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Abstract

With the increasing demand for high-performance computing, multicore architectures be-
came appealing in various application domains. In order to exploit the parallelism of the mul-
ticore architectures, task scheduling has become more important than ever. Classical multicore
task scheduling assumes that each task is executed on one of the cores. However, many tasks in
modern applications have inherent parallelism and can be multi-threaded. A task is partitioned
into threads which can be executed on multiple cores in a fork-join fashion. A multi-threaded
task is called malleable if the number of threads is flexible and is determined at the same time
as task scheduling.

This paper proposes multicore scheduling methods for malleable tasks. Given a set of depen-
dent tasks in the form of directed acyclic graph and homogeneous multiple cores, the proposed
methods decide the number of threads for each task and schedule the threads on the multicores
simultaneously, with the goal of minimizing the overall schedule length. The proposed schedul-
ing methods are based on constraint programming. Experimental results show that the proposed
methods outperform state-of-the-art work which is based on integer linear programming.
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1 Introduction

Multicore task scheduling, which decides the execution order of tasks on multiple cores, has become
more important than ever due to increasing number of cores not only in general-purpose computer
systems but also in embedded systems. In classical task scheduling problems for multicore architec-
tures, tasks are mapped to the available cores so that the tasks are executed in parallel on different
cores, on the assumption that each task is executed on one of the multiple cores [1, 2]. Many tasks in
modern applications such as multimedia ones, however, can be partitioned into multiple threads in a
data-parallel fork-join manner, and the threads can be executed independently on multiple cores [3].
Many researchers have studied scheduling problems which consider not only task parallelism (i.e.
inter-task parallelism) but also data parallelism (i.e. intra-task parallelism) [5]-[15]. As proposed in
[5]-[7], their works assumed that the number of threads in each task is fixed. On the other hand, the
works in [11] and [15] assumes that tasks are malleable. A malleable task has an unfixed number of
threads. The number of threads for each task is determined at the same time as scheduling.

Task scheduling problems are known to be in the NP-hard class of computationally intractable
problems [4]. The state-of-the-art methods for malleable task scheduling in [11] and [15] are based
on integer linear programming (ILP). The methods can obtain optimal schedules for small task
graphs, but cannot find optimal schedules, or even one of feasible schedules, for large task graphs in
a practical time.

Constraint programming (CP) is one of proven approaches to combinational optimization prob-
lems including classical task scheduling problems [16, 20, 21]. This paper, for the first time, proposes
a CP-based scheduling method for malleable fork-join tasks. Given a set of dependent malleable
tasks in the form of a directed acyclic graph (DAG) and a set of homogeneous multiple cores, the
proposed method decides the number of threads for each task and schedule the threads on the mul-
ticores simultaneously, with the goal of minimizing the overall schedule length (a.k.a. makespan).
This paper also proposes a CP-based scheduling method for malleable synchronous tasks. Similar to
malleable fork-join tasks, a malleable synchronous task can be partitioned into an unfixed number
of threads. However, the threads cannot be executed independently, and need to be scheduled syn-
chronously with each other !. In other words, the threads of a synchronous task need to be started
at the same time on different cores. On the other hands, the threads of a malleable fork-join task
can be started at different times on different cores, or they can be executed sequentially on the same
core.

The contributions of this work are threefold as follows.

e This work proposes a CP-based scheduling method for malleable fork-join tasks.
e This work also proposes a CP-based scheduling method for malleable synchronous tasks.

e This work conducts a set of experiments and shows that the proposed CP-based methods
outperform state-of-the-art methods based on ILP.

The remainder of this paper is organized as follows. Section 2 describes related work on task
scheduling. Section 3 provides the ILP-based mathematical formulation and our CP-based approach
to MS scheduling. This section also presents the experiments and the evaluation. In Section 4, we
present a CP-based scheduling of MFJ tasks after the introduction of an ILP-based formulation with
the experiments. Finally, Section 5 concludes this paper with future plans.

2 Related Work

In [1], classic techniques on task scheduling for multicore architectures are extensively surveyed.
Multiple tasks, which are independent of each other, are executed in parallel on different cores.
The authors of [2] develop a ILP-based approach to scheduling of tasks on multiple processors with
communication delay. However, both of them assume that each task is not considered with data

LIf the threads have to synchronize with each other frequently during their execution on a non-preemptive envi-
ronment, the task is considered as a synchronous one.
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parallelism and is executed on a single core. Many real world tasks have not only task parallelism
but also have data parallelism. Then task scheduling, which considers both parallelisms, has been
studied in [3]- [15]. In [5], Liu et al. proposed list-based scheduling algorithms for data-parallel tasks.
Their work assumes that a set of dependent tasks is given in the form of a task-graph, where each
task is assigned to a fixed number of cores. Then, they try to minimize the overall schedule length.
Yang and Ha'’s work in [6] also focuses on scheduling of data parallel tasks. Unlike the work in [5],
their work in [6] assumes that tasks are malleable, which means that the number of cores for each task
is not given and is determined at the same time as scheduling. Their goal is to minimize hardware
cost with meeting deadline constraints. In [7], the authors take advantage of data-parallelism and
proposed a technique for pipelined task scheduling and mapping on heterogeneous MPSoCs. Chen
and Chu in [8] designed a polynomial time approximation algorithm for malleable tasks to find
a minimum makespan. Scheduling of MFJ tasks for real-time systems is studied in [12]. In the
scheduling of MFJ tasks, a task is partitioned into multiple threads, and each thread is mapped to
one of multiple cores, independently. The work aims at evaluation of the tractable and intractable
fork-join real-time task model. Lakshmanan et al. in [13] developed an algorithm for MFJ tasks in
OpenMP. Saifullah et al. in [14] proposed a real-time task scheduling model which assumes that a
task holds the various numbers of threads. Shimada et al. in [11] studies MFJ task scheduling by
a mathematical approach based on integer linear programming. They also study in [15] scheduling
of malleable tasks based on integer linear programming. In this work, a malleable task is assumed
that synchronization among all threads of each task is necessary for start time and end time. Their
works are based on an ILP approach, and therefore can hardly be explored due to the excessive time
for finding a solution.

In order to find a feasible solution in a short time, heuristic-based approaches have been developed
such as MILP (i.e. Mix Integer Linear Programming), SMT (i.e. Satisfiability Modulo Theory), and
CP. In [17], the work studies a MILP approach to scheduling problem of parallel tasks, but it is focus
on rigid tasks, where each task is assumed to be executed on a statically fixed number of processors.
Liu et al. [18] analyze how efficiently a SAT solver is able to eliminate the solution space for task
scheduling problems with mapping. The SAT-based framework proves a significant improvement in
terms of the optimality and the scalability. Malik et. al in [19] evaluate the performance of scheduling
problem based on satisfiability modulo theory (SMT). Furthermore, CP-based approaches are also
proposed in area of scheduling. In [16], the principle of CP methods for combinational optimization
problems is surveyed. Derived from the work, Baptiste et al. [20] develop a scheduling problem with
a CP approach. Kuchicinski in [21] also proposes a scheduling problem that take communication
cost into account, using CP. The authors both in [22] and [23] present scheduling problems, assumed
that tasks are executed on multiple processors. However, the works applied with such a solver are
not focused on scheduling for malleable tasks. This paper studies a CP-based approach to scheduling
of malleable tasks. We try to find better solutions and much faster than the state-of-the-art methods
for data parallel task scheduling. To the best of our knowledge, this is the first paper that addresses
this topic.

3 Scheduling for Malleable Fork-join Tasks

This section presents an example of MFJ task scheduling, and describes the formulation based on
an integer linear programming (ILP) which was presented in [11]. A MFJ task scheduling assumes
that each of tasks can be split into threads, and each thread is scheduled, independently. A thread
is executed on a core unless the core is overlapped. The number of threads to be split is determined
at the same time as scheduling. Given a set of dependent tasks and a set of homogeneous cores, the
objective of scheduling for MFJ tasks is to minimize the overall schedule length.

3.1 Problem Description

In Figure 1 (a), (b), (¢) and (d), an example of MFJ task scheduling on four cores is represented.
The table on the top of Figure 1 (a) is a task graph in form of a directed acyclic graph (DAG), and
(b) shows Timey j, ; values for task 1. In this example, task 1 is split into two threads. In other
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Figure 1: A scheduling example for MFJ tasks

words, task 1 is assigned to two cores. Although there are two threads for task 1, we assume that
there exist two virtual threads whose execution time is 0, as shown in Figure 1 (c). Then, one of
the examples for scheduling of the threads is represented in Figure 1 (d). This is a very feature of
ILP formulation. The execution time of j — th thread in task ¢ is shown.

3.2 ILP Formulation

Scheduling for MFJ tasks presented in [11] is based on ILP, and the scheduling solution is obtained
by a commercial solver. The rest of this section briefly describes the ILP formulation presented
in [11].

Let split; j, denote a 0-1 decision variable. split; ;, becomes 1 if task 7 is split into & threads. As
follows, the constraint must hold, where k is within the range of 1 to the number of cores.

Vi, > spliti g =1 (1)
k

Let Time; 1 ; denote the execution time of j — th thread of task ¢ when it is assigned to k cores.
Time;  ; is 0 for j > k. Time; j ; is assumed to be given, and how to obtain T'ime; j ; values is out
of scope in this paper.

Vi, time,; =Y (splitiy x Timeqy,;) (2)
k

The threads are scheduled independently unless the cores are overlapped. Therefore, let start; ;
and finish;; denote the start time and the finish time of the threads of task 7, respectively. Note
that start; ; is a decision variable and finish;; is a dependent variable defined by the following
equation.

V1,7, finish; j = start; ; + time; ; (3)

Next, let core; ; be the identified number of the cores which is assigned to j — th thread in task
1. If two threads, thread j1 in task i1 and the thread j2 in i2, are mapped to the same core, the

134



International Journal of Networking and Computing

execution of the two threads cannot be overlapped in time. This resource constraint is formulated
by the following.

Vil,iQ,jl,jQ, COT€41,51 7é COT€;2,52
V fim'shﬂ,jl < St(l’l’tigd‘g
\Y fin’ishig’jg S startiml (4)

This work assumes a set of dependent tasks, where the tasks may have a flow dependency
among them. Let start_min; and finish.maz; denote the start time and the finish time of task ¢,
respectively. They are defined as follows.

i, start-min; = min;{start; ;} ()

Vi, finish-mazx; = max;{finish; ;} (6)

Let Flow;; ;2 denote a flow dependency from task i1 to 2. Flowj ;2 is 1 when task ¢1 must be
finished before task i2 starts. Otherwise, Flow; ;2 is 0. We assume that Flow;; ;2 is given. Then,
the precedence constraint is expressed as follows.

Vil,12, Flow;1,i2 — finish-maz; < start_-min;g (7

This work aims at minimization of the overall schedule length. Therefore, the objective function
of our scheduling problem to be minimized is given as follows.

Minimize : max;{ finish;} (8)

Our scheduling problem for MFJ tasks is now formally defined: Given a set of dependent tasks,
a set of cores, Time; 1 ; and Flow; 2, find split; i, core; ; and start; ; which minimize the objective
function (8) subject to the constraints (1)-(7).

3.3 Constraint Programming Approach

This section proposes a formulation for scheduling of malleable fork-join tasks based on CP. In
order to solve an optimization problem with CP, IBM ILOG CP Optimizer is used as a CP solver
in this work, whose concepts for expressions and functions of scheduling problems are described
in [24] and [25]. ILOG CP Optimizer offers a number of built-in functions. According to IBM
ILOG CP Optimizer official publication in [26] and some studies such as the works in [27] and [28],
the CP Optimizer has been developed for the internal strong search strategies and techniques.
As a default, the CP Optimizer basically has search strategies consists of diverse those of being
dynamically changed for the time when the search adapting to the problem at hand. The different
search techniques basically include mainly DFS (Depth First Search), LNS (Large Neighborhood
Search), GA (Genetic Algorithm), but they are not restricted with such the algorithms. Furthermore,
constraint propagation that is one of the internal techniques by ILOG CP Optimizer performs in the
search for solutions to CP problems. Constraint propagation removes values from domains that will
not take part in any solution. Then, the CP Optimizer starts finding a solution under constraints with
back-tracking algorithm. If the CP Optimizer succeeds in obtaining a feasible solution, the solution
is added into the constraints as an upper or a bottom bound. Moreover, constraint propagation
removes the values of decision variables from domains that will not take part in any other solutions
considered with the solution. Again, the CP Optimizer restarts to find a solution. Such strong
strategies for solving an optimization problem are employed by the CP Optimizer. A motivation in
this paper is obtained due to these features of the CP. By utilizing the built-in functions, optimal
schedules can be found efficiently. Even in case optimal schedules are not found in a practical time,
the CP optimizer can find better schedules than the ILP-based technique [11]. In the following, we
describe the formulation for this scheduling with using CP provided by IBM ILOG CP Optimizer.
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Figure 2: A concept of resource constraint

3.3.1 Interval Variable

One of the most important concepts in scheduling with ILOG CP Optimizer is interval variables.
An interval variable represents an interval of time while an activity is carried out, and it is described
as a start time, an end time and a size (length) of an execution time. One of the features of interval
variables is that they are optional even if they are defined in the CP program. Interval variables
can be either present or absent. If an interval variable is marked as absent, the interval variable is
ignored during the scheduling process.

Let task; ; denote an interval decision variable for j — th thread in task ¢. It is present in the
scheduling if 7 — th thread in task ¢ is considered, otherwise absent. In our scheduling problem, we
are given the execution time of each thread in tasks, thus, we attempt to determine the number of
threads for each task, what cores to be mapped on and their start time of execution.

3.3.2 Precedence Constraints

This work assumes a set of dependent tasks, where tasks may have a given precedence dependency.
The function, called endBe foreStart(a,b) built in ILOG CP Optimizer, represents the precedence
constraint between interval variables a and b are considered to be true provided that both of the
two interval variables are present. Therefore, the precedence dependency constraint that task;i ji
must be finished before task;s jo starts is expressed as follows.

V51,52, endBe foreStart(taskii j1, taskia, jo) (9)

3.3.3 Alternative Constraints

Next, we set a set of decision; y ;. decision; ; denotes the execution time of j — th thread in task %
when it is assigned to k cores for the task. In order to guarantee that one of decision; i ; is present
for each task; ; where task i is determined to be split into £ threads, we use the alternative function.

V1,5 alternative(task;, Uy {decision; i ;}) (10)

In Formula (10), it should be recalled that task 7 is always present. Therefore, one in a set
of decision; ; must be present. Then, all of threads to be split in task ¢ must be present. The
constraint is expressed in Formula (11).

Vi,k,51,52, presenceO f(decision;  j1) — presenceO f(decision; j j2) (11)

presenceO f is a built-in function of ILOG CP Optimizer, which returns values 0-1 for the
existence of the given interval variable.
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3.3.4 Resource Constraints

This work tries to minimize the schedule length under a resource constraint on a number of cores.
At any moment in time, the total number of cores assigned to active tasks cannot exceed the number
of cores in the target system. This resource constraint is expressed with the pulse function and the
cumul function in ILOG CP Optimizer as shown in Figure 2. Figure 2 (a) shows the concept of
the pulse function. Let a be an interval variable and h be a scalar value. The value of pulse(a, h)
indicates h during the interval a. When a is absent, the pulse value is 0. According to [24] and
[25], the cumulative function accumulates the values from pulses over time. In shown in Figure 2
(b), here is one of examples with the interval variables a, b and ¢. This case assumes that the pulse
function is utilized with a, b, and ¢, respectively. Now, the cumulative function is accumulated with
pulse(a,1) + pulse(b,2) + pulse(c,2). Applying the concept to our resource constraint, a constraint
on a number of cores is expressed as follows.

Ncores > CumulFunction{Z Z Zpulse(decisionmm 1)} (12)
i kg

In the formula, Ncores denotes the total number of cores in a system. It should be recalled that
decision; j  is an interval variable and is present if j — th thread of task 7 split into %k threads is
active. Formula (12) means the value of pulse(decision; ; 1, 1) is 1 while j —th thread in task ¢ being
active. The value 1 is represented when a core is assigned to a thread in a task, that is, the right
side of the inequality shows that sum of the total number of cores assigned to the active threads in
tasks.

3.3.5 Objective Function

Our objective function is to minimize the overall schedule length, and is defined as follows.

Minimize : max; j{endO f(task; ;)} (13)

endO f is a built-in function in ILOG CP Optimizer, which returns the end time of the given in-
terval variable. In general, constraint programs do not have any objective functions to be minimized
or maximized. Constraint programs search for values for variables which satisfy all of the specified
constraints. However, many state-of-the-art CP solvers including ILOG CP Optimizer are capable
of finding the best values for variables to optimize a specified objective function. In this work, we
take advantage of the optimization capability in ILOG CP Optimizer.

3.4 Experiments

In order to evaluate and compare the performance of the proposed approach, we have conducted a set
of experiments. Scheduling for MFJ tasks becomes much more complex than the classical scheduling
method in terms of computational costs for parallelism. In order to evaluate the performance of
every method in this paper, we have a set of taskgprahs for a small number of tasks composed
of 6 to 30 tasks that are generated randomly to DAGs [29]. The rest of taskgraphs is derived
from the Standard Task Graph(STG) developed at Waseda Univerity [30]. Ten out of thirteen
taskgraphs, called rand0000 to rand0009 are randomly generated with exact 50 tasks, and the
others, called robot, sparse, and fpppp, are modeled into DAG as benchmarks of actual application.
Again, each application is in the following: robot control application has 88 tasks and 131 edges,
sparse matrix solver application has 96 tasks and 67 edges, and SPEC fpppp application has 334
tasks and 1145 edges. As mentioned in STG package [30], the task-graphs in these applications are
considered without communication costs. Each of application programs are assumed with precedence
dependency among tasks. The original taskgraphs in STG assume that each task is executed on
single-core only, so that the execution time is provided for assuming single-core execution. In
additional, the execution time may be less than 1 when a task is assumed to be executed on 32
cores, so that we multiply them by one hundred. Therefore, in our experiments, the execution times
of MFJ tasks on multiple cores are assumed to be Time;  ; = 100 x Time; 1 ; x (0.1 +0.9/k), for
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Figure 3: Scheduling results for MFJ tasks on 4 and 8 cores

k > 1, where Time;  ; denotes the execution time of j — th thread in task i assigned to k cores,
where each thread is assumed to have 10 % overhead for parallelization of a task. The number of
cores in the target systems is varied from 4 to 32.

e Single (optimal): Optimal scheduling on the assumption that a task is assigned to a single
core. The optimal solutions are provided in the STG package [30].

e Max: Every task is executed on all cores, and the tasks are sequentially executed.
o MFJ-ILP: ILP-based MFJ task scheduling presented in [11].
e MFJ-CP: CP-based MFJ task scheduling presented in this paper.

Figure 3 (a) and (b) and Figure 4 (a) and (b) show scheduling results on 4, 8, 16 and 32 cores,
respectively. All of the results are normalized to the Single method. In case of 4-core systems in
Figure 3 (a), the MFJ-CP method can find schedules in time, but they are slightly different from the
results by the Single method due to poor parallelism against the number of tasks. As less number
of tasks, we could find much shorter schedules even on 4 cores in the systems. On the other hand,
the results by the MFJ-ILP method are almost missed in the graphs, which means that the method
is failed to find any of schedules in time. In case of a small number of tasks, the MFJ-ILP may be
possible to find the better schedules than the Single method and the Max method. However, the
schedule lengths are the same or longer by 7.1% than the MFJ-CP method.

In the 8-core systems as shown in Figure 3 (b), a much significant improvement is observed.
The MFJ-CP method obtains shorter schedules over the other methods. On the other hand, the
MFJ-ILP method is failed to find a schedule in almost all the cases. As for the sparse benchmark,
the best schedule could be obtained by the execution that each task is assigned to a single core.
Compared with the Single method, the MFJ-CP method can shorten the schedule lengths by up to
56.6 %.
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Figure 4: Scheduling results for MFJ tasks on 16 and 32 cores

As increasing number of cores, the MFJ-CP method is still possible to obtain much shorter
schedules 65 % on average, but the MFJ-ILP method is again no longer able to find solutions. As
for the Max method, it may basically find shorter schedules than the Single method. However,
the Max method finds always worse schedules than the MFJ-CP method. On the other hands, the
method has an advantage of an ability to find an instant schedule. In the sparse, the tasks include
comparative high parallelism against the number of cores in precedence dependency among tasks.
Moreover, the overhead by parallelism has influence on the schedule length. Therefore, single-core
execution is the better way for this benchmark in poor parallelism of cores against the parallelism
of precedence dependency.

In the 32-core systems in Figure 4 (b), the MFJ-ILP method is impossible to find any of the
solutions due to high complexity of scheduling on multicore. The same is true for the case of fpppp
tried by the MFJ-CP method, but it is successfully able to improve the effectiveness by up to 81.9%
with regard to minimization of the schedule lengths in the overall cases.

4 Scheduling for Malleable Synchronous Tasks

This section presents malleable synchronous (MS) task scheduling. Similar to the scheduling pre-
sented in the previous section, MS task can be partitioned into an unfixed number of threads.
However, the threads cannot be executed independently, and need to be scheduled synchronously
with each other. That is, the threads of a MS task runs at different times on different cores. In this
section, we describe a CP-based scheduling method for MS tasks with built-in functions by ILOG
CP Optimizer. Scheduling of MS tasks decides the execution order of the tasks and the number of
threads for each task at the same time as scheduling. Our scheduling aims to minimize the overall
schedule length.
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Figure 5: A scheduling example for malleable synchronous tasks

4.1 Problem Definition

Figure 5 (a), (b) and (c) show an example of scheduling for MS tasks. In Figure 5 (a), a set of
dependent tasks is represented as DAGs, called a task-graph. Each of the tasks is associated with
the execution time which is a function of the number of cores to execute the task. A table of
execution time for task 1 is shown in the Figure 5 (b). For instance, the execution time of task 1 is
45 time-units when it is executed on a single core. We assume that each task needs synchronization
among all threads in the tasks, and all threads are executed on multiple cores at the same time.
The execution time of task 1 is 25 time-units when it is executed on dual cores. It is assumed that
the functions of the execution time for the tasks are given, and how to obtain these values is out of
scope in this paper. The number of cores assigned to the tasks is determined simultaneously with
task scheduling. Figure 5 (c¢) shows one of the optimal schedules for the task-graph in Figure 5 (a).
The overall scheduling length of the schedule is seen as 45 time-units.

4.2 ILP Formulation

The scheduling for MS tasks presented in [15] is based on ILP. In order to compare with the proposed
method, the solutions are obtained by a commercial solver. The rest of this section briefly describes
the ILP formulation presented in [15].

Let map; ; be a 0-1 decision variable. map; ; becomes 1 if task 7 is mapped to core j, otherwise
0. Let cores; j, be 0-1 variable, which becomes 1 if task ¢ uses k cores; k is varied from one to the
maximum number of cores in the target system, and otherwise 0. Note that cores; depends on
map; ; and is determined as follows.

Vi, Zcoresiyk =1 (14)
k

Vi, Zmapm = Zcoresi,k x k (15)
J k

Let Time; , denote the execution time of task ¢ on k cores. Time; ) is assumed to be given as
mentioned earlier. The execution time of task ¢ is given by the following equation.

Vi, time; = Z{coresi)k x Time; i } (16)
k

Next, let start; and finish; denote the start time and finish time of task i, respectively. Note that
start; is a decision variable and finish; is a dependent variable defined by the following equation.

Vi, finish; = start; + time; (17)
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The two tasks, il and ¢2, cannot be mapped to a core at the same time. That is, the execution
of the two tasks cannot be overlapped in time. This resource constraint of cores is formulated by
the following inequality.

VZLZQ,], map;i,; + map;2 ; <2
Vv finish;; < start;s
Vv finish;o < start; (18)

This work assumes a set of dependent tasks, and some tasks have precedence dependencies. As
a precedence dependency between task i1 and task 2, Flow;; ;o becomes 1 if task 71 is ended before
task 42 starts, and otherwise 0.

Vil,iz Flowil,ig — fim'shﬂ < start;s (19)

The objective is to minimize the overall scheduling length. Therefore, the objective function of
the scheduling problem is as follows.

Minimize : max;{ finish;} (20)

Now, the scheduling problem for MS tasks is formally defined: Given a task-graph, a set of
cores, Time; ;, and Flowil,i2, it decides map; ; and start; which minimize the objective function
(7) subject to the six constraints (1)-(6). Although some of the expressions are not linear, they can
be easily transformed into linear forms as presented in[15].

4.3 Constraint Programming Approach

In this section, we propose scheduling of MS tasks based on CP. For the formulation, we use the
built-in functions provided by IBM ILOG CP Optimizer as well as the previous section. We describe
a CP-based scheduling method for MS tasks in the following.

Let task; denote an interval decision variable for task ¢. It must be present in the scheduling
problem, and thus the presence status of task; is true. Next, let decision; ) denote an interval
decision variable which decides the number of cores to execute task;. decision; j is present if k cores
are assigned to task;, otherwise absent. This work assumes that the execution time of decision; i is
given, similarly to T'ime; ; in Section 4.1.

This work assumes a set of dependent tasks, where tasks may have a given precedence dependency.
The function, called endBe foreStart(a,b) built in ILOG CP Optimizer, represents the precedence
constraint between interval variables a and b are considered to be true provided that both of the two
interval variables are present. Therefore, the precedence dependency constraint that task;; must be
finished before task;s starts is expressed as follows.

Vil,i2, endBeforeStart(task;; , taskiz) (21)

An alternative constraint is one of the functions in ILOG CP Optimizer. Let denote a and b;
interval variables. The function alternative(a,b;...b,) represents exactly one of a set of intervals
by...b,, is present on the condition that interval a is present. The start and the end time of interval
a are synchronized with those of b; which is chosen to be present. If a is absent, every b; is also
absent. Using the alternative function, we can guarantee that one of decision; j, is present for each
task;, as shown in Formula (22).

Vi, alternative(task;, Uy {decision; 1.}) (22)

In Formula (22), it should be recalled that task; is always present. Therefore, one of decision; j
must be present.

This work tries to minimize the schedule length under a resource constraint on a number of cores.
At any moment in time, the total number of cores assigned to active tasks cannot exceed the number
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of cores in the target system. This resource constraint is expressed with the pulse function in ILOG
CP Optimizer. Figure 2, shown in the previous section, shows the concept of the pulse function.
The resource constraint is expressed as follows.

Ncores > C’umulFunction{Z Zpulse(decisioni7k, k) (23)
ik

In the formula (23), Ncores denotes the number of cores. It should be recalled that decision;
is an interval variable and is present if k cores are assigned to task i. Formula (23) means the value
of pulse(decision; i, k) is k while task ¢ being active. The value k is the number of cores assigned to
a task, that is, the right side of the inequality shows that sum of the number of cores assigned to the
active tasks. Therefore, this formulation does not take into account mapping of the tasks onto the
cores but simply does the number of cores assigned to them. Formula (23) does not identify what
cores to be assigned to a task, thus, the number of combinations of the cores assigned to a task is
significantly reduced unlike the formulation addressed in the ILP method.

Our objective function is to minimize the overall schedule length, and is defined as follows.

Minimize : maz;{endO f(task;)} (24)

As earlier mentioned in the previous section, endO f is a built-in function in ILOG CP Optimizer,
which returns the end time of the given interval variable. We try to minimize the overall schedule
length with the benefit of ILOG CP Optimizer that are capable of finding the best values for variables
to optimize a specified objective function.

4.4 Expertiments

In order to evaluate and compare the performance of the proposed approach, we have conducted a
set of experiments. we have set taskgprahs that are composed of a small number of tasks from 6 to
30 tasks in [29]. The rest of taskgraphs is derived from the Standard Task Graph(STG) developed
at Waseda Univerity [30]. Ten out of thirteen taskgraphs, called rand0000 to rand0009 are randomly
generated with exact 50 tasks, and the others, called robot, sparse, and fpppp, are modeled into
DAG as benchmarks of actual application.

The details of each application are in the following: robot control application has 88 tasks
and 131 edges, sparse matrix solver application has 96 tasks and 67 edges, and fpppp application
has 334 tasks and 1145 edges. As mentioned in STG [30], the task-graphs in these applications are
considered without communication costs. Each of application programs are assumed with precedence
dependency among tasks. The original taskgraphs in STG assume that each task is executed on
single-core only, so that the execution time is provided for assuming single-core execution. Therefore,
in our experiments, the execution times of MS tasks are assumed to be Time; = 100 x Time; 1 X
(0.140.9/k), for k > 1, where Time, ;, denotes the execution time of task ¢ assigned to k cores with
10 % for an overhead by parallelization of tasks. The number of cores in the target systems is varied
from 4 to 32.

e Single (optimal): Optimal scheduling on the assumption that a task is assigned to a single core.
The optimial solutions are the same as the ones multiplied by 100 in the STG package [30].

e Mazx: Every task is executed on all cores, and the tasks are sequentially executed.

MS-ILP: ILP-based MS task scheduling presented in [15].

e MS-CP: CP-based MS task scheduling presented in this paper.

In order to find solutions for the MS-ILP method and the MS-CP method, we use a commercial
solver, IBM ILOG CPLEX 12.8 [26]. CPLEX is equipped with two optimization engines, i.e., mathe-

matic programming engine and constraint programming ones. We use the mathematic programming
engine and the CP engine for the MS-ILP method and the MS-CP method, respectively. CPLEX
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Figure 6: Scheduling results for MS tasks on 4 and 8 cores

is executed on Intel Core i9 7980XE (2.6GHz) processors with memory of 128GB. The runtime of

CPLEX is limited up to 10 hours in CPU time, and then the best schedule found at that moment
is used for comparison.

Figure 6 (a) and (b) and Figure 7 (a) and (b) show scheduling results for MS tasks on 4, 8,
16 and 32 cores, respectively. The X-axis of the graphs shows the task-graphs, where rand0000 to
rand0009 include 50 tasks for each task-graph as well as in the previous chapter. The Y-axis shows
the schedule length obtained by the four methods. The schedule lengths are normalized to the Single
method. In some cases, no solution is found by the MS-ILP method. There is a reason that the MS
ILP method is almost failed to obtain even one of feasible solutions in a practical time.

Figure 6 (a) shows the results of the 4-core systems. The results in the MS-CP method surpass the
ILP-based method with the improvement by 11% on average, nevertheless there is poor parallelism.
As shown in the cases of the applications, the effectiveness of multi-threaded tasks is no more
improved than the traditional method. On the other hand, the Max method finds longer schedules
in many cases due to the overhead by parallelization.

In the 8-core systems as shown in Figure 6 (b), the effectiveness of the MS-CP method is obviously
observed. Although the MS-ILP method fails to obtain shorter schedule in some cases, the MS-CP
method is still successfully obtained with better solutions than the other methods. For small task
graphs of 6 to 30 tasks, there is slightly difference that a schedule length by the MS-CP method is
shorter than the schedule by the MS-ILP method by up to 7.6%. On average, the MS-CP method
finds shorter schedules by 18.6% over the results.

In Figure 7 (a) and (b), the results found by the MS-ILP method are almost missed. As increasing
number of cores, the number of the threads of each task can be large. On the other hand, the MS-CP
method can find feasible schedules, which means that our CP-based approach is obviously able to

find good feasible schedules in short time. In the results, we can obtain benefit attributed to a
CP-based approach.
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Figure 7: Scheduling results for MS tasks on 16 and 32 cores

5 Conclusion

This paper studied scheduling methods for MFJ and MS tasks based on constraint programming.
Scheduling of MFJ tasks determines the number of threads and the execution order of their threads.
Scheduling of MS tasks decides the number of cores to execute each task at the same time as
scheduling. The experimental results show the effectiveness of our proposed method. In all of the
experiments, we could obtain much better schedules compared with the state-of-the-art methods.
Therefore, we have ensured that CP-based scheduling for malleable tasks can quickly find good
schedules. In future, we will take into account that more complex problems with communication

costs and resource conflicts among tasks
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