigm [14].

183

Optimal Representation for Right-to-Left Parallel Scalar and Multi-Scalar Point Multiplication

Acknowledgment

This research was mainly done while Kittiphon Phalakarn and Kittiphop Phalakarn did an internship
at The University of Tokyo. The authors would like to thank The University of Tokyo, Asst. Prof.
Athasit Surarerks, and Prof. Hiroshi Imai for facilitating the internship. We would also like to thank
the editor and reviewers for all corrections and useful comments. This work was supported by JST
ERATO Grant Number JPMJER1201, Japan.

References

[1] Explicit-formulas database. https://hyperelliptic.org/EFD/index.html. Accessed: 2016-07-05.

[2] Daniel Bernstein and Tanja Lange. Two grumpy giants and a baby. In Proceedings of the
Tenth Algorithmic Number Theory Symposium (ANTS X), pages 87–111. Mathematical Sciences
Publishers, 2013.

[3] Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. Twisted
Edwards curves. In Proceedings of the 2008 International Conference on Cryptology in Africa
(AfricaCrypt 2008), pages 389–405. Springer, 2008.

[4] Daniel J Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters. Optimizing double-base
elliptic-curve single-scalar multiplication. In International Conference on Cryptology in India,
pages 167–182. Springer, 2007.

[5] Fábio Borges, Pedro Lara, and Renato Portugal. Parallel algorithms for modular multi-
exponentiation. Applied Mathematics and Computation, 292:406–416, 2017.

[6] Allan B Borodin and Ian Munro. Notes on efficient and optimal algorithms. U. of Toronto,
Toronto, Canada, and U. of Waterloo, Waterloo, Canada, 1972.

[7] Taher Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[8] Juan Manuel Garcia Garcia and Rolando Menchaca Garcia. Parallel algorithm for multiplication
on elliptic curves. In Proceedings of the 2001 Mexican International Conference on Computer
Science (ENC 2001). Springer, 2001.

[9] Daniel M Gordon. A survey of fast exponentiation methods. Journal of algorithms, 27(1):129–
146, 1998.

[10] Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In Proceedings
of the 2003 International Workshop on Public Key Cryptography (PKC 2003), pages 199–211.
Springer, 2003.

[11] Clemens Heuberger and Helmut Prodinger. On minimal expansions in redundant number sys-
tems: Algorithms and quantitative analysis. Computing, 66(4):377–393, 2001.

[12] Tetsuya Izu and Tsuyoshi Takagi. A fast parallel elliptic curve multiplication resistant against
side channel attacks. In Proceedings of the 2002 International Workshop on Public Key Cryp-
tography, pages 280–296. Springer, 2002.

[13] Kenji Koyama and Yukio Tsuruoka. Speeding up elliptic cryptosystems by using a signed
binary window method. In Proceedings of the 1992 Annual International Cryptology Conference
(Crypto 1992), pages 345–357. Springer, 1992.

[14] Michael D McCool, Arch D Robison, and James Reinders. Structured parallel programming:
patterns for efficient computation. Elsevier, 2012.

184

International Journal of Networking and Computing

[15] Bodo Möller. Improved techniques for fast exponentiation. In Proceedings of the 2002 In-
ternational Conference on Information Security and Cryptology (ICISC 2002), pages 298–312.
Springer, 2002.

[16] Carlos Moreno and M Anwar Hasan. SPA-resistant binary exponentiation with optimal execu-
tion time. Journal of Cryptographic Engineering, 1(2):87–99, 2011.

[17] Michael Nöcker. Some remarks on parallel exponentiation. In Proceedings of the 2000 Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC 2000), pages 250–257.
ACM, 2000.

[18] Kittiphon Phalakarn, Kittiphop Phalakarn, and Vorapong Suppakitpaisarn. Optimal repre-
sentation for right-to-left parallel scalar point multiplication. In Computing and Networking
(CANDAR), 2017 Fifth International Symposium on, pages 482–488. IEEE, 2017.

[19] George W Reitwiesner. Binary arithmetic. Advances in computers, 1:231–308, 1960.

[20] J. Robert. Software implementation of parallelized ECSM over binary and prime fields. In
Proceedings of the 2014 International Conference on Information Security and Cryptography
(Inscrypt 2014), pages 445–462. Springer, 2014.

[21] Jerome A Solinas. Low-weight binary representation for pairs of integers. Centre for Applied
Cryptographic Research, University of Waterloo, Combinatorics and Optimization Research Re-
port CORR 2001-41, 2001.

[22] Ernst Gabor Straus. Problems and solutions: Addition chains of vectors. American Mathemat-
ical Monthly, 71(806-808), 1964.

[23] Vorapong Suppakitpaisarn and Hiroshi Imai. Worst case computation time for minimal joint
hamming weight numeral system. In Proceedings of the 2014 International Symposium on
Information Theory and its Applications (ISITA 2014), pages 138–142. IEEE, 2014.

[24] Tsuyoshi Takagi, David Jr Reis, Sung-Ming Yen, and Bo-Ching Wu. Radix-r non-adjacent
form and its application to pairing-based cryptosystem. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 89(1):115–123, 2006.

[25] Edward G Thurber. On addition chains `(mn) ≤ `(n) − b and lower bounds for c(r). Duke
Mathematical Journal, 40(4):907–913, 1973.

185

