
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 8, Number 2, pages 341–350, July 2018

An Implementation of ECC with Twisted Montgomery Curve
over 32nd Degree Tower Field on Arduino Uno

Yuta Hashimoto, Md. Al-Amin Khandaker, Yuta Kodera, Takuya Kusaka and Yasuyuki Nogami
Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku Okayama-city, Okayama, 700-8530, Japan

Taehwan Park and Howon Kim
School of Computer Science and Engineering, Pusan National University,

San-30, JangJeon-Dong, Geumjeong-Gu, Busan, 609-735, Repubilc of Korea

Received: February 1, 2018
Revised: May 17, 2018
Accepted: June 2, 2018

Communicated by Toru Nakanishi

Abstract

The security of Internet of Things (IoT) devices is one of the most important problems to be addressed
by the cryptographers and security engineers. The processing ability of IoT devices is limited, therefore
light-weight and secure cryptographic tools are necessary for security of them. This paper shows the im-
plementation of 256-bit Elliptic Curve Cryptography (ECC) on an 8-bit microcontroller. The proposed
implementation applies towering technique for extension field of degree 32 with a certain 8-bit prime char-
acteristic instead of the 256-bit prime characteristic. It enables to execute 256-bit ECC operations without
complicated multiple-precision arithmetic on small computers like 8-bit microcontrollers. This approach
efficiently realizes the scalability of the ECC encryption strength. In addition, the authors use a twisted
Montgomery curve with a Montgomery ladder technique which enables fast calculations without inver-
sions referring to Curve25519. It is considered resistant to the Side Channel Attack (SCA) since it applies
the Montgomery ladder technique for scalar multiplication (SCM). This ECC implementation on Arduino
UNO, an 8-bit microcontroller board, can be utilized for a key agreement protocol among IoT devices.

Keywords: ECC, Twisted Montgomery Curve, Montgomery ladder, Tower of fields, IoT security, Microcon-
troller

1 Introduction
In the IoT era, many devices are connected to the Internet. But, every device does not have enough process-
ing ability to use powerful encryption methods which are used on high-performance devices such as PCs.
Therefore, an encryption method which enables enough security with fewer computations is necessary.

RSA is the most popular public-key cryptography which is based on the difficulty of the factoring prob-
lem, though the key size needs not less than 2048-bit to ensure the security. On the other hand, Elliptic Curve
Cryptography (ECC) is an another choice for public-key cryptography. ECC is based on the intractability
of Elliptic Curve Discrete Logarithm Problem (ECDLP). It is attracting the attention as a next-generation
public-key cryptography because of the efficiency at the security level per bit of the key size. For example, a
256-bit ECC public-key should provide comparable security to a 3072-bit RSA public-key.
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Among the elliptic curves, Curve25519 [1] which is proposed for Elliptic Curve Diffie Hellman (ECDH)
in TLS 1.3 [2], is one of the fastest curves. However, computing encryption on Curve25519 which handles
256-bit integers is computationally expensive for smaller devices such as an 8-bit microcontroller in IoT
devices.

Then, two approaches are available for the implementation of 256-bit ECC on 8-bit microcontrollers.
1. Using the multiple-precision arithmetic over a 256-bit prime field.
2. Using the arithmetic over an m-th degree extension field of an n-bit characteristic such that m ∗ n = 256.

Approach 1 may be general for implementations of the large bit ECC regardless of its computational
resources. If the device is small such as IoT devices, it is usually implemented with the hard optimization
for the fixed parameters of cryptography in order to enable the encryption/decryption to work enough fast.
However, the security parameters for cryptography have been rapidly changing with the growth of processing
ability of computers. In the case of implementation with the multiple-precision arithmetic for fixed parame-
ters of the curve, it becomes too hard to change the parameters by redesigning most arithmetic codes due to
the hard optimization. Therefore, the authors consider that this approach is not the best at the scalability of
the security strength of the implementation.

This paper introduces an ECC implementation on Arduino Uno [3], an 8-bit microcontroller board, by
Approach 2 with m = 32, n = 8. The proposed implementation is suitable for 8-bit microcontrollers because
of the same security level with the scaled-down integers and the towering technique of extension fields. It
enables to execute 256-bit ECC encryption just by handling 8-bit integers over Fq32 tower field where q is an
8-bit prime number. Then, the complicated multiple-precision arithmetic is not required for it. It has also the
scalability of the ECC encryption strength, because the degree of the tower field can be treated as a variable
parameter. The parameter can be increased simply and easily to strengthen the encryption. Furthermore,
it applies the combination of a twisted Montgomery curve [4] and a Montgomery ladder [5] referring to
Curve25519. It provides an efficient SCM algorithm and high resistance to SCA [6].

2 Fundamentals

This section briefly introduces finite field, elliptic curve, Montgomery ladder, Montgomery curve, tower field
and Weil’s theorem.

2.1 Finite Field

2.1.1 Group

Group is an algebraic system defined as follows.

Definition 2.1 (Group). A group 〈G, ◦〉 is a nonempty set with a binary operation ◦ that satisfies the following
group axioms:

G1 : (Closure) For ∀a,∀ b ∈ G, the result of a ◦ b is also in G.

G2 : (Associativity) (a ◦ b) ◦ c = a ◦ (b ◦ c), a, b, c ∈ G.

G3 : (Unity) For ∀a ∈ G, there exists an element e ∈ G such that a ◦ e = e ◦ a = a, where e is
called unity (unit element).

G4 : (Inverse Element) For ∀a ∈ G, there exists an element x ∈ G such that a ◦ x = x ◦ a = e,
where x is called inverse element of a.

Definition 2.2 (Commutative Group).

AG5 : (Commutativity) A group G is said to be commutative (or abelian), if a ◦ b = b ◦ a for
∀a, b ∈ G.
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2.1.2 Field

Field is an algebraic system defined as follows.

Definition 2.3 (Field). A field 〈F,+, ·〉 has two binary operations denoted by + and ·, such that:

F1 : (Additive Group) F is a commutative group with respect to +.

F2 : (Multiplicative Group) F ∗is a group with respect to ·, where F ∗is the set that consists of
every element distinct from the unity (zero element) with respect to +.

F3 : (Distributive law) For all a, b, c ∈ F, a · (b + c) = a · b + a · c and
(b + c) · a = b · a + c · a are satisfied.

Definition 2.4 (Order of Field). The order is the number of elements in F is called the order of field F. If the
order of F is finite, F is called finite field.

Definition 2.5 (Characteristic of Field). The least positive number n such that n · a = 0 for every a ∈ F is
called characteristic.

2.1.3 Prime Field

A prime field Fq is defined as a finite field with the prime characteristic q. The elements in Fq is represented
by integers between 0 and q − 1. For two elements a, b ∈ Fq, their addition and multiplication are defined as
follows.

a + b B a + b (mod q) (1a)
a · b B a · b (mod q) (1b)

Then, a division can be considered as a multiplication by the inverse element of the divisor. The calcula-
tion of the multiplicative inverse is called inversion.

2.1.4 Extension Field

An extension field Fqm produces a vector space over the prime field Fq where q is the characteristic of Fq

and m is the extension degree. The extension degree m means the dimension of the vector space. In order to
represent an arbitrary vector, a certain basis such as {α0, α1, · · · , αm−1} is necessary. Then, an arbitrary vector
A ∈ Fqm is represented as follows.

A =

m−1∑
i=0

aiαi, ai ∈ Fq (2)

2.2 Elliptic Curve
An elliptic curve E over the prime field Fq for Elliptic Curve Cryptography (ECC) is defined as follows.

E : y2 = x3 + ax + b, a, b ∈ Fq, x, y ∈ Fqm . (3)

For Fq-rational points P(x1, y1),Q(x2, y2) which satisfy this equation, the addition P + Q = (x3, y3) is
defined as follows.

λ =



y1 − y2

x1 − x2
when x1 , x2,

3x2
1 + a
2y1

when P = Q and y1 , 0,

φ otherwise.

(4a)

(x3, y3) =

 (λ2 − (x1 + x2), λ(x3 − x1) + y1) when λ , φ,

O when λ = φ.
(4b)
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When P(x1, y1) = Q(x2, y2), it becomes the doubling of Fq-rational point P(x1, y1).
In the case of λ = φ, the result of this addition becomes the point at infinity O which is the unity as

P + O = O + P = P.

The Scalar Multiplication (SCM) for a rational point P and a scalar s is denoted by [s]P =

s−1∑
i=0

P.

2.3 Montgomery Ladder

Binary method is well known as an efficient SCM technique though it has a risk of side channel attack.
Then, the Montgomery ladder is an another efficient SCM technique that stands up to side channel attacks.

SCM with Montgomery ladder is calculated as following Alg.1.

Algorithm 1: SCM with Montgomery ladder

Input: P, s = {sn−1, sn−2, ..., s1, s0}

Output: T1(= [s]P)
1: T1 ← O

2: T2 ← P
3: for i = n − 1 to 0 do
4: if si = 1 then
5: T1 ← T1 + T2
6: T2 ← 2T2
7: else
8: T2 ← T1 + T2
9: T1 ← 2T1

10: end if
11: end for
12: return T1

2.4 Montgomery Curve

The Montgomery curve is defined as follows.

EAB : By2 = x3 + Ax2 + x, A, B ∈ Fq, x, y ∈ Fqm (5)

where B(A2 − 4) , 0 (mod q).
A rational point P = (x, y) on the Montgomery curve is represented in Montgomery coordinates P =

(X : Z) where P = (X : Z) are projective coordinates and x = X/Z for Z , 0.
For the rational points Pi(Xi : Zi) = [i]P(X : Z), P j(X j : Z j) = [ j]P(X : Z), the addition Pi + P j =

Pi+ j(Xi+ j : Zi+ j) is calculated as follows.

Xi+ j = Zi− j((Xi − Zi)(X j + Z j) + (Xi + Zi)(X j − Z j))2, (6a)

Zi+ j = Xi− j((Xi − Zi)(X j + Z j) − (Xi + Zi)(X j − Z j))2. (6b)

When i = j, the doubling 2P j = P2 j(X2 j : Z2 j) is calculated as follows.

X2 j = (X j + Z j)2(X j − Z j)2, (7a)

Z2 j = T ((X j − Z j)2 +
A + 2

4
· T ), (7b)

T = (X j + Z j)2 − (X j − Z j)2. (7c)

It is calculated with the Montgomery ladder efficiently.
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2.4.1 Curve25519

Curve25519 is known as one of the most efficient elliptic curves. It is designed for ECDH and offers 128-bit
security. It is defined by

E25519 : y2 = x3 + 486662x2 + x, (8)

which is a Montgomery curve with the fixed prime number q = 2255 − 19.
An SCM of the rational points on this curve does not need any inversion in Fq without a final division

because of using a Montgomery curve, Montgomery ladder, and projective (X : Z) coordinates [1].
This curve is equivalent to a certain twisted Edwards curve [1].

2.5 Weil’s Theorem
Let E(Fq ) be the set of all rational points on E over Fq, then it forms an additive group on the elliptic curve
addition Eq.(4). #E(Fq ) denotes the order of E(Fq ).

Let t1 = q + 1 − #E(Fq ) be the Frobenius trace of E(Fq ). When E is defined over the extension field Fqm ,
the order is given by

#E(Fqm ) = qm + 1 − tm,

tm = αm + βm,
(9)

where α, β are complex numbers which satisfy αβ = q and α+ β = t1, and tm is the Frobenius trace of E(Fqm ).
It is well known as Weil’s theorem [7].

2.6 Twists of Curves
A twist of elliptic curve E is given by

E′ : y = x3 + aA2x + bA3, (10)

where A is a non-zero element in the definition field Fqm .
Corresponding to whether A is a quadratic residue (QR) or a quadratic non-residue (QNR) in Fqm , the

order #E′(Fqm ) of the twisted elliptic curve E′ is given as follows.

#E′(Fqm ) =

 qm + 1 − tm when A is a QR,

qm + 1 + tm when A is a QNR.
(11)

2.7 Tower Field
Let q be a prime which satisfies 4 | (q − 1) and αn−1 be a QNR element in Fq2n−1 . Then, the basis {1, αn} of
Fq2n where αn is a square root of αn−1 over Fq2n−1 is given as a chain.

Fq2 = Fq[α1]/(α2
1 − α0),

Fq4 = Fq2 [α2]/(α2
2 − α1),

...

Fq2n = Fq2n−1 [αn]/(α2
n − αn−1).

(12)

This technique realizes efficient arithmetic operations in the tower field Fq2n .

3 Twisted Montgomery Curve over Tower Fields
This section describes elliptic curve over tower fields and the definition of a twisted Montgomery curve over
tower field.
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3.1 Elliptic Curves over Tower Fields
E(Fqm ) denotes the set of rational points on the elliptic curve E over the m-th degree extension field Fqm . The
sub-fields of E(Fq32 ) satisfy the following inclusion relation.

E(Fq ) ⊆ E(Fq2 ) ⊆ E(Fq4 ) ⊆ E(Fq8 ) ⊆ E(Fq16 ) ⊆ E(Fq32 ) (13)

It has a negative point from security viewpoints such that the order #E(Fq32 ) has many factors. The order of
curves used for ECC must be a large prime or divisible by a large prime in order to ensure its security. At this
point, the twisted curve E′ solves the security problem since the order of a twisted curve #E′(Fq2n ) can have
a lager factor as described by the paper [8].

3.2 Definition of a Twisted Montgomery Curve over a Tower Field
When let B be 1, the Montgomery curve over Fq32 becomes as follows.

EA : y2 = x3 + Ax2 + x, A ∈ Fq, x, y ∈ Fq32 . (14)

The order of EA is given by the Weil’s theorem as follows.

#EA(Fq32 ) = q32 + 1 − t32. (15)

Then, the twisted Montgomery curve of EA is defined by

E′A : y2 = x3 + Aθx2 + θ2x, A ∈ Fq, x, y, θ ∈ Fq32 , (16)

where θ is a QNR in Fq32 and the order of E′A is also given by the Weil’s theorem as follows.

#E′A(Fq32 ) = q32 + 1 + t32. (17)

This order #E′A(Fq32 ) can be a large prime number or a composite number with a large prime factor. In
addition, the twisted Montgomery curve E′A has the following efficiency.

For Fq32 -rational points R(X1 : Z1), S (X2 : Z2), P(XP : ZP) ∈ E′A(Fq32 ) which are represented in projective
coordinates on this curve and satisfy S − R = P, addition R + S = (X3 : Z3) is calculated as follows.

X3 = θ2ZP((X1 − θZ1)(X2 + θZ2) + (X1 + θZ1)(X2 − θZ2))2, (18a)

Z3 = XP((X1 − θZ1)(X2 + θZ2) − (X1 + θZ1)(X2 − θZ2))2. (18b)

Let P(XP : ZP) = (δ : 1) be the base point, they become more simple formulas as follows.

X3 = ((X1 − θZ1)(X2 + θZ2) + (X1 + θZ1)(X2 − θZ2))2, (19a)

Z3 = ((X1 − θZ1)(X2 + θZ2) − (X1 + θZ1)(X2 − θZ2))2. (19b)

In addition, for Fq-rational points R(X1 : Z1), doubling 2R = (X2 : Z2) is calculated as follows.

X2 = θ(X1 + θZ1)2(X1 − θZ1)2, (20a)

Z2 = T ((X1 + θZ1)2 +
A − 2

4
· T ), (20b)

T = (X1 + θZ1)2 − (X1 − θZ1)2. (20c)

Then, SCM is calculated with the Montgomery ladder as following Alg.2 where A24 is (A − 2)/4.
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Algorithm 2: SCM with the Montgomery ladder

Input: s = {sn−1, sn−2, ..., s1, s0}

Output: Q(= [s]P) = (X1 : Z1)
1: Q← O
2: X2 ← θ
3: Z2 ← 1
4: for i← n − 1 to 0 do
5: t0 ← Z1 × θ
6: t1 ← X1 + t0
7: t2 ← X1 − t0
8: t0 ← Z2 × θ
9: t3 ← X2 + t0

10: t4 ← X2 − t0
11: if si = 1 then
12: t5 ← t1 × t4
13: t6 ← t2 × t3
14: t0 ← t5 + t6
15: X1 ← t0 × t0
16: t0 ← t5 − t6
17: Z1 ← t0 × t0
18: t1 ← t3 × t3
19: t2 ← t4 × t4
20: t0 ← t1 × t2
21: X2 ← t0 × θ
22: t0 ← t1 − t2
23: t3 ← t0 × A24
24: t4 ← t1 + t3
25: Z2 ← t0 × t4
26: else
27: t5 ← t1 × t4
28: t6 ← t2 × t3
29: t0 ← t5 + t6
30: X2 ← t0 × t0
31: t0 ← t5 − t6
32: Z2 ← t0 × t0
33: t3 ← t1 × t1
34: t4 ← t2 × t2
35: t0 ← t3 × t4
36: X1 ← t0 × θ
37: t0 ← t3 − t4
38: t1 ← t0 × A24
39: t2 ← t1 + t3
40: Z1 ← t0 × t2
41: end if
42: end for
43: return Q
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4 Implementation on Arduino
This section describes the detail of the proposed implementation on Arduino.

4.1 Arduino Uno
Arduino is an open-source electronics platform and it is commonly used in IoT products. SCM for ECC is
executed on Arduino Uno, a microcontroller board based on the ATmega328P which is an Atmel 8-bit AVR
microcontroller. Program codes for Arduino are written in Arduino language based on C/C++ with Arduino
IDE or AVR-C language with AVR toolchains.

Figure 1: Arduino Uno

The specification for Arduino Uno is shown in Table 1.

Table 1: Specification
Device Arduino Uno
Microcontroller ATmega328P
Clock Speed 16 MHz
Flash memory (Program space) 32 KB
SRAM (Variables space) 2 KB

The program code of the proposed implementation is written in AVR-C language because it can be com-
piled with harder optimization options than that of Arduino language.

4.2 Modulo q arithmetic over the prime field Fq

In the proposed implementation, the operator % in AVR-C language is never used because the operation
constructed is too time-consuming on Arduino Uno. Instead of it, the modulo q arithmetic over the prime
field Fq is implemented with inline assembly codes to reduce the computational costs. It applies a modulo q
technique by the relation 2t ≡ c (mod q) where q = 2t − c. This technique realizes the modulo q arithmetic
with just addition, multiplication and bit shift operations. In the case of q = 239, an 8-bit prime number, it is
represented as q = 28 − 17. Then, more than 8-bit values are reduced by the relation 28 ≡ 17 (mod 239).

4.3 Parameter Setting
Let q = 239, m = 32 and A = 26 for the twisted Montgomery curve over the tower field, then the group
order of the proposed curve becomes as shown in Table 2. In comparison with the parameters of Curve25519
shown in Table 3, the bit-size of the group order is smaller than that of Curve25519. There are also q = 251
and q = 241 which are 8-bit primes larger than q = 239, but the group order of the curve has some large value
factors in these case.

q = 239 satisfies 4 - (q − 1) and 3 - (q − 1). Let α be the root of the sixth cyclotomic polynomial
Φ6 = x2 − x + 1 which is an irreducible polynomial because of 3 - (q − 1). Then, α + 2 becomes a QNR over
Fq2 . The definition field Fq32 is constructed as follows.
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Fq2 = Fq[α]/(α2 − α + 1),

Fq4 = Fq2 [β]/(β2 − (α + 2)),

Fq8 = Fq4 [γ]/(γ2 − β),

Fq16 = Fq8 [δ]/(δ2 − γ),

Fq32 = Fq16 [θ]/(θ2 − δ).

(21)

Let P = (δ : 1) be the base point, because the order of P becomes #E′A/4, a large prime shown in Table 2
in the case of q = 239, A = 26 and it reduces the cost of the addition because of Eq.(19). For the comparison,
parameters of Curve25519 is shown in Table 3.

Table 2: Parameters of the proposed curve
The proposed curve

q (Prime number) 28 − 17
A 26

Group order #E′A 2252 + 5607956615945836493204673140047760487112756242898
043452718345877106408518660

Order of the base point 2250 + 1401989153986459123301168285011940121778189060724
510863179586469276602129665

Table 3: Paramters of Curve25519
Curve25519

q (Prime number) 2255 − 19
A 486662

Group order #E25519 2255 + 221938542218978828286815502327069187944
Order of the base point 2252 + 27742317777372353535851937790883648493

4.4 Experimental Results
It computes operations of the proposed curve with arithmetic operations over Fq32 . Execution times of those
is shown in following Table 4.

Table 4: Results of arithmetic operations over Fq32

Arithmetic operations over Fq32 Execution time [ms]
Fq32 addition 0.035
Fq32 multiplication 1.12
Fq32 squaring 0.75

The comparison results of SCM operation between the proposed implementation and the implementation
of Curve25519 provided by µNaCl [9] [10] is shown in following Table 5.

Table 5: Comparison results of the SCM operation
SCM operation Execution time [s] Clock cycles
The proposed curve 1.96 31340271
Curve25519 0.88 14087567
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4.5 Consideration
According to the above results, the proposed implementation takes about 2 seconds to execute the SCM
operation that is about 2 times longer than that of Curve25519 provided by µNaCl. Therefore, the proposed
implementation should be improved by a more careful implementation.

5 Conclusion
This paper has introduced the implementation which realizes 256-bit ECC with 8-bit integer arithmetic in-
stead of multiple-precision arithmetic on Arduino. It applies an efficient SCM algorithm with a Montgomery
curve and Montgomery ladder referring to Curve25519. This paper also has shown the idea of twisted Mont-
gomery curve which provides the security of ECC with a Montgomery curve over the tower field. The
proposed implementation can be utilized for a key agreement protocol among IoT devices. As the future
work, the execution time of SCM should be scaled down for the practical use. Moreover, the evaluation of
the resistance to SCA is also a future work.
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