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Abstract

Large-scale platforms currently experience errors from two different sources, namely fail-stop
errors (which interrupt the execution) and silent errors (which strike unnoticed and corrupt
data). This work combines checkpointing and replication for the reliable execution of linear
workflows on platforms subject to these two error types. While checkpointing and replication
have been studied separately, their combination has not yet been investigated despite its promis-
ing potential to minimize the execution time of linear workflows in error-prone environments.
Moreover, combined checkpointing and replication has not yet been studied in the presence of
both fail-stop and silent errors. The combination raises new problems: for each task, we have
to decide whether to checkpoint and/or replicate it to ensure its reliable execution. We provide
an optimal dynamic programming algorithm of quadratic complexity to solve both problems.
This dynamic programming algorithm has been validated through extensive simulations that
reveal the conditions in which checkpointing only, replication only, or the combination of both
techniques, lead to improved performance.

Keywords: checkpoint, replication, HPC, fail-stop error, silent error, linear workflow

2



International Journal of Networking and Computing

1 Introduction

Several high-performance computing (HPC) applications are designed as a succession of (typically
large) tightly-coupled computational kernels, or tasks, that should be executed in sequence [9, 15, 26].
These parallel tasks are executed on the entire platform, and they exchange data at the end of their
execution. In other words, the task graph is a linear chain, and each task (except maybe the first
one and the last one) reads data from its predecessor and produces data for its successor. Such
linear chains of tasks also appear in image processing applications [30], and are usually called linear
workflows [41].

The first objective when considering linear workflows is to ensure their efficient execution, which
amounts to minimizing the total parallel execution time, or makespan. However, a reliable execution
is also critical to performance. Indeed, large-scale platforms are increasingly subject to errors [10, 11].
Scale is the enemy here: even if each computing resource is very reliable, with, say, a Mean Time
Between Errors (MTBE) of ten years, meaning that each resource will experience an error only every
10 years on average, a platform composed of 100, 000 of such resources will experience an error every
fifty minutes [25]. Hence, fault-tolerance techniques to mitigate the impact of errors are required
to ensure a correct and uninterrupted execution of the application [28]. To further complicate
matters, several types of errors need to be considered when computing at scale. In addition to the
classical fail-stop errors (such as hardware failures or crashes), silent errors (also known as silent data
corruptions) constitute another threat that can no longer be ignored [33, 51, 52, 53, 31]. There are
several causes of silent errors, such as cosmic radiation, packaging pollution, among others. Silent
errors can strike the cache and memory (bit flips) components as well as the CPU operations; in the
latter case they resemble floating-point errors due to improper rounding, but have a dramatically
larger impact because any bit of the result, not only low-order mantissa bits, can be corrupted.

The standard approach to cope with fail-stop errors is checkpoint with rollback and recovery [13,
20]: in the context of linear workflow applications, each task can decide to take a checkpoint after it
has correctly executed. A checkpoint is simply a file including all intermediate results and associated
data that is saved on a storage medium resilient to errors; it can be either the memory of another
processor, a local disk, or a remote disk. This file can be recovered if a successor task experiences an
error later in the execution. If there is an error while some task is executing, the application has to
roll back to the last checkpointed task (or to start recomputing again from scratch if no checkpoint
was taken). Then the checkpoint is read from the storage medium (recovery phase), and execution
resumes from that task onward. If the checkpoint was taken many tasks before an error strikes, there
is a lot of re-execution involved, which calls for more frequent checkpoints. However, checkpointing
incurs a significant overhead, and is a mere waste of resources if no error strikes. Altogether, there
is a trade-off to be found, and one may want to checkpoint only carefully selected tasks.

While checkpoint/restart [13, 20, 19] is the de-facto recovery technique for addressing fail-stop
errors, there is no widely adopted general-purpose technique to cope with silent errors. The challenge
with silent errors is detection latency : contrarily to a fail-stop error whose detection is immediate, a
silent error is identified only when the corrupted data is activated and/or leads to an unusual appli-
cation behavior. However, checkpoint and rollback recovery assumes instantaneous error detection,
and this raises a new difficulty: if the error stroke before the last checkpoint, and is detected after
that checkpoint, then the checkpoint is corrupted and cannot be used to restore the application. To
address the problem of silent errors, many application-specific detectors, or verification mechanisms,
have been proposed. We apply such a verification mechanism after each task in this paper. Our
approach is agnostic of the nature of the verification mechanism (checksum, error correcting code,
coherence test, etc.). In this context, if the verification succeeds, then the output of the task is
correct, and one can safely either proceed to the next task directly, or save the result beforehand by
taking a checkpoint. Otherwise, if verification fails we have to rollback to the last saved checkpoint
and re-execute the work since that point on. However, and contrarily to fail-stop errors, silent errors
do not cause the loss of the entire memory content of the affected processor. To account for this
difference, we use a two-level checkpointing scheme: the checkpoint file is saved in the main memory
of the processor before being transferred to some storage (disk) that is resilient to fail-stop errors.
This allows for recovering faster after a silent error than after a fail-stop error.
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Replication is a well-known, but costly, method to deal with both, fail-stop errors [22, 23, 12,
36, 49, 21, 18, 38] and silent errors [32, 3]. While both checkpointing and replication have been
extensively studied separately, their combination has not yet been investigated in the context of
linear workflows, despite its promising potential to minimize the execution time in error-prone
environments. The contributions of this work are the following:
• We provide a detailed model for the reliable execution of linear workflows, where each task can

be replicated or not, and with a two-level checkpoint/recovery mechanism whose cost depends
both on the number of processors executing the task, and on whether the task is replicated or
not.

• We address both fail-stop and silent errors. We perform a verification after each task to detect
silent errors and recover from the last in-memory checkpoint after detecting one. We recover
from the last disk checkpoint after a fail-stop error. If a task is replicated, we do not need to
roll back and we can directly proceed to the next task, unless both replicas have been affected
(by either error type).

• We design an optimal dynamic programming algorithm that minimizes the makespan of a
linear workflow with n tasks, with a quadratic complexity, in the presence of fail-stop and
silent errors.

• We conduct extensive experiments to evaluate the impact of using both replication and check-
pointing during execution, and compare them to an execution without replication.

• We provide guidelines about when it is beneficial to employ checkpointing only, replication
only, or to combine both techniques together.

The paper is organized as follows. Section 2 details the model and formalizes the objective
function and the optimization problem. Section 3 presents a preliminary result for the dynamic
programming algorithm: we explain how to compute the expected time needed to execute a single
task (replicated or not), assuming that its predecessor has been checkpointed. The proposed optimal
dynamic programming algorithm is outlined in Section 4. The experimental validation is provided
in Section 5. Finally, related work is discussed in Section 6, and the work is concluded in Section 7.

2 Model and objective

This section details the framework of this study. We start with the application and platform models,
then we detail the verification, checkpointing and replication, and finally we state the optimization
problem.

2.1 Application model

We target applications whose workflows represent linear chains of parallel tasks. More precisely, for
one application, consider a chain T1 → T2 → · · · → Tn of n parallel tasks Ti, 1 ≤ i ≤ n. Hence, T1
must be completed before executing T2, and so on.

Here, each Ti is a parallel task whose speedup profile obeys Amdahl’s law [1]: the total work, wi,
consists of a sequential fraction αiwi, 0 ≤ αi ≤ 1, and the remaining fraction (1 − αi)wi perfectly

parallel. The (error-free) execution time, Ti, using qi processors is thus wi

(
αi + 1−αi

qi

)
. Without

loss of generality, we assume that processors execute the tasks at unit speed, and we use time units
and work units interchangeably. While our study is agnostic of task granularity, it applies primarily
to frameworks where tasks represent large computational entities whose execution takes from a
few minutes up to tens of minutes. In such frameworks, it may be worthwhile to replicate or to
checkpoint tasks to mitigate the impact of errors.

2.2 Execution platform

We target a homogeneous platform with p processors Pi, 1 ≤ i ≤ p. We assume that the platform
is subject to fail-stop and silent errors whose inter-arrival times follow an Exponential distribution.
More precisely, let λFind be the fail-stop error rate of each individual processor Pi: the probability
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of having a fail-stop error striking Pi within T time-units is P(X ≤ T ) = 1− e−λFindT . Similarly, let
λSind be the silent error rate of each individual processor Pi: the probability of having a silent error

striking Pi within T time-units is P(Y ≤ T ) = 1−e−λSindT . Then, a computation on q ≤ p processors
has an error rate qλFind for fail-stop errors, and qλSind for silent errors. The probability of having a

fail-stop error within T time-units and with q processors becomes 1− e−qλFindT (and 1− e−qλSindT for
a silent error) [25].

2.3 Verification

To detect silent errors, we add a verification mechanism at the end of each task. This ensures that
the error will be detected as soon as possible. The verification following task Ti has a cost Vi. We
assume that the verification mechanism has a perfect recall (it detects all errors). This guarantees
that all taken checkpoints are correct, because they are always preceded by a verification. Similarly,
we assume that no silent error can strike during the verification.

The cost Vi depends upon the detector and can thereby take a wide range of values. In this
work, we adopt a quite general formula and use

Vi(qi) = ui +
vi
qi

(1)

to model the cost of verifying task Ti when executed with qi processors, where ui and vi denote the
sequential and parallel cost of the verification, respectively. In the experiments (Section 5.2), we
instantiate the model with two cases:

• We use ui = βwi and vi = 0, where β is a small parameter (around 1%). This means that
the cost of the verification is proportional to the sequential cost wi of Ti. It corresponds to
the case of data-oriented kernels processing large files and checksumming for verification in a
centralized location (hence sequentially) [5].

• We use ui = 0 and vi = βwi. This means that the cost of the verification is proportional to the
parallel fraction of Ti. It corresponds to the same scenario as above, but where checksumming
is performed in parallel on all enrolled processors.

2.4 Checkpointing

The output of each task Ti can be checkpointed in time Ci. We use a two-level checkpoint protocol
where the checkpoint is first saved locally (memory checkpoint) before being transferred to a slower
but reliable storage like a filesystem (disk checkpoint). The memory checkpoint will be lost when
a fail-stop error strikes a processor (and its local data), whereas the disk checkpoint will always
remain available to restart the application.

When a fail-stop error strikes during the execution of Ti, we first incur a downtime D, and then
we must start the execution from the task following the last checkpoint. Hence, if Tj is the last
checkpointed task, the execution starts again at task Tj+1, and the recovery cost is RDj+1, which
amounts to reading the disk checkpoint of task Tj . When a silent error is detected at the end of Ti
by the verification mechanism, we also roll back to the last checkpointed task Tj , but (i) we do not
pay the downtime D; and (ii) the recovery cost is RMj+1, which amounts to reading the memory
checkpoint of task Tj (hence at a much smaller cost than for a fail-stop error).

The checkpoint cost Ci, and both recovery costs RDj+1 and RMj+1 clearly depend upon the check-
point protocol and storage medium, as well as upon the number qi of enrolled processors. In this
work, we adopt a quite general formula for checkpoint times and use

Ci(qi) = ai +
bi
qi

+ ciqi (2)

to model the time to save a checkpoint after Ti executed with qi processors. Here, ai + bi
qi

repre-

sents the I/O overhead to write the task output file Mi to the storage medium. For in-memory
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checkpointing [48], ai + bi
qi

is the communication time, in which ai denotes the latency to access

the storage system; then we have bi
qi

= Mi

τnetqi
, where τnet is the network bandwidth (each processor

stores Mi

qi
data items). For coordinated checkpointing to stable storage, there are two cases: if the

I/O bottleneck is the storage system’s bandwidth, then ai = β + Mi

τio
and bi = 0, where β is a

start-up time and τio is the I/O bandwidth; otherwise, if the I/O bottleneck is the network latency,
we retrieve the same formula as for in-memory checkpointing. Finally, ciqi represents the message
passing overhead that grows linearly with the number of processors, in order for all processors to
reach a global consistent state [20, 50].

For the cost of recovery (from memory or from disk), we assume similar formulas:

RMi (qi) = aMi +
bMi
qi

+ cMi qi; RDi (qi) = aDi +
bDi
qi

+ cDi qi. (3)

The coefficients depend on the type of recovery: again, a memory recovery is much faster than a disk
recovery. If we further assume that reading and writing from/to the same storage medium (memory
or disk) have same cost, we have

Ci(qi) = RDi+1(qi) +RMi+1(qi)

since recovering for task Ti+1 amounts to reading the checkpoint from task Ti.
Finally, we assume that there is a fictitious task T0 of zero weight (w0 = 0) that is always

checkpointed, so that RD1 (q1) represents the time for I/O input from the external world. Similarly,
we systematically checkpoint the last task Tn, in order to account for the I/O output time Cn(qn).

2.5 Replication

When executing a task, we envision two possibilities: either the task is not replicated, or it is
replicated. To explain the impact of replication, we momentarily assume that we consider fail-stop
errors only. Then we return to the scenario with both fail-stop and silent errors.

With fail-stop errors only, consider a task Ti, and assume for simplicity that the predecessor
Ti−1 of Ti has been checkpointed. If it is not the case, i.e., if the predecessor Ti−1 of Ti is not
checkpointed, we have to roll back to the last checkpointed task, say Tk where k < i− 1, whenever
an error strikes, and re-execute the entire segment from Tk+1 to Ti instead of just Ti.

Without replication, a single copy of Ti is executed on the entire platform, hence with qi = p
processors. Then we let Enorep(i) denote the expected execution time of Ti when accounting for

errors. We attempt a first execution, which takes Tnorep
i = wi

(
αi + 1−αi

p

)
if no fail-stop error

strikes. But if a fail-stop error does strike, we must account for the time that has been lost (between
the beginning of the execution and the fail-stop error), then perform a downtime D, a recovery Ri(p)
(since we use the entire platform for Ti), and then re-execute Ti from scratch. Similarly, if we decide
to checkpoint after Ti, we need Ci(p) time units. We explain how to compute Enorep(i) in Section 3.

With replication, two copies of Ti are executed in parallel, each with qi = p
2 processors. If no fail-

stop error strikes, both copies finish execution in time T rep
i = wi

(
αi + 1−αi

p
2

)
, since each copy uses

p
2 processors. If a fail-stop error strikes one copy, we proceed as before, account for the downtime D,
recover (in time Ri(

p
2 ) now), and restart execution with that copy. Then there are two cases: (i) if

the second copy successfully completes its first execution, the fail-stop error has no impact and the
execution time remains the same as the error-free execution time; (ii) however, if the second copy
also fails to execute, we resume its execution, and iterate until one copy successfully completes. Of
course, case (ii) is less likely to happen than case (i), which explains why replication can be useful.
Finally, if we decide to checkpoint after Ti, the first successful copy will take the checkpoint in time
Ci(

p
2 ).
Replication raises several complications in terms of checkpoint and recovery costs. When a

replicated task Ti is checkpointed, we can enforce that only one copy (the first one to complete
execution) would write the output data onto the storage medium, hence with a cost Ci(

p
2 ), as stated

above. Similarly, when a single copy of a replicated task Ti performs a recovery after a fail-stop
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error, the cost would be Ri(
p
2 ). However, in the unlikely event where both copies are struck by a

fail-stop error at close time instances, their recoveries would overlap, and the cost can vary anywhere
between Ri(

p
2 ) and 2Ri(

p
2 ), depending upon the amount of contention, the length of the overlap and

where the I/O bottleneck lies. We will experimentally evaluate the impact of the recovery cost with
replication in Section 5.1. For simplicity, in the rest of the paper, we use Crep

i for the checkpoint

cost of Ti when it is replicated, and Cnorep
i when it is not. Similarly, we use RDrep

i or RMrep
i for the

recovery costs (disk or memory) when Ti is replicated, and RDnorep
i or RMnorep

i when it is not. Note
that the recovery cost of Ti depends upon whether it is replicated or not, but does not depend upon
whether the checkpointed task Ti−1 was replicated or not, since we need to read the same file from the
storage medium in both cases. The values of Crep

i and Cnorep
i can be instantiated from Equation (2)

and those of RDrep
i , RDnorep

i , RMrep
i and RMnorep

i can be instantiated from Equation (3). We let
Erep(i) denote the expected execution time of Ti with replication and when accounting for fail-stop
errors, when Ti−1 is checkpointed. The derivation of Erep(i) is significantly more complicated than
for Enorep(i) and represents a new contribution of this work, detailed in Section 3.2.

We now detail the impact of replication when both fail-stop and silent errors can strike. First,
we have to state how the verification cost Vi of task Ti depends upon whether Ti is replicated or
not. For the analysis, we keep a general model and let V rep

i be the cost when Ti is replicated, and
V norep
i when it is not. However, as explained later in the experimental evaluation (Section 5.2),

we use two different instantiations of Equation (1), which directly give the two (possibly different)
values of V rep

i and V norep
i as a function of parameter β.

Next, consider again a task Ti, and still assume for simplicity that the predecessor Ti−1 of Ti
has been checkpointed. The impact of fail-stop errors is the same as before, and depends upon how
many replicas of Ti are executed. The only difference is that the fail-stop error can now strike either
during the execution of a replica or during its verification. But if no fail-stop error strikes, we still
have to perform the verification to detect a possible silent error, whose probability depends upon the
error-free execution time of that replica. Recall that no silent error can strike during the verification
(but a fail-stop can strike). If a silent error is detected, we have to re-execute the task, in which
case we recover from the memory checkpoint instead of from the disk checkpoint.

Finally, we extend the definition of Enorep(i) and Erep(i) to account for both fail-stop and silent
errors, when Ti−1 is checkpointed. We explain how to compute both quantities in Section 3.2.

2.6 Optimization problem

The objective of this work is to minimize the expected makespan of the linear workflow in the presence
of fail-stop and silent errors. For each task, we have four choices: either we replicate the task or
not, and either we checkpoint it or not. More formally, for each task Ti we need to decide: (i) if it is
checkpointed or not; and (ii) if it is replicated or not, (meaning that there are 4n combinations for
the whole workflow) with the objective to minimize the total execution time of the workflow. We
point out that none of these decisions can be made locally. Instead, we need to account for previous
decisions and optimize globally. Our major contribution of this work is to provide an optimal
dynamic programming algorithm to solve this problem, which we denote as ChainsRepCkpt.

We point out that ChainsCkpt, the simpler problem without replication, i.e., optimally placing
checkpoints for a chain of tasks, has been extensively studied. The first dynamic programming
algorithm to solve ChainsCkpt appears in the pioneering paper of Toueg and Babaoğlu [43] back in
1984, for the scenario with fail-stop errors only (see Section 6 on related work for further references).
Adding replication significantly complicates the solution. Here is an intuitive explanation: When
the algorithm recursively considers a segment of tasks from Ti to Tj , where Ti−1 and Tj are both
checkpointed and no intermediate task Tk, i ≤ k < j is checkpointed, there are many cases to
consider to account for possible different values in: (i) execution time, since some tasks in the
segment may be replicated; (ii) checkpoint, whose cost depends upon whether Tj is replicated or
not; and (iii) recovery, whose cost depends upon whether Ti is replicated or not. We provide all
details in Section 4.
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3 Computing Enorep(i) and Erep(i)

This section details how to compute the expected time needed to execute a task Ti, assuming that
the predecessor of Ti has been checkpointed. Hence, we need to re-execute only Ti when an error
strikes. We explain how to deal with the general case of re-executing a segment of tasks, some of
them replicated, in Section 4. Here, we start with the case where Ti is not replicated. It is already
known how to compute Enorep(i) [25, 7], but we present this case to help the reader follow the
derivation in Section 3.2 for the case where Ti is replicated, which is new and much more involved.

3.1 Computing Enorep(i)

To compute Enorep(i), the average execution time of Ti with p processors without replication, we
conduct a case analysis:

• Either a fail-stop error strikes during the execution of the task and its verification (lasting
Tnorep
i +V norep

i ), and in this case we lose some work and need to re-execute the task, recovering
from a disk checkpoint;

• Either there is no fail-stop error, and in this case the verification indicates whether there has
been a silent error or not:

– If a silent error is detected, we need to re-execute the task right after the verification,
recovering from a memory checkpoint;

– Otherwise the execution has been successful.

This leads to the following recursive formula:

Enorep(i) = P(Xp ≤ Tnorep
i + V norep

i )
(
Tnorep
lost (Tnorep

i + V norep
i ) +D +RDnorep

i + Enorep(i)
)

+ (1− P(Xp ≤ Tnorep
i + V norep

i ))
(
Tnorep
i + V norep

i (4)

+ P(X
′

p ≤ Tnorep
i )(D +RMnorep

i + Enorep(i))
)
,

where P(Xp ≤ t) is the probability of having a fail-stop error on one of the p processors before time

t, i.e., P(Xp ≤ t) = 1− e−λFindpt, and P(X
′

p ≤ t) is the probability of having a silent error on one of

the p processors before time t, i.e., P(X
′

p ≤ t) = 1− e−λSindpt. The time lost when an error strikes is
the expectation of the random variable Xp, knowing that the error stroke before the end of the task
and its verification. We compute it as follows:

Tnorep
lost (Tnorep

i + V norep
i ) =

+∞∫
0

xP(Xp = x|Xp ≤ Tnorep
i + V norep

i )dx

=
1

P(Xp ≤ Tnorep
i + V norep

i )

T norep
i +V norep

i∫
0

xP(Xp = x)dx

=
1

P(Xp ≤ Tnorep
i + V norep

i )

T norep
i +V norep

i∫
0

x
dP(Xp ≤ x)

dx
dx

After integration, we get the formula:

Tnorep
lost (Tnorep

i + V norep
i ) =

1

λFindp
− Tnorep

i + V norep
i

eλ
F
indp(T

norep
i +V norep

i ) − 1
. (5)
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Replacing the left hand side term of Equation (5) in Equation (4) and solving, we derive:

Enorep(i) =

(
1

λFindp
+D +RDnorep

i

)
ep((λ

F
ind+λ

S
ind )T

norep
i +λFindV

norep
i ) (6)

−
(

1

λFindp
+ (RDnorep

i −RMnorep
i )

)
eλ

S
indpT

norep
i − (D +RMnorep

i ).

Recall that Tnorep
i = wi

(
αi + 1−αi

p

)
in Equation (6). Finally, if we decide to checkpoint Ti, we

simply add Cnorep
i to Enorep(i).

3.2 Computing Erep(i)

We now discuss the case where Ti is replicated; each copy executes with p
2 processors. To compute

Erep(i), the expected execution time of Ti with replication, we conduct a case analysis similar to
that of Section 3.1:

• Either two fail-stop errors strike before the end of the task and its verification (lasting T rep
i +

V rep
i ), with one fail-stop error striking each copy. Then we have lost some work and need to

re-execute the task from a disk checkpoint;

• Or at least one copy is not hit by any fail-stop error. Then we need to account for two different
cases in the analysis:

– Both copies have survived: then we need to re-execute the task (recovering from a memory
checkpoint) only if both copies are hit by a silent error.

– Only one replica survived: then we need to re-execute the task if this replica is hit by a
silent error.

This leads to the following formula:

Erep(i) = P(Yp ≤ T rep
i + V rep

i )2
(
T replost(T

rep
i + V rep

i ) +D +RDrep
i + Erep(i)

)
+ (1− P(Yp ≤ T rep

i + V rep
i )2)(T rep

i + V rep
i ) (7)

+
(

2(1− P(Yp ≤ T rep
i + V rep

i ))P(Yp ≤ T rep
i + V rep

i )P(Y
′

p ≤ T rep
i )

+ (1− P(Yp ≤ T rep
i + V rep

i ))2P(Y
′

p ≤ T rep
i )2

)
(D +RMrep

i + Erep(i)),

where P(Yp ≤ t) is the probability of having an error on one replica of p
2 processors before time

t, i.e., P(Yp ≤ t) = 1 − e−
λFindp

2 t, and P(Y
′

p ≤ t) is the probability of having a silent error on one

replica of p
2 processors before time t, i.e., P(Y

′

p ≤ t) = 1 − e−
λSindp

2 t. The first line of Equation (7)
corresponds to the case where both replicas are hit by a fail-stop error, the second line accounts for
the time spent in case at least one replica survives. The last two lines correspond to the two cases
when we need to re-execute the task after the detection of a silent error (one replica alive for line 3,
two replicas alive for line 4 of Equation (7)).

The time lost when both copies fail can be computed in a similar way as before:

T rep
lost(T

rep
i ) =

1

P(Yp ≤ T rep
i + V rep

i )

T rep
i +V rep

i∫
0

x
dP(Yp ≤ x)

dx
dx.

After computation and verification using a Maple sheet, we obtain the following result:

T rep
lost(T

rep
i + V rep

i ) =
(−2λFindp(T

rep
i +V rep

i )−4)e−
λFindp(T

rep
i

+V
rep
i

)

2 +(λFindp(T
rep
i +V rep

i )+1)e−λ
F
indp(T

rep
i

+V
rep
i

)+3

(e−
λF
ind
p(T

rep
i

+V
rep
i

)

2 −1)2λFindp
.

(8)

9



Combining Checkpointing and Replication for Reliable Execution of Linear Workflows

Replacing the left hand side term of Equation (8) in Equation (7) and solving, we get:

Erep(i) = − (4 + 2λFindp(R
Drep
i −RMrep

i ))ep(
λFind (T

rep
i

+V
rep
i

)

2 +λSindT
rep
i )

(2ep
λF
ind

(T
rep
i

+V
rep
i

)+λS
ind
T

rep
i

2 − 1) · λFindp
(9)

+
(1 + λFindp(R

Drep
i −RMrep

i ))eλ
S
indpT

rep
i

(2ep
λF
ind

(T
rep
i

+V
rep
i

)+λS
ind
T

rep
i
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Recall that T rep
i = wi

(
αi + 1−αi

p
2

)
in Equation (9). Finally, if we decide to checkpoint Ti, we simply

add Crep
i to Erep(i).

4 Optimal dynamic programming algorithm

In this section, we provide an optimal dynamic programming (DP) algorithm to solve the Chains-
RepCkpt problem for a linear chain of n tasks.

Theorem 1. The optimal solution to the ChainsRepCkpt problem can be obtained using a dynamic
programming algorithm in O(n2) time, where n is the number of tasks in the chain.

Proof. The algorithm recursively computes the expectation of the optimal time required to execute
tasks T1 to Ti and then checkpoint Ti. As already mentioned, we need to distinguish two cases,
according to whether Ti is replicated or not, because the cost of the final checkpoint depends upon
this decision. Hence, we recursively compute two different functions:
• T rep

opt (i), the expectation of the optimal time required to execute tasks T1 to Ti, knowing that
Ti is replicated;

• Tnorep
opt (i), the expectation of the optimal time required to execute tasks T1 to Ti, knowing that
Ti is not replicated.

Note that checkpoint time is not included in T rep
opt (i) nor Tnorep

opt (i). The solution to ChainsRepCkpt
will be given by

min
{
T rep
opt (n) + Crep

n , Tnorep
opt (n) + Cnorep

n

}
. (10)

We start with the computation of T rep
opt (j) for 1 ≤ j ≤ n, hence assuming that the last task Tj is

replicated. We express T rep
opt (j) recursively as follows:

T rep
opt (j)= min

1≤i<j



T rep
opt (i) + Crep

i + T rep,rep
NC (i+ 1, j),

T rep
opt (i) + Crep

i + Tnorep,rep
NC (i+ 1, j),

Tnorep
opt (i) + Cnorep

i + T rep,rep
NC (i+ 1, j),

Tnorep
opt (i)+Cnorep

i +Tnorep,rep
NC (i+ 1, j),

RDrep
1 + T rep,rep

NC (1, j),

RDnorep
1 + Tnorep,rep

NC (1, j)


(11)

In Equation (11), Ti corresponds to the last checkpointed task before Tj , and we try all possible
locations Ti for taking a checkpoint before Tj . The first four lines correspond to the case where
there is indeed an intermediate task Ti between T1 and Tj that is checkpointed, while the last two
lines correspond to the case where no checkpoint at all is taken until after Tj .

The first two lines of Equation (11) apply to the case where Ti is replicated. Line 1 is for the case
when Ti+1 is replicated, and line 2 when it is not. In the first line of Equation (11), T rep,rep

NC (i+ 1, j)
denotes the optimal time to execute tasks Ti+1 to Tj without any intermediate checkpoint, knowing
that Ti is checkpointed, and both Ti+1 and Tj are replicated. If Ti+1 is not replicated, we use the
second line of Equation (11), where Tnorep,rep

NC (i+ 1, j) is the counterpart of T rep,rep
NC (i+ 1, j), except

10
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that it assumes that Ti+1 is not replicated. This information on Ti+1 (replicated or not) is needed
to compute the recovery cost when executing tasks Ti+1 to Tj and experiencing an error.

Lines 3 and 4 apply to the case where Ti is not replicated, with similar notation as before. In
the first four lines, no task between Ti+1 and Tj−1 is checkpointed, hence the notation NC for no
checkpoint.

If no checkpoint at all is taken before Tj (this corresponds to the case i = 0), we use the last
two lines of Equation (11): we include the cost to read the initial input, which depends whether T1
is replicated (in line 5) or not (in line 6) of Equation (11).

We have a very similar equation to express Tnorep
opt (j) recursively, with intuitive notation:

Tnorep
opt (j) = min

1≤i<j



T rep
opt (i) + Crep

i + T rep,norep
NC (i+ 1, j),

T rep
opt (i) + Crep

i + Tnorep,norep
NC (i+ 1, j),

Tnorep
opt (i) + Cnorep

i + T rep,norep
NC (i+ 1, j),

Tnorep
opt (i)+Cnorep

i +Tnorep,norep
NC (i+ 1, j),

RDrep
1 + T rep,norep

NC (1, j),

RDnorep
1 + Tnorep,norep

NC (1, j)


(12)

To synthesize the notation, we have defined TA,BNC (i + 1, j), with A,B ∈ {rep,norep}, as the
optimal time to execute tasks Ti+1 to Tj without any intermediate checkpoint, knowing that Ti is
checkpointed, Ti+1 is replicated if and only if A = rep, and Tj is replicated if and only if B = rep.
In a nutshell, we have to account for the possible replication of the first task Ti+1 after the last
checkpoint, and of the last task Tj , hence the four cases.

There remains to compute TA,BNC (i, j) for all 1 ≤ i, j ≤ n and A,B ∈ {rep,norep}. This is still
not easy, because there remains to decide which intermediate tasks should be replicated. In addition
to the status of Tj (replicated or not, according to the value of B), the only thing we know so far is
that the only checkpoint that we can recover from while executing tasks Ti to Tj is the checkpoint
taken after task Ti−1, hence we need to re-execute from Ti whenever an error strikes. Furthermore,
Ti is replicated if and only if A = rep, hence we know the corresponding cost for recovery, RAi .

Letting TA,BNC (i, j) = 0 whenever i > j, we can express TA,BNC (i, j) for 1 ≤ i ≤ j ≤ n as follows:

TA,BNC (i, j) = min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,B(j | i).

Here the new (and final) notation TA,B(j | i) is simply the time needed to execute task Tj ,
knowing that an error during Tj implies to recover from Ti. Indeed, to execute tasks Ti to Tj , we
account recursively for the time to execute Ti to Tj−1; Ti−1 is still checkpointed; Ti is replicated if
and only if A = rep, Tj is replicated if and only if B = rep, and we consider both cases whether Tj−1
is replicated or not. The time lost in case of an error during Tj depends whether Tj is replicated
or not, and we need to restart from Ti in case of error, hence the notation TA,B(j | i), representing
the expected execution time for task Tj with or without replication (depending on B), given that
we need to restart from Ti if there is an error (and Ti is replicated if and only if A = rep).

The last step is hence to express these execution times. We start with the case where Tj is not
replicated:

TA,norep(j | i) =
(

1− e−λFindp(T norep
j +V norep

j )
)(

Tnorep
lost (Tnorep

j + V norep
j ) +D +RD

A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,norep(j | i)

)
+ e−λ

F
indp(T

norep
j +V norep

j )
(
Tnorep
j + V norep

j +
(

1− e−λSindpT norep
j

)
(D +RM

A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,norep(j | i))

)
.

The term in e−λ
F
indp(T

norep
j +V norep

j ) represents the case without fail-stop error, where the execution
time is simply Tnorep

j +V norep
j . If a silent error is detected after the verification, we pay a downtime

11
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and a memory recovery (with a cost depending on A). Next, we need to re-execute all the tasks
since the last checkpoint (Ti to Tj−1) and take the minimal value obtained out of the execution
where Tj−1 is replicated or not; finally, we execute Tj again (with a time TA,norep(j | i)) from last
checkpoint. When a fail-stop error strikes, we account for Tnorep

lost (Tnorep
j + V norep

j ), the time lost
within Tj , and whose value is given by Equation (5). Then we pay a downtime and a disk recovery
(with a cost depending on A). Finally, we re-execute all the tasks from last checkpoint and that is
similar to the previous case.

The formula is similar with replication of Tj , where the probability of error accounts for the fact
that we need to recover only if both replicas fail for the fail-stop errors and accounts for the number
of living replicas in the case where a silent error is detected (see Section 3.2 for the details):

TA,rep(j | i) =

(
1− e−

λFindp(T
rep
j

+V
rep
j

)

2

)2 (
T rep
lost(T

rep
j + V rep

j ) +D +RD
A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,rep(j | i)

)
+

(
1−

(
1− e−

λFindp(T
rep
j

+V
rep
j

)

2

)2
)(

T rep
j + V rep

j

)
+
(

(1− e−
λFindp(T

rep
j

+V
rep
j

)

2 )e−
λFindp(T

rep
j

+V
rep
j

)

2 (1− e−
λSindpT

rep
j

2 )

+e−λ
F
indp(T

rep
j +V rep

j )(1− e−
λSindpT

rep
j

2 )2
)(
D +RM

A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,rep(j | i)

)
.

Note that the value of T rep
lost(T

rep
j ) is given by Equation (8). Overall, we need to compute the

O(n2) intermediate values TA,B(j | i) and TA,BNC (i, j) for 1 ≤ i, j ≤ n and A,B ∈ {rep,norep}, and
each of these take constant time. There are O(n) values TAopt(i), for 1 ≤ i ≤ n and A ∈ {rep,norep},
and these perform a minimum over at most 6n elements, hence they can be computed in O(n). The
overall complexity is therefore O(n2).

5 Experiments

In this section, we evaluate the advantages of adding replication to checkpointing in the presence of
both, fail-stop and silent errors. We point out that the simulator that implements the proposed DP
algorithm is publicly available at http./graal.ens-lyon.fr/~yrobert/chainsrep.zip so that
interested readers can instantiate their preferred scenarios and repeat the same simulations for
reproducibility purpose. The code is written in-house in C++ and does not use any library other
than the STL.

We start by assessing scenarios with fail-stop errors only in Section 5.1. We first describe the
evaluation framework in Section 5.1.1, then we compare checkpoint with replication to checkpoint
only in Section 5.1.2. In Section 5.1.3, we assess the impact of the different model parameters on
the performance of the optimal strategy. Finally, Section 5.1.4 compares the performance of the
optimal solution to alternative sub-optimal solutions.

Then we assess scenarios with both fail-stop and silent errors in Section 5.2. We first describe
the few modifications of the evaluation framework in Section 5.2.1, then we compare checkpoint
with replication to checkpoint only in Section 5.2.2. Finally, Section 5.2.3 assesses the impact of the
different model parameters on the performance of the optimal strategy.

5.1 Scenarios with fail-stop errors only

5.1.1 Experimental setup

We fix the total work in the chain to W = 10, 000 seconds. The choice of this value is less important
than the duration of the tasks compared to the error rate. For this reason, we rely on five different
work distributions, where all tasks are fully parallel (αi = 0):

12
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• Uniform: every task i is of length wi = W
n , i.e., identical tasks.

• Increasing: the length of the tasks constantly increases, i.e., task Ti has length wi = i 2W
n(n+1) .

• Decreasing: the length of the tasks constantly decreases, i.e., task Ti has length wi =
(n− i+ 1) 2W

n(n+1) .

• HighLow: the chain is formed by long tasks followed by short tasks. The long tasks represent
60% of the total work and there are d n10e such tasks. Short tasks represent the remaining 40%
of the total work and consequently there are n− d n10e small tasks.

• Random: task lengths are uniformly chosen at random between W
2n and 3W

2n . If the total work

of the first i tasks reaches W , the weight of each task is multiplied by i
n so that we can continue

adding the remaining tasks.

Experiments with increasing sequential part (αi) for the tasks are available in the companion
research report [4]. Setting αi = 0 amounts to being in the worse possible case for replication, since
the tasks will fully benefit of having twice as much processors when not replicated.

For simplicity, we assume that checkpointing costs are equal to the corresponding recovery
costs, assuming that read and write operations take approximately the same amount of time, i.e.,
RDnorep
i+1 = Cnorep

i . For replicated tasks, we set Crep
i = αCnorep

i and RDrep
i = αRDnorep

i , where
1 ≤ α ≤ 2, and we assess the impact of parameter α in Section 5.2.3. In the following experi-
ments, we measure the performance of a solution by evaluating the associated normalized expected
makespan, i.e., the expected execution time needed to compute all the tasks in the chain, with
respect to the execution time without errors, checkpoints, or replicas.

5.1.2 Comparison to checkpoint only

We start with an analysis of the solutions obtained by running the optimal dynamic programming
(DP) algorithm ChainsRepCkpt on chains of 20 tasks for the five different work distributions
described in Section 5.1.1. We also run a variant of ChainsRepCkpt that does not perform any
replication, hence using a simplified DP algorithm, that is called ChainsCkpt.

We vary the fail-stop error rate λFindp from 10−8 to 10−2. Note that when λFindp = 10−3, we
expect an average of 10 errors per execution of the entire chain (neglecting potential errors during
checkpoints and recoveries). The checkpoint cost Cnorep

i = ai is constant per task (hence bi = ci = 0)
and varies from 10−3Tnorep

i to 103Tnorep
i . For replicated tasks, we set α = 1 in this experiment, i.e.,

Crep
i = Cnorep

i and RDrep
i = RDnorep

i .
Figure 1 presents the results of these experiments for the Uniform distribution. We are inter-

ested in the number of checkpoints and replicas in the optimal solution. As the optimal solution
may or may not contain checkpoints and replicas, we distinguish 4 cases: None means that no
task is checkpointed nor replicated, Checkpointing Only means that some tasks are checkpointed
but no task is replicated, Replication Only means that some tasks are replicated, but no task is
checkpointed, and Checkpointing+Replication means that some tasks are checkpointed and some
tasks are replicated. First, we observe that when the checkpointing cost is less than or equal to the
length of a task (on the left of the black line), the optimal solution does not use replication, except
when the error rate becomes very high. However, if the checkpointing cost exceeds the length of
one task (on the right of the black vertical bar), replication proves useful in some cases. In par-
ticular, when the fails-stop error rate λFindp is medium to high (i.e., 10−6 to 10−4), we note that
only replication is used, meaning that no checkpoint is taken and that replication alone is a better
strategy to prevent any error from stopping the application. When the error rate is the highest (i.e.,
10−4 or higher), replication is added to the checkpointing strategy to ensure maximum reliability.
It may seem unusual to use replication alone when checkpointing costs increase. This is because
the recovery cost has to be taken into account as well, in addition to re-executing the tasks that
have failed. Replication is added to reduce this risk: if successful, there is no recovery cost to pay
for, nor any task to re-execute. Finally, note that for low error rates and low checkpointing costs,
only checkpoints are used, because their cost is lower than the average re-execution time in case of
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Figure 1: Impact of checkpoint/recovery cost and error rate on the usage of checkpointing and
replication. Total work is fixed to 10, 000s and is distributed uniformly among n = 20 tasks (i.e.,
T1 = T2 = · · · = T20 = 500s). Each color shows the presence of checkpoints and/or replicas in the
optimal solution. Results corresponding to the case highlighted with a red square are presented in
Figure 2.

error. We point out that similar results are obtained when using other work distributions (see the
extended version [4]).

In the next experiment, we focus on scenarios where both checkpointing and replication are useful,
i.e., we set the checkpointing cost to be twice the length of a task (i.e., Cnorep

i = ai = 2Tnorep
i ), and

we set the fail-stop error rate λFindp to 10−3, which corresponds to the case highlighted by the red box
in Figure 1. Figure 2 presents the optimal solutions obtained with the ChainsCkpt and Chains-
RepCkpt algorithms for the Uniform, Increasing, Decreasing, HighLow and Random work
distributions, respectively. First, for the Uniform work distribution, it is clear that the Chains-
RepCkpt strategy leads to a decrease in the number of checkpoints compared to the ChainsCkpt
strategy. Under the ChainsCkpt strategy, a checkpoint is taken every two tasks, while under the
ChainsRepCkpt strategy, a checkpoint is instead taken every three tasks, while two out of three
tasks are also replicated. Then, for the Increasing and Decreasing work distributions, the results
show that most tasks should be replicated, while only the longest tasks are also checkpointed. A
general rule of thumb is that replication only is preferred for short tasks while checkpointing and
replication is reserved for longer tasks, where the probability of error and the re-execution cost are
the highest. Finally, we observe a similar trend for the HighLow work distribution, where two of
the first four longer tasks are checkpointed and replicated.

Figure 3 compares the performance of ChainsRepCkpt to the checkpoint-only strategy Chains-
Ckpt. First, we observe that the expected normalized makespan of ChainsCkpt remains almost
constant at ≈ 4.5 for any number of tasks and for any work distribution. Indeed, in our scenario,
checkpoints are expensive and the number of checkpoints that can be used is limited to ≈ 17 in the
optimal solution, as shown in the middle plot. However, the ChainsRepCkpt strategy can take
advantage of the increasing number of shorter tasks by replicating them. In this scenario (high error
rate and high checkpoint cost), this is clearly a winning strategy. The normalized expected makespan
decreases with increasing n, as the corresponding number of tasks that are replicated increases almost
linearly. The ChainsRepCkpt strategy reaches a normalized makespan of ≈ 2.6 for n = 100, i.e.,
a reduction of 35% compared to the normalized expected makespan of the ChainsCkpt strategy.

14



International Journal of Networking and Computing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(a) Uniform

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(b) Increasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(c) Decreasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(d) HighLow

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

None
Checkpointing Only
Replication Only
Checkpointing+Replication

(e) Random

Figure 2: Optimal solutions obtained with the ChainsCkpt algorithm (top) and the ChainsRep-
Ckpt algorithm (bottom) for the five work distributions.
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Figure 4: Impact of fail-stop error rate λFindp (left), checkpoint cost (middle), and ratio α between
the checkpointing cost for replicated task Crep

i over non-replicated tasks Cnorep
i (right).

This is because replicated tasks tend to decrease the global probability of having an error, thus
reducing even more the number of checkpoints needed as seen previously. Regarding the HighLow
work distribution, we observe a higher optimal expected makespan for both the ChainsCkpt and
the ChainsRepCkpt strategies. Indeed, in this scenario, the first tasks are very long (60% of the
total work), which greatly increases the probability of error and the associated re-execution cost.

5.1.3 Impact of error rate and checkpoint cost on the performance

Figure 4 shows the impact of three of the model parameters on the optimal expected normalized
makespan of both ChainsCkpt and ChainsRepCkpt. First, we show the impact of the fail-stop
error rate λFindp on the performance. The ChainsRepCkpt algorithm improves the ChainsCkpt
strategy for large values of λFindp: replication starts to be used for λFindp > 2.6× 10−4 and it reduces
the makespan by ≈ 16% for λFindp = 10−3 and by up to ≈ 40% when λFindp = 10−2, where all tasks
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Figure 5: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different numbers
of processors, with different model parameter values for the checkpointing cost (ai, bi, ci).
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are checkpointed and replicated.

Then, we investigate the impact of the checkpointing cost with respect to the task length. As
shown in Figure 1, replication is not needed for low checkpointing costs, i.e., when the checkpointing
cost is between 0 and 0.8 times the cost of one task: in this scenario, all tasks are checkpointed and
both strategies lead to the same makespan. When the checkpointing cost is between 0.9 and 1.6
times the cost of one task, ChainsRepCkpt checkpoints and replicates half of the tasks. Overall,
the ChainsRepCkpt strategy improves the optimal normalized expected makespan by ≈ 11% for
a checkpointing cost ratio of 1.6, and by as much as ≈ 36% when the checkpointing cost is five times
the length of one task.

We now investigate the impact of the ratio between the checkpointing and recovery cost for
replicated tasks and non-replicated tasks α and we present the results for α = 1 (Crep

i = RDrep
i =

Cnorep
i = RDnorep

i ), α = 1.5 (Crep
i = RDrep

i = 1.5Cnorep
i = 1.5RDnorep

i ) and α = 2 (Crep
i = RDrep

i =

2Cnorep
i = 2RDnorep

i ). As expected, the makespan increases with α, but it is interesting to note that
the makespan converges towards a same lower-bound as the number of (shorter) tasks increases. As
shown previously, when tasks are smaller, ChainsRepCkpt favors replication over checkpointing,
especially when the checkpointing cost is high, which means less checkpoints, recoveries and re-
executions.

Finally, we evaluate the efficiency of both strategies when the number of processors increases.
For this experiment, we instantiate the model using variable checkpointing costs, i.e., we do not use
bi = ci = 0 anymore, so that the checkpointing/recovery cost depends on the number of processors.
We set n = 50, λFind = 10−7 and we make p vary from 10 to 10,000 (i.e., the global error rate varies
between 10−6 and 10−3). Figure 5 presents the results of the experiment using three different sets
of values for ai, bi and ci. We see that when bi increases while ci decreases, the replication becomes
useless, even for the larger error rate values. However, when the term cip becomes large in front
of bi

p , we see that ChainsRepCkpt is much better than ChainsCkpt, as the checkpointing costs
tend to decrease, in addition to all the other advantages investigated in the previous sections. With
p = 10, 000, the three different experiments show an improvement of 80.5%, 40.7% and 0% (from
left to right, respectively).

5.1.4 Impact of the number of checkpoints and replicas

Figure 6 shows the impact of the number of checkpoints and replicas on the normalized expected
makespan for different checkpointing costs and fail-stop error rates λFindp under the Uniform work
distribution. We show that the optimal solution with ChainsRepCkpt (highlighted by the green
box) always matches the minimum value obtained in the simulations, i.e., the optimal number of
checkpoints, number of replicas, and expected execution times are consistent. In addition, we show
that in scenarios where both the checkpointing cost and the error rate are high, even a small deviation
from the optimal solution can quickly lead to a large overhead.

5.2 Scenarios with both fail-stop and silent errors

In this section we evaluate the power of replication in addition to checkpointing on platforms subject
to both fail-stop and silent errors.

5.2.1 Experimental setup

All the model parameters are instantiated as before, with the following changes to account for the
presence of silent errors. Unless stated otherwise, the fail-stop error rate has been set to 1.28e-3s−1

and the silent error rate has been set to 5.48e-3s−1. The silent error rate has been computed from
real measures [2]: we derived a non-corrected silent error rate per core of 5.48e-9s−1. Similarly, the
fail-stop error rate per core considered was 1.28e-9s−1, which corresponds to a core lifetime of 25
years. Finally, we considered a platform of 1 million cores which tends to be the trend for current
Top500 machines [42].
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Figure 6: Impact of the number of checkpoints and replicas on the normalized expected makespan
for fail-stop error rates of λFind = 10−4 (top), λ = 10−3 (middle) and λ = 10−2 (bottom) and
for checkpointing costs of 0.5 × Tnorep

i (left), 1 × Tnorep
i (middle) and 2 × Tnorep

i (right), with
Cnorep
i = Crep

i under Uniform work distribution. The optimal solution obtained with ChainsRep-
Ckpt always matches the minimum simulation value and is highlighted by the green box.

As for other parameters, we considered a verification cost of 1% of the corresponding task length.
The cost of memory recovery was set to 5% of that of a disk recovery, considering an average between
different measured values from [31].

For simplicity, we assume that checkpointing costs are equal to the sum of the corresponding
recovery costs, assuming that read and write operations take approximately the same amount of time,
i.e., RDnorep

i+1 + RMnorep
i+1 = Cnorep

i . For replicated tasks, we set Crep
i = αCnorep

i , RDrep
i = αRDnorep

i

and RMrep
i = αRMnorep

i , where 1 ≤ α ≤ 2, and we assess the impact of parameter α in Section 5.2.3.
As in the previous section, we measure the performance of a solution by evaluating the associated
normalized expected makespan, i.e., the expected execution time needed to compute all the tasks in
the chain, with respect to the execution time without errors, checkpoints, or replicas.

5.2.2 Comparison to checkpoint only

We start with an analysis of the solutions obtained by running the optimal dynamic programming
(DP) algorithm ChainsRepCkpt on chains with 20 tasks for the five different work distributions
described in Section 5.1.1. We also run a variant of ChainsRepCkpt that does not perform any
replication, hence using a simplified DP algorithm, that is called ChainsCkpt.

We vary the fail-stop error rate λFindp from 10−8 to 10−2, without changing the silent error
rate λSind . The disk checkpoint/recovery cost is constant per task and varies from 10−3Tnorep

i to
103Tnorep

i (hence, the memory checkpoint/recovery cost varies from 5 × 10−5Tnorep
i to 50Tnorep

i ).
Overall, all checkpoints have a cost from 1.05×10−3Tnorep

i to 1.05×103Tnorep
i as we always perform

both types of checkpoints. For replicated tasks, we set α = 1 in this experiment, i.e., Crep
i = Cnorep

i ,
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RDrep
i = RDnorep

i and RMrep
i = RMnorep

i . In another experiment, we also make the silent error rate
λSindp vary from 10−8 to 10−2 without changing the fail-stop error rate of 1.28e-3, with the same
range for the checkpoint cost.
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Figure 7: Impact of checkpoint/recovery cost and error rates on the usage of checkpointing and
replication. Total sequential work is fixed to 10, 000s and is distributed uniformly among n = 20
tasks (i.e., T1 = T2 = · · · = T20 = 500s). Each color shows the presence of checkpoints and/or
replicas in the optimal solution.

Figure 7 presents the results of these experiments for the Uniform distribution. The colors are
the same as in Figure 1, with Checkpointing Only meaning that some tasks are checkpointed but
no task is replicated and Checkpointing+Replication meaning that some tasks are checkpointed and
some tasks are replicated. The left figure presents the results when the silent error rate is fixed but
the fail-stop error rate varies. The right figure presents the results of the other experiment with a
fixed fail-stop error rate and different silent error rates.

First, we observe that with silent errors, checkpointing becomes mandatory. Too many failures
can strike during the execution, and checkpointing helps reducing the time spent on rollbacks and
re-executions. However, as soon as the cost of a checkpoint exceeds the length of a task, replication
becomes useful and this remains true even for low error rates. This holds for both fail-stop errors
(left) and silent errors (right). There is one exception: when the fail-stop error rate is lower than
10−5 and the checkpointing cost is less than twice the length of a task, checkpoints are sufficient
and is replication is not needed. Replication is overall not needed under good conditions, however
for our real setup, indicated by the red box, using both checkpointing and replication is a better
solution. We point out that similar results are obtained when using other work distributions (see
the extended version [4]).

In the next experiment, we focus on scenarios where both checkpointing and replication are
useful, i.e., we set the checkpointing cost to be twice the length of a task (i.e., Cnorep

i = ai =
2Tnorep

i ), keeping λFindp = 1.28e-3 and λSindp = 5.48e-3, for the fail-stop and silent error rates,
respectively, which corresponds to the case highlighted by the red box in Figure 7. Figure 8 presents
the optimal solutions obtained with the ChainsCkpt and ChainsRepCkpt algorithms for the
Uniform, Increasing, Decreasing, HighLow and Random work distributions, respectively.
With two sources of errors, the solution is straightforward: almost every task must be checkpointed,
with the exception of one (short) task for the Decreasing and Increasing distributions. However
almost every task is also replicated (20 tasks out of 20 for the Uniform distribution compared
to only 13 in the experiments of Section 5.1.2), showing once more that replication grants better
protection to failures even if it increases the failure-free execution time. Checkpoints are being
taken the same way as in our previous experiments: long tasks are systematically checkpointed
while shorter tasks are either unprotected or replicated, as can be seen with the first tasks of the
Increasing distribution and the last task of the Decreasing distributions.

Figure 9 compares the performance of ChainsRepCkpt to the checkpoint-only strategy Chains-
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Figure 8: Optimal solutions obtained with the ChainsCkpt algorithm (top) and the ChainsRep-
Ckpt algorithm (bottom) for the five work distributions.
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Figure 9: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different numbers
of tasks: impact on the makespan (left), number of checkpoints (middle) and number of replicas
(right) with a fail-stop error rate of λFindp = 1.28e-3, a silent error rate of λSindp = 5.48e-3 and a
constant chekpointing/recovery cost Cnorep

i = Crep
i = 1000s.

Ckpt with fail-stop and silent errors. First, we observe that long tasks, being more likely to fail
than shorter tasks, introduce a high overhead. As a consequence, with 20 tasks, the normalized
makespan is too high and the execution of such applications is not possible, independently of the
work distribution and the chosen checkpointing strategy. With more tasks however, the Chains-
RepCkpt strategy always yield a shorter makespan compared to the ChainsCkpt strategy. For
example, with 100 tasks, the normalized makespan obtained with the ChainsRepCkpt strategy is
as high as ≈ 8.5 (and much more for the HighLow distribution), compared to ≈ 13 for Chains-
Ckpt. Indeed, with such high error rates, all tasks are replicated under the ChainsRepCkpt
strategy, as can be seen on the right plot, but fewer tasks need to be be checkpointed (up to 50%
fewer checkpoints with 100 tasks and the Uniform distribution).

The improvement is comparable to the 35% improvement observed with only fail-stop errors.
Once again, replicated tasks tend to decrease the global probability of having an error, thus slightly
reducing the number of checkpoints needed, while reducing the re-execution costs that can be very
important with late-detected silent errors. Regarding the HighLow work distribution, we again
observe a higher optimal expected makespan for both the ChainsCkpt and the ChainsRepCkpt
strategies. Indeed, in this scenario, the first tasks are very long (60% of the total work), which greatly
increases the error probability and the associated re-execution cost. Overall, for such applications
on platforms subject to both, fail-stop and silent errors, replication appears to be mandatory and
allows a reduction of the makespan of at least 30% if tasks are not too large (i.e. the probability of
completing the task is not close to 1).

5.2.3 Impact of error rate and checkpoint cost on the performance

Figure 10 shows the impact of four of the model parameters on the optimal expected normalized
makespan of both ChainsCkpt and ChainsRepCkpt, using the Uniform distribution. First,
we show the impact of the fail-stop error rate λFindp on the performance. The ChainsRepCkpt
strategy always yields shorter makespans compared to the ChainsCkpt strategy. All tasks are
always replicated, reducing the probability of having an error for each task, and each task is also
checkpointed. The normalized makespan for ChainsCkpt is 19.5 for λFindp = 10−5, compared to
19.2 for ChainsRepCkpt, i.e. a reduction of only 1.7%, but this goes up to 50.3 for λFindp = 1.14e-3
compared to 35.2 when using replication, i.e. a reduction of 30%. The results are similar when we
vary the silent error rate: when λSindp = 10−5, ChainsRepCkpt results in a normalized makespan
of 4.60 compared to 5.55 with ChainsCkpt, i.e. a reduction of 17%, and this goes up to more than
30% when λSindp > 5× 10−3.

Then, we investigate the impact of the checkpointing cost with respect to the task length. The
results are slightly different now that we have silent errors: ChainsCkpt and ChainsRepCkpt
behave similarly only for small values of checkpoint cost. ChainsRepCkpt becomes better than
ChainsCkpt for C ≥ 0.525, thus reducing the makespan obtained using only checkpoints. Both
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Figure 11: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different numbers
of processors, with different model parameter values for the checkpointing cost (ai, bi, ci).
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strategies yield a makespan that increases linearly with the checkpointing cost, however the Chains-
RepCkpt strategy needs less checkpoints, and the makespan increases slower. This means that the
costlier the checkpoints the better the improvement thanks to replication. Overall, the execution
under the ChainsRepCkpt strategy is 1.17 times faster than ChainsCkpt for a checkpointing cost
of 1.05Tnorep

i , 1.66 times faster for a checkpoint cost of 3.15Tnorep
i , and this goes up to 1.95 times

faster when the checkpointing cost is 5.25Tnorep
i .

We now investigate the impact of the ratio α between the checkpointing and recovery cost for
replicated tasks and non-replicated tasks and we present the results for α = 1, α = 1.5 and α = 2. As
expected, the makespan increases with α, but it is interesting to note that the makespan converges
towards a same lower-bound as the number of (shorter) tasks increases. As shown previously,
when tasks are smaller, ChainsRepCkpt favors replication over checkpointing, especially when the
checkpointing cost is high, which means fewer checkpoints, recoveries and re-executions.

Finally, we evaluate the efficiency of both strategies when the number of processors increases.
For this experiment, we instantiate the model using variable checkpointing costs, i.e., we do not use
bi = ci = 0 anymore, so that the checkpointing/recovery cost depends on the number of processors.
We set n = 50, λFind = 1.28× 10−9, λSind = 5.48× 10−9 and we make p vary from 1000 to 2,000,000
(i.e., the error rates vary between 10−6 and 10−2 approximately). Figure 11 presents the results
of the experiment using three different sets of values for ai, bi and ci. The trend is the same as
previously with fail-stop errors: when bi increases and ci decreases, the advantage of using replication
becomes less clear. However, on every plot, ChainsCkpt and ChainsRepCkpt grants the same
makespan only when using a few cores. Every plot shows that, with the increasing number of cores
on nowadays platforms, ChainsRepCkpt will behave better and better compared to ChainsCkpt.
In particular, the improvement for each set of parameters (from left to right) is 69%, 30% and 0%
for p = 500000, and is 76%, 60% and 16% for p = 1500000.

6 Related work

In this section, we discuss the work related to checkpointing and replication. Each of these mecha-
nisms has been studied for coping with fail-stop errors and/or with silent errors. The present work
combines checkpointing and replication for linear workflows in the presence of fail-stop and silent
errors.

6.1 Checkpointing

The de-facto general-purpose recovery technique in high-performance computing is checkpointing
and rollback recovery [13, 19]. Checkpointing policies have been widely studied and we refer to [25]
for a survey of various protocols.

For divisible load applications where checkpoints can be inserted at any point in the execution
for a nominal cost C, there exist well-known formulas proposed by Young [46] and Daly [16] to
determine the optimal checkpointing period. For applications expressed as linear workflows, such as
considered in the present work, the problem of finding the optimal checkpointing strategy, i.e., of
determining which tasks to checkpoint, to minimize the expected execution time, has been solved
by Toueg and Babaoğlu [43].

Single-level checkpointing schemes suffer from the intrinsic limitation that the cost of checkpoint-
ing and recovery grows with the error probability, and becomes unsustainable at large scale [23, 8]
(even with diskless or incremental checkpointing [34]). Recent advances in decreasing the cost of
checkpointing include multi-level checkpointing approaches, or the use of SSD or NVRAM as sec-
ondary storage [11]. To reduce the I/O overhead, various two-level checkpointing protocols have
been studied. Vaidya [44] proposed a two-level recovery scheme that tolerates a single node error
using a local checkpoint stored on a partner node. If more than one error occurs during any local
checkpointing interval, the scheme resorts to the global checkpoint. Silva and Silva [37] advocated
for a similar scheme by using memory protected by XOR encoding to store local checkpoints. Di
et al. [17] analyzed a two-level computational pattern, and proved that equal-length checkpointing
segments constitute the optimal solution. Benoit et al. [6] relied on disk checkpoints to cope with
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fail-stop errors and used memory checkpoints coupled with error detectors to handle silent data
corruptions. They derived first-order approximation formulas for the optimal pattern length as well
as the number of memory checkpoints between two disk checkpoints. The present work employs
single-level checkpointing (in memory or on stable storage) for individual tasks in linear workflows.

6.2 Replication

As mentioned earlier, this work only considers task duplication. Triplication [29] (three replicas
per task) is also possible yet only useful with extremely high error rates, which are unlikely in
HPC systems. The use of redundant MPI processes is analyzed in [12, 22, 23]. In particular,
Ferreira et al. [23] studied the use of process replication for MPI applications, using two replicas
per MPI process. They provide a theoretical analysis of parallel efficiency, an MPI implementation
that supports transparent process replication (including error detection, consistent message ordering
among replicas, etc.), and a set of experimental and simulation results. Thread-level replication has
also been investigated [47, 14, 35]. The present work targets selective task replication as opposed
to full task replication in conjunction with selective task checkpointing to cope with fail-stop and
silent errors and minimize makespan.

Partial redundancy was also studied (in combination with coordinated checkpointing) to decrease
the overhead of full replication [18, 38, 40]. Adaptive redundancy is introduced in [24], where a subset
of processes is dynamically selected for replication. Earlier work [3] considered replication in the
context of divisible load applications. In the present work, task replication (including work and data)
is studied in the context of linear workflows, which represent a harder case than that of divisible
load applications as tasks cannot arbitrarily be divided and are executed non-preemptively.

Ni et al. [32] introduce process duplication to cope both with fail-stop and silent errors. Their
pioneering paper contains many interesting results. It differs from this work in that they only
consider perfectly parallel applications while we investigate herein per task speedup profiles that
obey Amdahl’s law. More recently, Subasi et al. [39] proposed a software-based selective replication
of task-parallel applications with both, fail-stop and silent errors. In contrast, the present work
(i) considers dependent tasks such as found in applications consisting of linear workflows; and (ii)
proposes an optimal dynamic programming algorithm to solve the combined selective replication and
checkpointing problem. Combining replication with checkpointing has also been proposed in [36, 49,
21] for HPC platforms, and in [27, 45] for grid computing.

7 Conclusion

In this work, we studied the combination of checkpointing and replication to minimize the execution
time of linear workflows in environments prone to both fail-stop and silent errors. We introduced
a sophisticated dynamic programming algorithm that solves the combined problem optimally, by
determining which tasks to checkpoint and which tasks to replicate, in order to minimize the total
execution time. This dynamic programming algorithm was validated through extensive simulations
that reveal the conditions in which checkpointing, replication, or both lead to improved performance.
We have observed that the gain over the checkpoint-only approach is quite significant, in particular
when checkpointing is costly and error rates are high.

Future work will address workflows whose dependence graphs are more complex than linear chains
of tasks. Although an optimal solution seems hard to reach, the design of efficient heuristics that
decide where to locate checkpoints and when to use replication, would prove highly beneficial for
the efficient and reliable execution of HPC applications on current and future large-scale platforms.
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