
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 8, Number 2, pages 282–300, July 2018

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

Max Plauth, Florian Rösler and Andreas Polze

Operating Systems and Middleware Group
Hasso Plattner Institute for Digital Engineering

University of Potsdam
PO Box 990460, 14440 Potsdam, Germany

Received: January 30, 2018
Revised: April 18, 2018
Accepted: June 6, 2018

Communicated by Shinya Takamaeda-Yamazaki

Abstract

The ever-growing demand for compute resources has reached a wide range of application
domains, and with that has created a larger audience for compute-intensive tasks. In this
paper, we present the CloudCL framework, which empowers users to run compute-intensive tasks
without having to face the total cost of ownership of operating an extensive high-performance
compute infrastructure. CloudCL enables developers to tap the ubiquitous availability of cloud-
based heterogeneous resources using a single-paradigm compute framework, without having
to consider dynamic resource management and inter-node communication. In an extensive
performance evaluation, we demonstrate the feasibility of the framework, yielding close-to-linear
scale-out capabilities for certain workloads.

Keywords: Cloud, Heterogeneous Computing, Single-Paradigm, Dynamic Resource Management

1 Introduction

In the age of big data, compute tasks are gaining complexity and data volumes are growing by
the day. Unlike the High-Performance Computing (HPC) domain, this ever-growing demand for
computing resources is not restricted to selected applications and algorithms, but it concerns a wide
range of application domains. As a result, an increasing number of everyday use cases are developing
a demand for computing resources drawing near to that of certain HPC use cases [12, 14].

Even though hardware accelerators such as Field-Programmable Gate Arrays (FPGAs) or Graph-
ics Processing Units (GPUs) are a popular approach for satisfying these demands, operating a het-
erogeneous compute infrastructure is still expensive [15] and involves a high degree of application
complexity [7]. To a certain degree, the economic concerns are alleviated by the wide availability of
cloud-based accelerator instances equipped with GPUs, FPGAs, or other accelerators. However, the
programmatic complexity of utilizing heterogeneous hardware in dynamic scale-out scenarios is not
yet addressed sufficiently. Implementing applications for such massively parallel, distributed systems
is already a challenging task for software engineers that are well-trained in parallel implementation
strategies. For domain experts without deeper software expertise, it is very hard to write code that
efficiently utilizes heterogeneous resources, especially in a distributed environment [13].

282

International Journal of Networking and Computing

Here, we present the CloudCL1 framework, which empowers users to run compute-intensive
tasks on demand without having to face the total cost of ownership of operating an extensive high-
performance compute infrastructure. The presented framework hides the complexity of distributed
programming for dynamic cluster configurations, enabling developers to tap the ubiquitous availabil-
ity of cloud-based heterogeneous resources on demand using a single-paradigm compute framework.
At the same time, the single paradigm approach helps in improving productivity, as developers
and domain experts may focus their implementation efforts on application logic without having to
consider inter-node communication and dynamic resource management. As illustrated in Figure 1,
CloudCL combines the capabilities of dOpenCL [7] and Aparapi [10] and augments these enabling
technologies with a job scheduling system that can handle the dynamic properties of cloud-based
resource-provisioning by supporting dynamic addition and removal of resources at runtime. In an
extensive performance evaluation, we demonstrate that the framework provides close-to-linear scale-
out capabilities both in an on-premise hosting environment, using Amazon EC2-based public cloud
resources as well as hybrid configurations.

This paper is structured as follows: Section 2 provides background about MPI, Opencl, dOpenCL
and Aparapi for two purposes. On one hand, the goal is to provide a quick walk-through of the
enabling technologies behind CloudCL. On the other hand, re-iterating over the basics of both
distributed as well as heterogeneous computing should remind readers about the many layers of
complexity that are concealed by the CloudCL framework. Subsequently, Section 3 reviews related
OpenCL API forwarding approaches and compares them with dOpenCL – the library of our choice.
Section 4 proceeds with elucidating the major components making up CloudCL. Afterwards, Sec-
tion 5 provides an extensive performance evaluation of the scale-out behavior of CloudCL, before a
conclusion is reached in Section 6.

CloudCL

Aparapi

dOpenCL

On-Premise Cluster

Compute Node

C
lie

nt
 N

od
e

Compute Node

IaaS Cluster

Compute Node Compute Node

Job Scheduler

Application

Figure 1: The CloudCL framework hides compute device management (Aparapi) and inter-node
communication (dOpenCL), allowing developers to focus on compute kernel development.

2 Background

CloudCL is built on top of multiple base technologies, combining their functionality in order to
offer more than just the sum of its parts. First, this section explicates the basics of distributed
programming based on the Message Passing Interface (MPI), stressing the benefits of CloudCL
as a single-paradigm approach for distributed heterogeneous computing. Further emphasizing the
increased productivity offered by CloudCL, this section provides background about Opencl, dOpenCL
and Aparapi as enabling technologies behind CloudCL.

1https://github.com/osmhpi/cloudcl

283

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

2.1 Distributed Programming with MPI

In order to implement software that can leverage the resources of many compute nodes, commu-
nication across multiple machines is necessary. The de-facto standard for facilitating inter-node
communication in distributed setups is the MPI. Many MPI implementations are available, opti-
mized for various hardware types and programming languages, enabling applications to identify a
process instance, so called ranks, as well as sending and receiving messages[5] among them. While
the provided mechanisms may be used to run multiple ranks on a single machine, their main purpose
it to distribute workloads across cluster nodes.

1 #include <stdio.h>

2 #include <string.h>

3 #include <mpi.h>

4

5 int main(int argc , char **argv){

6 char messageBuffer [64];

7 int rank , processCount;

8

9 MPI_Init (&argc , &argv);

10 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

11 MPI_Comm_size(MPI_COMM_WORLD , &processCount);

12

13 if(rank == 0){

14 for(int i = 1; i<processCount;i++){

15 sprintf(messageBuffer , "This is a message from Process 0.");

16 MPI_Send(messageBuffer , sizeof(messageBuffer), MPI_CHAR , i, 0,

↪→ MPI_COMM_WORLD);

17 }

18 }else{

19 MPI_Recv(messageBuffer , sizeof(messageBuffer), MPI_CHAR , 0, 0,

↪→ MPI_COMM_WORLD , MPI_STATUS_IGNORE);

20 printf("Process %d receives: %s\n", rank , messageBuffer);

21 }

22

23 MPI_Finalize ();

24 return 0;

25 }

Listing 1: Simple message passing example implemented in C using MPI.

MPI programs can be run with a specified number of processes. Executing the code reproduced
in Listing 1 with 4 processes initiates a simple communication from the first process to all other
processes. The given code is executed in every process but each process identifies its own rank,
which is used to define whether to send or to receive a message.

2.2 Heterogeneous Programming with OpenCL

OpenCL is a compute framework for executing parallel compute kernels on heterogeneous hardware.
OpenCL supports various device types and vendors [17]. In fact, OpenCL programs may be executed
on CPUs, GPUs, field-programmable gate arrays (FPGAs) and digital signal processors (DSPs). A
prerequisite for the execution of OpenCL code on a targeted device is the availability of an OpenCL
Installable Client Driver (ICD) on the host system.

OpenCL kernels are written in OpenCL C, which is a superset of C99, containing additional
keywords that are related to memory access and synchronization. Kernels have to be started from
so-called host code, which runs on the machine that contains the targeted devices. The host code is
usually written in C or C++, however other language bindings exist as well.

Listing 2 presents a minimal OpenCL kernel implementing the addition of two vectors. Each
parameter is a pointer to an array of double values residing in the global memory of the accelera-
tor. As the kernel is executed for every work-item, each kernel instance identifies its work-item by
querying get global id.

284

International Journal of Networking and Computing

1 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

2 __kernel void vec_add(__global double *a, __global double *b, __global double *c){

3 int i = get_global_id (0);

4 c[i] = a[i] + b[i];

5 }

Listing 2: Examplary OpenCL vector addition kernel.

While this simplistic kernel amounts to very few lines of kernel code, OpenCL requires a lot of
host code in order to choose an appropriate device, initiate data transfers, execute the kernel, and
perform other auxiliary tasks. Requiring more than 50 lines of code, the verbosity of the host code is
exemplified in Listing 3. It should be noted that the demonstrated host code is a minimal example
that assumes the availability of only one OpenCL platform and only one device. Furthermore, the
example has been stripped of error handling code.

1 int main(){

2 // Initialize arrays on host

3 double array_a [10] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};

4 double array_b [10] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};

5 double* array_result = new double [10];

6 size_t size = 10 * sizeof(double);

7

8 cl_mem d_a , d_b , d_c; // Device input/output buffers

9 cl_platform_id cpPlatform; // OpenCL platform

10 cl_device_id device_id; // device ID

11 cl_context ctx; // context

12 cl_command_queue queue; // command queue

13 cl_program program; // program

14 cl_kernel kernel; // kernel

15

16 // Bind to platform

17 clGetPlatformIDs (1, &cpPlatform , NULL);

18 // Get ID for the device

19 clGetDeviceIDs(cpPlatform , CL_DEVICE_TYPE_ALL , 1, &device_id , NULL);

20 // Create a context

21 ctx = clCreateContext (0, 1, &device_id , NULL , NULL , NULL);

22 // Create a command queue

23 queue = clCreateCommandQueue(ctx , device_id , CL_QUEUE_PROFILING_ENABLE , NULL);

24 // Create the compute program from the source buffer

25 program = clCreateProgramWithSource(ctx , 1, (const char **) &source , NULL , NULL);

26 // Build the program executable

27 clBuildProgram(program , 0, NULL , NULL , NULL , NULL);

28 // Create the compute kernel in the program we wish to run

29 kernel = clCreateKernel(program , "vec_add", NULL);

30

31 // Create the input and output arrays in device memory for our calculation

32 d_a = clCreateBuffer(context , CL_MEM_READ_ONLY , size , NULL , NULL);

33 d_b = clCreateBuffer(context , CL_MEM_READ_ONLY , size , NULL , NULL);

34 d_c = clCreateBuffer(context , CL_MEM_WRITE_ONLY , size , NULL , NULL);

35

36 // Write our data set into the input array in device memory

37 clEnqueueWriteBuffer(queue , d_a , CL_TRUE , 0, size , array_a , 0, NULL , NULL);

38 clEnqueueWriteBuffer(queue , d_b , CL_TRUE , 0, size , array_b , 0, NULL , NULL);

39

40 // Set the arguments to our compute kernel

41 clSetKernelArg(kernel , 0, sizeof(cl_mem), &d_a);

42 clSetKernelArg(kernel , 1, sizeof(cl_mem), &d_b);

43 clSetKernelArg(kernel , 2, sizeof(cl_mem), &d_c);

44

45 // Execute the kernel over the entire range of the data set

46 clEnqueueNDRangeKernel(queue , kernel , 1, NULL , {10} , NULL , 0, NULL , NULL);

47

48 // Wait for the command queue to get serviced before reading back results

49 clFinish(queue);

50

285

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

51 // Read the results from the device

52 clEnqueueReadBuffer(queue , d_c , CL_TRUE , 0, size , array_result , 0, NULL , NULL);

53

54 // release OpenCL resources

55 clReleaseMemObject(d_a); clReleaseMemObject(d_b); clReleaseMemObject(d_c);

56 clReleaseProgram(program); clReleaseKernel(kernel);

57 clReleaseCommandQueue(queue); clReleaseContext(context);

58

59 for(int i = 0; i < 10; i++){

60 cout << array_result[i] << endl;

61 }

62 }

Listing 3: Minimal OpenCL host code necessary to execute the vector addition kernel.

2.3 Distributed Heterogeneous Programming with dOpenCL

During the development of software that is intended to be executed on clusters made up from
heterogeneous systems, software developers have to consider both distribution aspects (e.g. using
MPI as discussed in Section 2.1) as well as heterogeneous programming environments (e.g. using
OpenCL as discussed in Section 2.2). Both programming paradigms add a lot of complexity that
may be handled by experienced software developers, but which is extremely hard to manage for
domain experts (e.g. biologists, physicists, etc.). Fortunately, API forwarding approaches enable
developers to interact with remote accelerators while hiding the aspects of distributed programming.
For the OpenCL compute language, one such approach is dOpencl, which enables developers to
transparently utilize OpenCL devices installed in remote machines [7]. The library provides its own
Installable Client Driver (ICD), which forwards the API calls to specified remote machines in the
network, which run a dOpenCL daemon. The calls are received by the daemon and are executed
using the available native OpenCL ICDs on the remote machine with the results being returned via
network. This allows utilizing remote devices as if they were installed locally in the host machine.
For example, a remote GPU appears to the application as if it was installed in the local machine’s
PCI Express slot. Therefore OpenCL kernels do not require changes to run remotely as dOpenCL
hides network transfers behind the standard OpenCL API. An overview of the architecture of an
exemplary compute cluster based on dOpencl is shown in Figure 2.

Host

dOpenCL ICDKernel

Remote Machine

Intel CPUdOpenCL Daemon OpenCL

Remote Machine

NVIDIA GPUdOpenCL Daemon OpenCL

Remote Machine
AMD CPU

dOpenCL Daemon OpenCL

NVIDIA GPU

Figure 2: dOpenCL ties in remote resources in a local ICD.

dOpenCL supports shared cluster environments, in which multiple OpenCL programs run con-
currently, by employing a device manager. The device manager handles the assignment of devices
to specific kernels and keeps track of device utilization within the cluster. Thus, it ensures that a
device is used only by a single kernel at each point in time.

286

International Journal of Networking and Computing

2.4 Aparapi

Aparapi is a library that drastically simplifies the usage of the OpenCL API and that minimizes
development efforts of OpenCL kernels [10]. Firstly, it contains bindings to access OpenCL functions
through a Java Native Interface (JNI), abstracting and bundling multiple low-level calls within Java
high-level functions, as illustrated in Figure 3. Secondly, Aparapi is able to translate Java code
to valid OpenCL kernels. Input data may be defined in Java code itself and the results are again
available in Java after execution. This is possible as Aparapi automatically copies the participating
data back and forth between the host code and the executing device. The library also takes care of
all tedious setup-tasks demonstrated in Listing 3. For a more fine grained approach, developers can
also define explicitly which data should be written or read in order to improve performance.

1 final double [] a = new double []{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

2 final double [] b = new double []{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

3 final double [] c = new double [10];

4

5 Kernel kernel = new Kernel () {

6 @Override

7 public void run() {

8 int i = getGlobalId ();

9 c[i] = a[i] + b[i];

10 }

11 };

12

13 kernel.execute (10);

14 System.out.println(Arrays.toString(c));

Listing 4: Vector addition kernel and host code based on Aparapi.

Java

Aparapi JNI OpenCL
Application

Code
Aparapi

Figure 3: Aparapi translates Java code to OpenCL kernels.

The framework enables developers to express the same functionality of native OpenCL with much
fewer lines of code, reducing code complexity significantly as demonstrated in Listing 4. This enables
developers to program algorithms considerably faster and offers beginners and domain experts easy
access to OpenCL features without profound knowledge of low-level mechanisms.

3 Related Work

With API-forwarding techniques for OpenCL providing one of the base technologies enabling CloudCL,
this section offers an overview of related OpenCL API forwarding approaches and frameworks for
aggregating heterogeneous cluster resources. Theoretically, all approaches could be used as replace-
ments for dOpenCL.

3.1 SnuCL

SnuCL [9] may transforms kernels depending on the available runtimes of a machine. For example,
it translates OpenCL to CUDA when only the CUDA platform is provided by the machine. Addi-
tionally, it can transform OpenCL code to C, which is then executed within a thread for each core
of a CPU. Furthermore, SnuCL introduces a virtual global memory, in which buffers may be shared
among devices. It manages the consistency among shared buffers and attempts to minimize copy
operations throughout the execution. Buffers that are not written can therefore remain on a device
without the requirement to be copied back to the host.

287

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

3.2 VirtualCL

Similarly to SnuCL and dOpenCL, VirtualCL forwards OpenCL API calls to remote machines within
a cluster [2]. The authors evaluated various applications comparing the local versus remote runtimes
via VirtualCL. VirtualCL also offers an extension, called SuperCL, which aims at reducing network
transfers by allowing multiple kernels to be submitted to a remote node for consecutive execution.
In this case, the results do not have to be transferred back and forth. It also supports more complex
use cases like alternating iterative kernels on the same data set.

3.3 DistCL

DistCL aims at fusing multiple GPUs into a single virtual OpenCL device [4]. To achieve this, it
abstracts the devices by representing them as one unified device while handling kernel distribution
and data transfers transparently. In order to enable parallelization of a kernel, DistCL automati-
cally splits it into multiple kernels with their respective required data, called subranges. For this,
programmers have to supply a meta-function that determines the memory access pattern. Based
on the given function, DistCL can transfer only relevant data to a device that executes a subrange.
However unlike CloudCL, DistCL is not capable of managing dynamic resources that are being added
or removed during the lifetime of the cluster.

3.4 MultiCL

MultiCL is an extension of SnuCL and schedules kernels across multiple heterogeneous devices in
a cluster [1]. It offers a round robin approach as well as an autofit mechanism. When queuing a
kernel, a flag can be attached to it, which labels the assumed execution type. The available flags
comprise compute-intensive, memory bound, I/O bound or iterative. The scheduling mechanism is
able to employ a static or a dynamic algorithm. In the static scheduling approach, the approach
profiles all available devices in regards to memory bandwidth and instruction throughput. Based on
these measurements, the best fitting device is selected with respect to the kernel flag.

4 Approach

With CloudCL being built on top of many other frameworks and libraries, this Section explicates
how CloudCL offers more than just the sum of its parts. Here, we provide an overview of the
major characteristics of CloudCL, including the job design, the resource manager the job scheduling
mechanisms, and the dynamic scale-out capabilities offered by CloudCL.

4.1 Job Design

In order to fully utilize as many remote computing resources as possible, CloudCL has to provide a
mechanism for splitting tasks. It is mandatory to ensure that each split has all the necessary data
for its correct computation all while keeping the amount of memory transfers at a minimum level.
Based on literature research, we identified the following strategies for dividing jobs into job partials:

Manual Splits Hadoop MapReduce enforces saving input data for the executable tasks in split
files on the Hadoop Distributed File System. Each split file is executed independently and software
developers have to define how to interpret a split during the map phase. Ultimately, the individually
programmed reduce algorithm merges the splits together to form a final result.

Naive Buffer Replication A simple and safe way to ensure that every split has all necessary
data available is to transfer all data to the employed devices as done by De La Lama et al. [3].
The suggested method is straightforward for transferring input data to remote devices. In contrast,
merging the individual output buffers back into the final result requires developers to specify an
algorithm for merging the partial results back to the global output buffer.

288

International Journal of Networking and Computing

Intelligent Buffer Replication Kim et al. [8] have developed a mechanism for automatically
determining how to split input buffers among subtasks in OpenCL so that only minimal data has
to be transferred. Their method is based on sampling memory access patterns in a test run in order
to identify lower and upper memory bounds for the job partials.

Meta Functions Li et al. [11] as well as Diop et al. [4] employ meta functions to determine
data splits independently of the problem size. These meta functions have to be supplied by the
programmer, describing the memory access patterns of the employed algorithms. Based on these
meta functions, the bounds of the job partials can be identified.

All methods come with a tradeoff between performance and programming complexity: Naive
Buffer Replication is inefficient and does not scale with increasing split counts. Intelligent Buffer
Replication requires an additional execution step for sampling memory accesses, which includes
intermediate code translation. Although Meta Functions try to unburden developers, they are still
required to define the access patterns manually. Manual Splits put the entire responsibility into
the hands of the developer. In this initial version, CloudCL employs the Manual Splits strategy.
However, future versions of CloudCL will also support more elaborate strategies for distributing
work. Listing 5 demonstrates how the manual splitting approach is integrated into CloudCL and
that writing a split and merge algorithm can be intuitive and does not require much code. Using the
variable partialCount, developers can specify an upper bound for the number of job partials that are
created for each kernel. Higher numbers may enable a higher degree of parallelization due to wider
distribution, however lower numbers might be more suitable for tasks where input data is hard to
split, resulting in a behavior similar to Naive Buffer Replication.

1 public class AdditionKernel extends Kernel{

2 int[] a, b, result;

3

4 public AdditionKernel(int[] a, int[] b) {

5 this.a = a;

6 this.b = b;

7 this.result = new int[a.length];

8 }

9

10 @Override

11 public void run() {

12 int i = getGlobalId ();

13 result[i] = a[i] + b[i];

14 }}

15

16 public class Addition {

17 public static void main(String [] args) {

18 final int partialCount = 2;

19 int[] a = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

20 int[] b = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

21 int[] result = new int[a.length];

22

23 int partWidth = a.length / partialCount;

24 for(int i = 0; i < partialCount; i++){

25 int[] aPartial = Arrays.copyOfRange(a, i * partWidth , (i + 1) * partWidth);

26 int[] bPartial = Arrays.copyOfRange(b, i * partWidth , (i + 1) * partWidth);

27

28 AdditionKernel additionKernel = new AdditionKernel(aPartial , bPartial);

29 additionKernel.execute(partWidth);

30 System.arraycopy(additionKernel.result , 0, result , i * partWidth , partWidth);

31 }}}

Listing 5: Implementation of Manual Splits based on Aparapi. This example portrays the serial
execution of the partials for the sake of simplicity.

289

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

The execution model of CloudCL requires developers to define Jobs, which are comprised of
at least one Partial, which is an extended Aparapi kernel. Partials contain the data that is split
manually. After a job is constructed it can be submitted to the Job Executor that assigns and
executes the partials across the available devices of its cluster. The job partial execution model is
illustrated in Figure 4.

Data

Split 1

Split 2

Split 3

Partial Kernel

Split 1

Partial Kernel

Split 2

Partial Kernel

Split 3

Job Executor

Machine A

Machine B

CPU

GPU

Job

Figure 4: The CloudCL execution model splits kernel invocations into job partials, which are dis-
tributed across the available cluster resources.

Job Dependencies In practice, most applications are comprised of multiple jobs. Hence, it is
important to talk about concurrency and synchronization aspects of the current job design. At its
core, a CloudCL job resembles a kernel in Aparapi or OpenCL, with the main difference being that
jobs invoke the same kernel concurrently, resulting in partial kernels that operate on different splits
(i.e. subranges) each. The manual splitting approach covered previously assumes that each split
can be executed independently from other splits, prohibiting any inter-split communication and thus
sparing the necessity for synchronization mechanisms on the inter-split/intra-job level.

Regarding concurrency and synchronization on the inter-job level, CloudCL inherits the behavior
of Aparapi. Per default, Aparapi does not use multiple command queues, resulting in jobs to be
executed sequentially in the order in which their execution has been issued. While this behavior is
guaranteeing sequential execution order of jobs, it is also limiting applications that would otherwise
benefit from leveraging an increased level of concurrency for jobs that do not depend on each other
and thus could be executed concurrently. For future iterations of CloudCL, enabling concurrent
execution of jobs is a top priority, as well as providing the means necessary to express inter-job
dependencies, including inter-job synchronization mechanisms.

4.2 Resource Manager

The Resource Manager component enables CloudCL to utilize both on-premise as well as cloud-
based compute resources, as long as they provide support for OpenCL. While the amount of local
compute resources is usually quite static, the resources provided by cloud-based instances may vary
rapidly. The dynamic properties are taken into consideration by the Resource Manager interface (see
Listing 6. The interface is used by CloudCL to manage resources from various sources. Arbitrary
resources can be managed by providing corresponding implementations of the Resource Manager
interface. In our first version of CloudCL, the we provide implementations for static on-premise
resources as well as for dynamic cloud-based resources offered by Amazon EC2. However, EC2 serves
as a mere example and the ResourceManager interface has been designed with interchangeability in
mind so that it is simple to implement support for arbitrary providers as well.

290

International Journal of Networking and Computing

1 public abstract class MachineManager {

2 protected abstract List <CloudCLInstance > bookInstance(int count , String type);

3 protected abstract void terminateInstances(List <CloudCLInstance > instances);

4 ...

5

6 public List <CloudCLInstance > book(int count , String type){

7 List <CloudCLInstance > instances = bookInstance(count , type);

8 ...

9 return instances;

10 }

11

12 public void release(List <CloudCLInstance > instances){

13 terminateInstances(instances);

14 ...

15 }

16 }

Listing 6: The Machine Manager interface enables managing resources from various providers.

4.3 Job Scheduling

In order to allow the scheduler to serve specific cluster requirements, a pluggable two-tiered archi-
tecture is proposed. As such the scheduler consists of two modules, called Job Scheduler and Device
Scheduler. CloudCL allows switching the modules during runtime in order to enable clusters to
adapt to varying situations and usage scenarios. The overall scheduling architecture is depicted in
Figure 5. In the following sections, the Job Scheduler and Device Scheduler are explained in detail.

Job Executor

Device Manager

Scheduler

Job Scheduler

Device Scheduler

List of jobs with partials

Partial-to-device assignments

List of unused devices

Job-based
partial order

Figure 5: The two-tier scheduling strategy of CloudCL considers the job abstraction level on its first
tier and compute device characteristics on the second tier.

4.3.1 Job Scheduler (First Tier)

The first scheduling tier considers only the system state at the job abstraction level without having
any knowledge about the actual partial structure or available devices in the cluster. Instead, this
tier is mainly concerned about ensuring predefined fairness policies and as such controls the order in
which jobs are eligible for consideration during a scheduling round. Algorithms available in CloudCL
for this tier are First-In First-Out and Round-Robin. Still, the first tier hands over the partial order
to the second tier, which may choose to ignore the given order based on the nature of the underlying
algorithm.

291

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

4.3.2 Device Scheduler (Second Tier)

The second scheduling tier works on the output of the preceding tier and has no concerns of the high-
level job abstraction. Instead, it focuses on the actual assignment of partials to devices. Executing
OpenCL code in a heterogeneous environment can lead to drastically different performance behavior
based on the algorithm implementation and the executing device. For example, code that may
perform exceptionally well on a GPU may run poorly on a CPU because of varying computational
capabilities. Therefore, CloudCL enables developers to express preferences in terms of the device
types that their algorithm should be computed on. The mechanism is implemented through a defined
Device Preference attribute that can be attached to every partial. Valid values for the attribute
include: None, CPU only, CPU preferred, GPU only and GPU preferred.

For CloudCL, not only the performance of the execution device matters, but also the speed
of the network connection is a crucial factor. This becomes especially important when remote
resources are tied in via a wide area network, which inherently can not offer the same bandwidth
and latency as a local network. A näıve approach that combines measuring device performance and
networking capabilities is the usage of historical data. With the assumption that jobs are split into
many equally sized partials, one can identify the best-suited device for a partial given the history of
previous executions within the cluster.

In order to provide scheduling algorithms on the second tier with meaningful metrics, CloudCL
provides the following metrics per partial:

Kernel Data Approximation Kernel classes report the actual size of the overall kernel including
its data. The size is gained by employing Java reflection on an Aparapi kernel, identifying employed
data types and data structures. However, this measure should only be treated as an approximation,
as it does not consider the effects of explicit memory management.

Data Transfer History To take explicit memory management into account, a history of trans-
ferred data volumes is maintained. For this purpose, the memory management calls of Aparapi were
modified to accumulate the sizes of the corresponding data structures in a kernel attribute.

Performance History CloudCL maintains a history of execution times of partials for every device.
The observed timespan reaches from invocation to completion of a kernel from the application host,
thus including network transfers.

In the current version of CloudCL, we implemented a performance based device scheduler based
on the Performance History. It assigns a partial to the available device with the best performance
history for the given kernel class. With the available metrics, more sophisticated and fine-grained
schedulers can be implemented in the future. It should be noted that schedulers on the second tier
may ignore the order of partials suggested by the first tier. For example, the first tier might hand
over a list of partials in FIFO order. If this list is handled by a simplex-based scheduler on the
second tier, the principle of FIFO may be violated in favor of finding the optimal distribution.

4.4 Dynamic Scale-Out Capabilities

The general idea behind scaling performance within CloudCL is that regardless of whether on-premise
or cloud-based Infrastructure as a Service (IaaS) resources are employed, you can add additional
resources in times of high capacity demands. Similarly, in times of low demand, resources can be
released again in order to reduce costs or yield resources to other workloads. Widely employed
cluster resource management solutions include functionalities to add or remove nodes dynamically.
Offering a similar functionality in a dOpenCL based solution differs substantially.

292

International Journal of Networking and Computing

Table 1: Specifications of on-premise nodes.

HPE ProLiant m710p Server Cartridge

CPU 1 × Intel Xeon E3-1284L v4 (8 logical cores)
Memory 4 × 8GB PC3L-12800
NIC Mellanox Connect-X3 Pro (10 GBit/s)
OS Ubuntu 16.04.1 64 Bit
OpenCL 1.2.0.25

Table 2: Network performance of on-premise deployment.

HPE ProLiant m710p Server Cartridge

iperf3 9.409 Gbit/s (σ = 0.051)
ping 0.14 ms (σ = 0.012)

OpenCL and Aparapi are built to run on a single machine and as such include assumptions of
limited capabilities concerning changing hardware during operation. For example, Aparapi caches
device queries to OpenCL as devices are usually added or removed during maintenance procedures
when a machine is powered down. dOpenCL overcomes such limitations and enables the host node
to have devices virtually installed by adding nodes to the dOpenCL cluster at runtime. dOpenCL
therefore extends the OpenCL standard by adding the custom methods clCreateComputeNodeWWU

and clReleaseComputeNodeWWU.

As OpenCL itself has no multi-machine capabilities, it offers information only for the respective
built-in devices through the standard API. Therefore all devices appear as if they were installed
in the host node that runs the dOpenCL library. This makes identifying the owning machine per
device impossible. Knowing the relation between devices and machines is crucial for providing basic
functionality, such as releasing superfluous machines, where it has to be ensured that no partials
are running anymore on its respective devices. In order to provide the machine-device relation,
dOpenCL introduces another method called clGetDeviceIDsFromComputeNodeWWU.

The mentioned dOpenCL methods are available to C++ programmers when including the respec-
tive header files that contain the extensions. Thus, host code that wants to benefit from dynamic
device management has to be modified appropriately. In its standard version, Aparapi is bound to
the standard OpenCL specification and has no understanding of the offered dOpenCL extensions.
Therefore it was necessary to modify the Aparapi JNI to enable dynamic resource scaling. In or-
der to do so, two new JNI methods were implemented, addNode and removeNode. Both call the
respective dOpenCL functions, with addNode also reporting back the available devices of the added
node.

5 Evaluation

To evaluate the scale-out capabilities of CloudCL, this section starts with providing a detailed
description of the test environment. This description includes the employed hardware as well as the
general method of measurement. Afterwards, the results of our scale-out benchmarks are presented
and discussed.

5.1 Test Environment & Method of Measurement

With CloudCL targeting dynamic deployment strategies on cloud infrastructure, the evaluation
distinguishes between three scenarios: an on-premise private cloud deployment scenario, an Amazon
EC2 based public cloud deployment scenario and a hybrid cloud deployment scenario. For each
environment, we are utilizing well-defined hardware configurations and provide detailed hardware

293

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

Table 3: Specifications of public cloud nodes.

c4.8xlarge g2.2xlarge

CPU Intel Xeon E5-2666 v3, 36 cores Intel Xeon E5-2670, 8 cores
GPU - NVIDIA GRID K520
Memory 60GB 15GB
NIC 10 GBit/s 1 GBit/s
OS Ubuntu 14.04.4 64 Bit Ubuntu 14.04.4 64 Bit
OpenCL 1.2.0.25 1.2 CUDA 367.57

Table 4: Network performance of public cloud deployment.

c4.8xlarge g2.2xlarge

iperf3 9.44 Gbit/s (σ = 0.068) 992.6 MBit/s (σ = 4.8)
ping 0.158 ms (σ = 0.021) 1.29 ms (σ = 0.047)

specifications. Since CloudCL heavily depends on network performance, we further provide network
performance measurements based on iperf3 and the ping utilities, conducted between the application
host and a compute node. For the on-premise private cloud deployment scenario, we utilize HPE
ProLiant m710p server cartridges [6] for both compute nodes and the application host, with the
detailed specifications denoted in Table 1. The practical network performance is documented Table 2.
For the public cloud deployment scenario, g2.2xlarge instances are used to asses the performance of
GPU-equipped compute nodes, whereas c4.8xlarge instances are employed to asses the performance
of CPU-equipped compute nodes. In both cases, a c4.8xlarge instance is used for the application host.
The detailed specifications and the network performance are reported in Table 3 and 4, respectively.
The hybrid cloud deployment scenario uses one m710p on-premise compute node and up to three
c4.8xlarge public cloud compute nodes. The network performance is documented in Table 5.

Regarding the method of measurement, the application host and the compute nodes are always
hosted on separate machines, hence kernel partials and the corresponding data always have to
pass the network interface regardless of the number of compute nodes. This decision relies on the
observation of Tausche et al. [16], who have demonstrated that using a fast network interconnect, the
forwarding technique implemented by the dOpenCL framework incurs very little overhead compared
to native execution. For the job scheduling tier, the round-robin approach has been used. On
the device scheduling level, the history-based performance based device scheduler has been utilized,
which assigns partials to the best suitable device in case multiple devices are available.

To demonstrate the scaling capabilities of CloudCL, we evaluate the performance of the frame-
work for two different workloads: a single-job workload where all resources are utilized to complete
a single job, and a mixed-jobs workload, where a suite of jobs with varying characteristics (e.g.
compute intensive, memory intensive) is executed on the CloudCL cluster.

Single-Job Workload For the single-job case, we use näıve matrix multiplication as a very data-
intensive benchmark workload in order to test the scaling capabilities of CloudCL under the most
challenging conditions. It should be noted that a näıve matrix multiplication can not be perfectly
divided into partials. Instead, one of the matrices has to be a part in its entirety in each partial,

Table 5: Network performance of hybrid deployment.

HPE ProLiant m710p & c4.8xlarge

iperf3 169.26 Mbit/s (σ = 11.93)
ping 18.9 ms (σ = 0.17)

294

International Journal of Networking and Computing

while the second matrix can be split. This means that there is a growing overhead correlating to
the number of splits. With every additional split, the input overhead is increased by the data size
of the indivisible matrix, which is 50% of the overall input. Therefore while a higher parallelization
may grant faster computational capabilities of a cluster, it also requires more data transfers.

Mixed-Jobs Workload The mixed-jobs case aims at evaluating the performance of CloudCL in
shared cluster environments. For this purpose, we compiled job suite comprised of six workloads of
various complexity and type. Not only should the runtime per partial differ between jobs but also
the amount of data that needs to be transferred. The employed workloads as well as the respective
problem sizes are documented in Table 6.

Table 6: The mixed-jobs workloads comprises multiple workloads and problem sizes.

Workload Problem Size Iterations Partials

GEMM 8000x8000 1 5
GEMM 6000x6000 1 5
Mandelbrot 1000x1000 (1000000 iterations) 1 5
Mandelbrot 2000x2000 (600000 iterations) 1 5
K-means 6000000 objects, 200 clusters 10 1
N-body 64000 object 1 1

5.2 Single-Job Performance

5.2.1 On-Premise Private Cloud Deployment Scenario

The performance for the on-premise deployment scenario is presented in Figure 6. Adding a second
m710p compute node yields substantial performance improvements ranging from at least 1.65x
speedup for small matrices up to 1.95x speedup for larger problem sizes. Adding a third m710p
compute node pays off for larger problem sizes, where a speedup of 2.8x is achieved. Overall,
CloudCL scales well for larger problem sizes in the on-premise deployment scenario, most likely due
to the high-bandwidth and low-latency network connection between nodes.

3000 4200 5400 6600 7800 9000 10200
0

1

2

3

Matrix Dimension [N x N]

Sp
ee

du
p

1x m710p 2x m710p 3x m710p

Figure 6: CloudCL achieves close-to-linear speedup in the on-premise deployment scenario.

5.2.2 Public Cloud Deployment Scenario

The performance results for the public cloud deployment scenario are illustrated in Figure 8. Using
GPU-based instances, CloudCL manages to achieve close to ideal scale-out performance with an
average 1.96x speedup for using two g2.2xlarge compute nodes and an average 2.94x speedup when
a third node is added. On the side of CPU-based instances, using a second c4.8xlarge compute node
yields 1.94x speedup for large matrices. With up to 2.77x speedup for large matrices, adding a third
node only exudes good scaling behavior for large matrices.

295

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

3000 4200 5400 6600 7800 9000 10200
0

1

2

3

Matrix Dimension [N x N]

Sp
ee

du
p

1x g2.2xlarge 2x g2.2xlarge 3x g2.2xlarge

(a) GPU-based compute nodes

3000 4200 5400 6600 7800 9000 10200
0

1

2

3

Matrix Dimension [N x N]

Sp
ee

du
p

1x c4.8xlarge 2x c4.8xlarge 3x c4.8xlarge

(b) CPU-based compute nodes

Figure 7: Using public cloud resources, GPU-based nodes achieve linear speedup (a), whereas CPU-
based nodes offer close-to-linear speedup for larger problem sizes (b).

The discrepancy between the scaling behavior on GPU-based versus CPU-based compute nodes
is likely to be caused by the differing network performance of employed instance types (see Table 4).
In the case of the GPU-based setup, the application host node is equipped with a 10 Gbit/s Ethernet
link which can easily saturate the 1 Gbit/s Ethernet links of the compute nodes. For the CPU-based
setup, all nodes are equipped with a 10 Gbit/s Ethernet link, which no longer allows the application
host node to fully saturate the network links of the compute nodes. To validate this hypothesis,
additional experiments have to be conducted where the application host node is equipped with a
faster network link.

5.2.3 Hybrid Cloud Deployment Scenario

Even though network connectivity is a massively limiting factor, we also conducted a benchmark
using a hybrid cloud deployment scenario for the sake of completeness, where some compute nodes
are hosted in the on-premise private cloud and other compute nodes are tied in from public cloud
resources. Figure 8a presents the results of this experiment. As expected, using a data-intensive
workload such as matrix multiplication, incorporating resources from the public cloud is not feasible
at all. However, we conducted a second benchmark using Mandelbrot sets as a compute-intense but
data-insensitive workload in order to evaluate whether hybrid cloud deployment scenarios might be
feasible for less data-dependent workloads. The results of the Mandelbrot set benchmark depicted
in Figure 8b indicate much better scaling behavior for such workloads.

3000 4200 5400 6600 7800 9000 10200
0

1

2

3

Matrix Dimension [N x N]

Sp
ee

du
p

1x m710p +
1x c4.8xlarge

1x m710p +
2x c4.8xlarge

1x m710p +
3x c4.8xlarge

(a) Matrix Multiplication

3000 4200 5400 6600 7800 9000 10200
0

2

4

6

Picture Width/Height

Sp
ee

du
p

1x m710p +
1x c4.8xlarge

1x m710p +
2x c4.8xlarge

1x m710p +
3x c4.8xlarge

(b) Mandelbrot Set

Figure 8: Hybrid clouds are not feasible for data-intensive workloads (a), but perform well for
compute-intensive workloads (b).

296

International Journal of Networking and Computing

5.3 Mixed-Jobs Performance

5.3.1 On-Premise Private Cloud Deployment Scenario

The performance measurements for the mixed workloads case reported in Figure 9 indicate that
employing additional remote machines for mixed workloads can produce significant performance
benefits. Adding a second and third machine yields a 1.8x and 2.4x speedup respectively. Hypo-
thetically, the additional workloads are less data-intensive and thus should be less sensitive to an
increased number of compute nodes. Since the data-intensive single-job workload yielded better
performance, it might be possible that the job splitting strategies implemented in the additional
workloads deliver sub-par performance. This hypothesis needs to be investigated in additional ex-
periments.

0

1

2

3

Sp
ee
du
p

1x m710p 2x m710p 3x m710p

Figure 9: The mixed workload does not scale optimally in the private cloud environment.

5.3.2 Public Cloud Deployment Scenario

The evaluation results illustrated in Figure 11 draw a similar picture like the on-premise private cloud
deployment scenario for mixed workloads: adding a second and third instance provides 1.8x and
2.3x speedup respectively when using CPU resources, and 1.8x and 2.5x speedup respectively when
GPU instances are employed. In both cases, the performance gains of adding a third instance did
not match those of the second instance, which contradicts the results retrieved for the data-intensive
single-job workload. Even more so, the single-job workload yielded distinct differences between
CPU- and GPU instances, as well as between private and public cloud deployment. Having yielded
homogeneous results on very different hardware might indicate deficiencies in the implementation of
the additional jobs.

0

1

2

3

Sp
ee
du
p

1x g2.2xlarge 2x g2.2xlarge 3x g2.2xlarge

(a) GPU-based compute nodes

0

1

2

3

Sp
ee
du
p

1x c4.8xlarge 2x c4.8xlarge 3x c4.8xlarge

(b) CPU-based compute nodes

Figure 10: Regardless of the employed instance types, the public cloud environment yields perfor-
mance levels for the mixed workload similar to the private cloud environment.

297

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

5.3.3 Hybrid Cloud Deployment Scenario

As reported in Figure 11a, the meagre performance retrieved for the hybrid cloud deployment scenario
suffers from the relatively limited capacities of our wide area network link. Adding one and two
remote c4.8xlarge instances in addition to the m710p cartridge resulted in a mere 1.28x and 1.55x
speedup respectively. Considering the computational capabilities of the c4.8xlarge instance types,
running mixed workloads in the hybrid cloud deployment scenariois not feasible, yet.

In an attempt to mitigate the impact of the slow network connectivity, we implemented an
additional network aware device scheduler, which incorporates knowledge about the current cluster
topology. More specifically, the network aware device scheduler distinguishes between local and
remote resources. Based on this information, the scheduler classifies partials based on the amount
of data they comprise and assigns them correspondingly: remote devices receive partials with small
data volumes, whereas local devices are assigned with partials requiring large data volumes.

0

1

2

3

Sp
ee
du
p

1x m710p +
1x c4.8xlarge

1x m710p +
2x c4.8xlarge

1x m710p +
3x c4.8xlarge

(a) Default Performance Based Device Scheduler

0

1

2

3

Sp
ee
du
p

1x m710p +
1x c4.8xlarge

1x m710p +
2x c4.8xlarge

1x m710p +
3x c4.8xlarge

(b) Network Aware Device Scheduler

Figure 11: Hybrid clouds are not feasible for mixed workloads as well (a), however improved schedul-
ing mechanisms can mitigate the impact of the network bottleneck (b).

With the new scheduler in place, a repeated benchmark run yielded the performance results
reported in Figure 11b. The new scheduler introduces noticeable benefits compared to the approach
based on performance history. Adding one c4.8xlarge instance results in 1.42x speedup, compared
to 1.28x for the vanilla scheduler. Similarly, a second remote c4.8xlarge instance results in 1.83x
speedup, compared to 1.55x for the vanilla scheduler. Whereas the measured performance gains are
still far from linear speedup, the performance gains yielded by the network aware device scheduler
support the hypothesis, that there is still a lot of potential for further optimizations, especially for
mixed workloads.

5.4 Overarching Evaluation

Our performance evaluation has demonstrated that CloudCL scales well for single-job workloads,
both in on-premise and public cloud deployments, using matrix multiplication as a data-intensive
worst case workload. For hybrid cloud deployments, network connectivity remains as the predom-
inating bottleneck. Additional benchmarks using mixed workloads demonstrated that CloudCL is
capable of handling a variety of different job types. However, the overall scaling capabilities for mixed
workloads remain on subpar levels, however the results also revealed several opportunities for action
in order to improve the performance of CloudCL for such workloads. Regardless of the workload
types, network connectivity is a common limitation. Hence, to mitigate the impact of the network
capacity both for single-job as well as for mixed workloads, we are currently investigating potential
implementation strategies for transparent light-weight compression in the underlying dOpenCL API
forwarding mechanism. Furthermore, additional performance gains can be expected from improved
job partitioning strategies as well as for improvements in the job scheduling mechanisms.

298

International Journal of Networking and Computing

6 Conclusion

In this paper, we introduced the CloudCL framework, which empowers a wider audience of users
to run compute-intensive tasks without having to face the total cost of ownership of operating
an extensive high-performance compute infrastructure. To achieve this goal, CloudCL offers two
major contributions: The presented framework hides the complexity of distributed programming for
dynamic cluster configurations, enabling developers to tap the ubiquitous availability of cloud-based
heterogeneous resources on demand using a single-paradigm compute framework. Furthermore,
the single paradigm approach helps in improving productivity, as developers and domain experts
may focus their implementation efforts on application logic without having to consider inter-node
communication and dynamic resource management.

In an extensive performance evaluation, we demonstrated that the framework provides close-to-
linear scale-out performance for optimized single-job workloads in on-premise private cloud deploy-
ment scenarios and in public cloud deployment scenarios, using matrix multiplication as a data-
intensive worst case workload. For data-intensive workloads, hybrid cloud deployment scenarios
suffer from insufficient wide area network connectivity. However, for compute-intense but less data-
sensitive workloads such as the computation of the Mandelbrot set, the hybrid cloud deployment
scenario also revealed good performance. Additional tests using a bouquet of different job types
in a mixed workload scenario did not match the scaling capabilities of the single-job workload sce-
nario, however the benchmarks also revealed several opportunities for action in order to improve the
performance for mixed workloads in future versions of CloudCL.

References

[1] Ashwin Mandayam Aji, Antonio J. Peña, Pavan Balaji, and Wu-chun Feng. Automatic Com-
mand Queue Scheduling for Task-Parallel Workloads in OpenCL. In Proceedings of the 2015
IEEE International Conference on Cluster Computing, CLUSTER ’15, pages 42–51, Washing-
ton, DC, USA, 2015. IEEE Computer Society.

[2] A. Barak and A. Shiloh. The VirtualCL (VCL) Cluster Platform. White paper, Rachel and
Selim Benin School of Computer Science, 2014.

[3] Carlos S. de la Lama, Pablo Toharia, Jose Luis Bosque, and Oscar D. Robles. Static Multi-device
Load Balancing for OpenCL. In Proceedings of the 2012 IEEE 10th International Symposium
on Parallel and Distributed Processing with Applications, ISPA ’12, pages 675–682, Washington,
DC, USA, 2012. IEEE Computer Society.

[4] Tahir Diop, Steven Gurfinkel, Jason Anderson, and Natalie Enright Jerger. DistCL: A Frame-
work for the Distributed Execution of OpenCL Kernels. In Proceedings of the 2013 IEEE 21st
International Symposium on Modelling, Analysis & Simulation of Computer and Telecommuni-
cation Systems, MASCOTS ’13, pages 556–566, Washington, DC, USA, 2013. IEEE Computer
Society.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 3.1,
June 2015.

[6] Hewlett Packard Enterprise. HPE ProLiant m710p Server Cartridge QuickSpecs. https://

goo.gl/0dV579, 2015.

[7] Philipp Kegel, Michel Steuwer, and Sergei Gorlatch. dOpenCL: Towards a Uniform Program-
ming Approach for Distributed Heterogeneous Multi-/Many-Core Systems. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops
& PhD Forum, IPDPSW ’12, pages 174–186, Washington, DC, USA, 2012. IEEE Computer
Society.

[8] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a Single Compute
Device Image in OpenCL for Multiple GPUs. SIGPLAN Not., 46(8):277–288, February 2011.

299

CloudCL: Single-Paradigm Distributed Heterogeneous Computing for Cloud Infrastructures

[9] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. SnuCL: An
OpenCL Framework for Heterogeneous CPU/GPU Clusters. In Proceedings of the 26th ACM
International Conference on Supercomputing, ICS ’12, pages 341–352, New York, NY, USA,
2012. ACM.

[10] Ryan LaMothe and Gary Frost. Official AMD Aparapi Repository. https://github.com/

aparapi/aparapi.

[11] Pei Li, Elisabeth Brunet, Francois Trahay, Christian Parrot, Gael Thomas, and Raymond
Namyst. Automatic OpenCL Code Generation for Multi-device Heterogeneous Architectures.
In Proceedings of the 2015 44th International Conference on Parallel Processing (ICPP), ICPP
’15, pages 959–968, Washington, DC, USA, 2015. IEEE Computer Society.

[12] M Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-
Shot Translation. CoRR, abs/1611.04558, 2016.

[13] Sebastian Nanz, Scott West, and Kaue Soares da Silveira. Examining the Expert Gap in Par-
allelProgramming, pages 434–445. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[14] Ladislav Rampasek and Anna Goldenberg. TensorFlow: Biologys Gateway to Deep Learning?
Cell Systems, 2(1):12–14, 2016.

[15] Federico Silla, Sergio Iserte, Carlos Reaño, and Javier Prades. On the benefits of the remote
GPU virtualization mechanism: The rCUDA case. Concurrency and Computation: Practice
and Experience, 29(13), 2017.

[16] Karsten Tausche, Max Plauth, and Andreas Polze. dOpenCL – Evaluation of an API-
Forwarding Implementation. In Proceedings of the Fourth HPI Cloud Symposium “Operating
the Cloud” 2016, Potsdam, Germany, 2017.

[17] The Khronos Group. List of OpenCL Conformant Companies. https://www.khronos.org/

conformance/adopters/conformant-companies, 2018.

300

