
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 9, Number 2, pages 147–160, July 2019

Asynchronous message-passing distributed algorithm for the global critical section problem

Sayaka Kamei

Dept. of Information Engineering, Graduate School of Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi Hiroshima Hiroshima, 739-8527 JAPAN

Hirotsugu Kakugawa

Department of Applied Mathematics and Informatics, Ryukoku University,
Seta, Otsu 520-2194, Japan

Received: January 22, 2019
Revised: April 7, 2019
Accepted: June 5, 2019

Communicated by Akihiro Fujiwara

Abstract

This paper considers the global (l, k)-critical section problem which is the problem of con-
trolling a system in such a way that at least l and at most k processes must be in the critical
section at any time in the network, while each process alternates between in the critical section
and out of the critical section. In this paper, first, a distributed solution for l-mutual inclu-
sion is proposed in the asynchronous message-passing model. The proposed algorithm uses an
ordinary quorum system and all processes play the same role, unlike existing algorithms for k-
mutual exclusion. After that, using the proposed algorithm for l-mutual inclusion, we propose
a distributed solution for the global (l, k)-critical section problem. The proposed approach is a
versatile composition of algorithms for l-mutual inclusion and k-mutual exclusion. Its message
complexity is typically O(

√
n), where n is the size of the network.

Keywords: distributed algorithm, mutual exclusion, mutual inclusion, process synchronization

1 Introduction

The mutual exclusion problem is a fundamental process synchronization problem in concurrent
systems [6],[22],[24]. It is the problem of controlling a system in such a way that no two processes
execute their critical sections (CSs) at any time. Various generalized versions of mutual exclusion
have been studied extensively, e.g., k-mutual exclusion [12][3][4][1][5][19], mutual inclusion [9], and l-
mutual inclusion [10]. The k-mutual exclusion problem refers to the problem of controlling a system
in such a way that at most k processes execute their CSs at any time. The mutual inclusion problem
is the complement of the mutual exclusion problem. For the latter, at most one process is in the CS,
whereas for the former, at least one process is in the CS. Similarly, the l-mutual inclusion problem is
the complement of the k-mutual exclusion problem, where at least l processes are in the CSs. These
problems were unified into a framework called the CS problems in [11].

This paper considers the l-mutual inclusion problem and the global (l, k)-CS problem. Informally,
the global (l, k)-CS problem can be defined as follows. In the entire network, the global (l, k)-CS
problem has at least l and at most k processes in the CSs where 0 ≤ l < k ≤ n and n is the

147

Asynchronous message-passing distributed algorithm for the global critical section problem

network size. The “global” means the problem specification consider the entire network. In l-
mutual inclusion (resp. k-mutual exclusion) problem, no execution to enter (resp. exist) the CS
breaks safety. However, in the global (l, k)-CS problem, no execution to change process states may
be able to guarantee its safety. Thus, it is not trivial to design the algorithms to guarantee the
safety and liveness properties for the problem. Additionally, this problem is interesting not only
theoretically but also practically. It is a formulation of the dynamic invocation of servers for load
balancing. The minimum number of servers which are invoked for quickly responding to requests or
for fault tolerance is l. The number of servers is dynamically changed based on system load. The
total number of servers is limited to k to control costs. Instead of preparing k servers in advance, it
is useful to prepare a large number of servers so that they can be replaced for maintenance.

In this paper, we first propose a distributed algorithm for the l-mutual inclusion problem. To
reduce message complexity, the proposed algorithm uses an ordinary quorum system [8] for informa-
tion exchange between processes. That is, messages for a request are sent to at most |Q | processes,
where |Q | is the maximum size of a quorum (subset of processes) in a coterie. Based on the com-
plementary theorem shown in [11] (explained in Section 2), we can derive an algorithm for l-mutual
inclusion from existing algorithms for k-mutual exclusion. Existing algorithms require a specialized
quorum system for k-mutual exclusion or some processes play special roles. In contrast, the proposed
algorithm uses an ordinary quorum system and all processes play the same role. Additionally, using
the algorithms for l-mutual inclusion and k-mutual exclusion as gadgets, we propose a distributed
algorithm for the global (l, k)-CS problem. Its message complexity is O(|Q |), typically O(

√
n).

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 presents
several definitions and problem statements. Section 4 describes the proposed global l-mutual inclu-
sion algorithm. Section 5 describes the proposed algorithm for the global (l, k)-CS problem. Section
6 gives the conclusions and suggestions for future work.

2 Related Work

k-mutual exclusion has been extensively studied. Existing approaches can be classified into two
categories, namely token-based algorithms and permission-based algorithms.

Token-based algorithms maintain k tokens. Only processes that hold a token can be in the CS.
The algorithms proposed in [15], [16], [3], and [5] belong to this category. The message complexities
of [15], [16], and [3] are O(n), and that of [5] is O(

√
n). However, the algorithm in [5] needs

√
n

processes in the global group to play special roles.

Permission-based algorithms allow a process to enter the CS if it obtains sufficient permission
from other processes. The algorithms proposed in [17], [23], [7], [12], [4], [2], [20] and [21] belong to
this category. In [17], [23], [2], [20] and [21], a process contacts all other processes to obtain their
permission. Their message complexity is O(n). In [7], [12] and [4], a process contacts a quorum of
a k-coterie to obtain permission to enter the CS. The k-coterie is a specialized quorum system for
k-mutual exclusion. Their message complexity is O(|Q |), where |Q | is the number of processes in a
quorum of a k-coterie.

To the best of our knowledge, there is no algorithm for the l-mutual inclusion problem. However,
using the following complementary theorem in [11], an algorithm can be derived from an existing
algorithm for the k-mutual exclusion problem.

Theorem 1 (Complementary Theorem) Let AG(l,k) be an algorithm for the global (l, k)-CS
problem and Co-AG(l,k) be the complement algorithm of AG(l,k), which is obtained by swapping the
process states, namely in the CS and out of the CS. Then, Co-AG(l,k) is an algorithm for the global
(n − k,n − l)-CS problem.

By this theorem, an algorithm for (n− l)-mutual exclusion can be transformed into an algorithm for
l-mutual inclusion. Then, the Exit() (resp. Entry()) method of l-mutual inclusion can be derived
from the Entry() (resp. Exit()) method of (n − l)-mutual exclusion by swapping the process states.
The Exit() (resp. Entry()) method is a method to exit (resp. enter) the CS for each process.

148

International Journal of Networking and Computing

In [13], an algorithm was proposed for the local version of the (l, k)-CS problem. The global CS
problem is a special case of the local CS problem when the network topology is complete. Thus, we
can apply the algorithm in [13] to the global CS problem. The message complexity of this algorithm
for the local CS problem is O(∆), where ∆ is the maximum degree. Because the maximum degree is
n− 1 for the global CS problem, the message complexity of this algorithm for the global CS problem
is O(n). To the best of our knowledge, our algorithm for the global (l, k)-CS problem is the first
distributed algorithm for the problem.

3 Preliminary Information

3.1 Computational Model

Let G = (V,E) be a complete graph, where V = {P1,P2, ...,Pn} is a set of processes and E ⊆ V × V is
a set of bidirectional communication links between a pair of processes. We assume that (Pi,Pj) ∈ E
if and only if (Pj,Pi) ∈ E. Each communication link is first-in first-out. We consider G to be a
distributed system. The number of processes in G = (V,E) is denoted by n(= |V |). We assume
that the distributed system is asynchronous, i.e., there is no global clock. A message is delivered
eventually but there is no upper bound on the delay time and the execution speed of a process may
vary.

3.2 Global Critical Section Problem

Below we present the CS class which defines a common interface for algorithms that solve a CS
problem, including the (l, k)-CS problem, mutual exclusion, mutual inclusion, k-mutual exclusion
and l-mutual inclusion.

Definition 1 A CS object, say o, is a distributed object (algorithm) shared by processes for coor-
dination of access to the CS. Each process Pi has a local variable which is a reference to the object.
A class of CS objects is called the CS class. The CS class has the following member variables and
methods.

• o.state i ∈ {InCS,OutCS} : the state variable of Pi.

• o.Exit() : a method for changing the object state from InCS to OutCS.

• o.Entry() : a method for changing the object state from OutCS to InCS.

For any given process Pi, we say that the CS method invocation convention (CSMIC) for object
o at Pi is confirmed if and only if the following two conditions are satisfied at Pi.

• o.Exit() is invoked only when o.state i = InCS holds.

• o.Entry() is invoked only when o.state i = OutCS holds.

We say that CSMIC for object o is confirmed globally if and only if CSMIC for object o at Pi is
confirmed for each Pi ∈ V .

For each CS object o, the vector of local states (o.state1,o.state2, . . . ,o.staten) of all processes
forms a configuration (global state) of a distributed system. For each configuration C for object o,
let CSo(C) be the set of processes Pi with o.statei = InCS in C. Under each object o, the behaviour
of each process Pi is as follows, where we assume that when o.state i is OutCS (resp. InCS), Pi

eventually invokes o.Entry() (resp. o.Exit()) and changes its state to InCS (resp. OutCS).

/* o.statei = (Initial state of Pi in the initial configuration) ∗ /
while true {

if (o.statei = OutCS) {
o.Entry(); /* o.statei = InCS */

149

Asynchronous message-passing distributed algorithm for the global critical section problem

}

if (o.statei = InCS) {
o.Exit(); /* o.statei = OutCS */
}

}

Definition 2 (Global CS problem) Assume that a pair of numbers l and k (0 ≤ l < k ≤ n)
is given on complete network G = (V,E). For each configuration C for a CS object (l, k)-GCS, let
CS(l,k)-GCS(C) be the set of processes Pi with the InCS state in C. Then, the object (l, k)-GCS solves
the global CS problem on G if and only if the following two conditions hold in each configuration C.

• Safety: l ≤ |CS(l,k)-GCS(C)| ≤ k at any time.

• Liveness: Each process Pi ∈ V alternates between OutCS and InCS states infinitely often if it
continues to change its state.

For given l and k, the global CS problem is referred to as the global (l, k)-CS problem. Note that
k , l holds because the safety property is broken if some process exits when k (= l) processes are in
the CS.

We assume that for object (l, k)-GCS for the global (l, k)-CS problem, the initial configuration C0

is safe; that is, C0 satisfies l ≤ |CS(l,k)-GCS(C0)| ≤ k. Note that existing algorithms for CS problems
assume that their initial configurations are safe. For example, for the mutual exclusion problem,
most algorithms assume that initially each process is in the OutCS state, and some algorithms (e.g.,
token-based algorithms) assume that initially exactly one process is in the InCS state and that
the other processes are in the OutCS state. Hence, our assumption for the initial configuration is
consistent with those of existing algorithms.

3.3 Performance Measures

The typical performance measures applied to algorithms for the CS problem are as follows.

• Message complexity : the number of message exchanges triggered by a pair of invocations of
Exit() and Entry().

• Waiting time1 for exit (resp. entry): the time between a process making a request (i.e., the
invocation of Exit() (resp. Entry())) and it actually exiting (resp. entering) the CS, assuming
that each message transmission consumes one time unit and that the local computation time
is zero.

• Maximum waiting time: the maximum of the waiting times for exit or entry.

3.4 Coterie

To reduce message complexity, the proposed algorithm uses a coterie [8] for information exchange
between processes.

Definition 3 (Coterie [8]) A coterie C under a set V is a set of subsets of V , i.e., C = {Q1,Q2, ...,Qn},
where Qi ⊆ V and satisfies the following conditions.

1. Nonemptiness: For each Qi ∈ C, Qi , ∅.

2. Intersection property: For any distinct Qi,Q j ∈ C, Qi ∩Q j , ∅ holds.

3. Minimality: For any distinct Qi,Q j ∈ C, Qi * Q j holds.

Each member Qi ∈ C is called a quorum.

1The name of this performance measure differs among previous studies, with some (e.g., [22]) referring to this
performance measure as the synchronization delay.

150

International Journal of Networking and Computing

We assume that for each Pi, Qi is defined as a constant and is a quorum used by Pi.
Some examples of a coterie are given below.

Example 1 (Majority Coterie [8]) A majority coterie Cmaj under a set V is defined as follows:

• When n is odd, |Qi | = (n + 1)/2.

• When n is even, Cmaj = C1 ∪ C2 satisfying the following:

– In C1, each Qi ∈ C1 holds |Qi | = n/2, and

– In C2, each Q j ∈ C2 holds |Q j | = (n/2) + 1 and Qi * Q j for any Qi ∈ C1.

Example 2 (Grid Coterie [14]) A grid coterie Cgrid is {Qx,y : 0 ≤ x, y <
√

n}, where Qx,y =⋃
0≤i<

√
n{Pi+y

√
n} ∪

⋃
0≤ j<

√
n{Px+j

√
n}. For each Qx,y, |Qx,y | = 2

√
n − 1 holds.

By using a coterie, the algorithm proposed in [14] for mutual exclusion achieves a message
complexity of O(|Q |), where |Q | is the maximum size of a quorum in a coterie. If a typical coterie
with size

√
n is used in this algorithm, the message complexity will be O(

√
n).

4 Proposed Algorithm for l-Mutual Inclusion

Now, we propose the class MUTIN (l) for l-mutual inclusion. It can be used as a gadget in the
algorithm (l, k)-GCS proposed in Section 5. A formal description of the class MUTIN (l) for each
process Pi ∈ V is provided in Algorithms 1 and 2.

First, we present an outline of how each process finds the set of processes in the InCS state in a
distributed manner with quorums. When Pi changes its state, it notifies each process in a quorum
Qi of its state change. When Pi wants to find the set of processes in the InCS state, Pi contacts
each process in Qi. For each process Pk ∈ V , because of the intersection property of quorums, there
exists at least one process Pj ∈ Qk ∩ Qi , ∅. Hence, Pk sends its state to Pj , which then sends the
state of Pk to Pi. For this reason, when Pi contacts each process in Qi, it obtains information about
all the processes.

In the proposed algorithm, each Pi maintains a local variable procsInCSi that keeps track of a
set of processes in the InCS state in Ri, where Ri = {Pk | Pk ∈ V ∧ Pi ∈ Qk} is the set of processes
which inform Pi about the process states. The value of procsInCSi is maintained in the following
way.

• When Pi is in the InCS state and wishes to change its state to OutCS in Exit(), it sends an
Acquire message to each Pj ∈ Qi.

• When Pi changes its state to InCS in Entry(), it sends a Release message to each Pj ∈ Qi.

• When Pi receives a Release message from Pj , it adds Pj to procsInCSi.

• When Pi receives an Acquire message from Pj , it deletes Pj from procsInCSi.

We assume that the initial value of procsInCSi is the set of processes Pj ∈ Ri in the InCS state in
the initial configuration.

Next, we describe the procedure used to guarantee safety. When Pi changes its state to InCS
in Entry(), it immediately sends a Release message to each Pj ∈ Qi. In Entry(), the number of
processes in InCS increases by 1. Thus, safety is trivially maintained.

When Pi wishes to change its state to OutCS in Exit(), safety is maintained in the following way.

• First, Pi sends a Query message to each process Pj ∈ Qi. Then, each Pj ∈ Qi sends a Response1
message with procsInCS j back to Pi.

• Pi stores procsInCS j which Pi received from each Pj ∈ Qi in the variable currentInCSi. That
is, currentInCS i =

⋃
Pj ∈Qi

procsInCS j holds.

151

Asynchronous message-passing distributed algorithm for the global critical section problem

Algorithm 1 Description of class MUTIN (l) for l-mutual inclusion

Constants:
Qi : set of processIDs;
Ri : {Pk | Pk ∈ V ∧ Pi ∈ Qk},set of processIDs;

Local Variables:
mx : CS object for mutual exclusion;
reqCnti : integer, initially 0;
procsInCSi : set of processIDs, initially {Pj ∈ Ri | state j = InCS} in a safe initial configuration;
currentInCSi : set of processIDs, initially ∅;
ackFromi : set of processIDs, initially ∅;
responseAgainToi : processID, initially nil;
respAgainReqCnti : integer, initially 0;

Exit():
/* statei = InCS */

mx.Entry();
reqCnti := reqCnti + 1;
currentInCSi := ∅;
for-each Pj ∈ Qi

send 〈Query, reqCnti,Pi〉 to Pj ;
wait until (|currentInCSi | ≥ l + 1);
ackFromi := ∅;
for-each Pj ∈ Qi

send 〈Acquire,Pi〉 to Pj ;
wait until (ackFromi = Qi);
mx.Exit();

/* statei = OutCS */

Entry():
/* statei = InCS */

for-each Pj ∈ Qi

send 〈Release,Pi〉 to Pj ;

152

International Journal of Networking and Computing

Algorithm 2 Description of class MUTIN (l) for l-mutual inclusion (continued)

On receipt of a 〈Query, reqCnt,Pj〉 message:
send 〈Response1,procsInCSi, reqCnt,Pi〉 to Pj ;
responseAgainToi := Pj ;
respAgainReqCnti := reqCnt;

On receipt of a 〈Response1,procsInCS, reqCnt,Pj〉 message:
if (reqCnti = reqCnt) currentInCSi := currentInCSi ∪ procsInCS;

On receipt of a 〈Acquire,Pj〉 message:
procsInCSi := procsInCSi\{Pj};
send 〈Ack,Pi〉 to Pj ;
responseAgainToi := nil;
respAgainReqCnti := 0;

On receipt of a 〈Ack,Pj〉 message:
ackFromi := ackFromi ∪ {Pj};

On receipt of a 〈Release,Pj〉 message:
procsInCSi := procsInCSi ∪ {Pj};
if (responseAgainToi , nil) {

send 〈Response2,procsInCSi, respAgainReqCnti,Pi〉 to responseAgainToi;
responseAgainToi := nil;
respAgainReqCnti := 0;

}

On receipt of a 〈Response2,procsInCS, reqCnt,Pj〉 message:
if (reqCnti = reqCnt)

currentInCSi := currentInCSi ∪ procsInCS;

• If |currentInCSi | ≥ l + 1 holds, then at least l + 1 processes are in the InCS state. Thus, even if
Pi changes its state from InCS to OutCS, at least l processes remain in the InCS state. Thus,
safety is maintained. Therefore, only if the condition |currentInCSi | ≥ l + 1 is satisfied, Pi

sends an Acquire message to each Pj ∈ Qi, and changes its state to OutCS.

The above procedure guarantees safety if only one process wishes to change its state to OutCS,
but does not if more than one process wishes to change its state to OutCS. To avoid the latter
situation, we serialize requests that occur concurrently. A serialization technique employed in many
distributed mutual exclusion algorithms is to use priority based on the timestamp and preemption
mechanism of permissions [18]. We use this technique for serialization; however, to simplify the
description of the proposed algorithm, we use an ordinary mutual exclusion algorithm [14] in the
proposed algorithm instead of explicitly using the timestamp and preemption mechanism. This is
because typical ordinary mutual exclusion algorithms use the same mechanism for serialization, and
hence the underlying mechanism is essentially the same. We denote the object for ordinary mutual
exclusion by mx. When a process wishes to change its state to OutCS, it invokes the mx.Entry()
method, which allows it to enter the CS with mutual exclusion. After the process changes its state
to OutCS, it invokes the mx.Exit() method, which allows it to exit the CS with mutual exclusion.
Thus, by incorporating the distributed mutual exclusion algorithm mx, the state change from InCS
to OutCS is serialized between processes. Additionally, before the execution of Pi’s mx.Exit(), Pi

waits to receive Ack messages which are responses from each Pj ∈ Qi to an Acquire message sent
by Pi. Thus, the update of the variable procsInCSj is atomic. In this way, it is ensured that each
process Pk ∈ currentInCSi is in InCS. Thus, #L ≥ |currentInCS i | is guaranteed, where #L is the

153

Asynchronous message-passing distributed algorithm for the global critical section problem

number of processes with state = InCS.
Finally, we explain the procedure used to guarantee liveness. We assume that when state i is

OutCS (resp. InCS), Pi eventually invokes Entry() (resp. Exit()) and changes its state to InCS (resp.
OutCS). When exactly l processes are in the InCS state, Pi observes this from the Query/Response1
message exchange and is blocked. When process Pk enters the CS, its Release message is sent to
each process in Qk , and some Pj ∈ Qk ∩Qi sends a Response2 message to Pi. Hence, Pi is eventually
unblocked. Note that there exists at least one such Pj because of the intersection property of
quorums.

Even if there are more than l processes in the InCS state, Pi may observe that the number of
processes in the InCS state is l from the Query/Response1 message exchange. When this occurs, Pi

is blocked not to violate safety. This case occurs if the Release message from some Pk is in transit to
Pj ∈ Qk∩Qi due to message delay because of asynchrony when Pj handles the Query message from Pi.
Even if this case occurs, the Release message from Pk eventually arrives at some Pj ∈ Qk ∩Qi. Then,
Pj sends a Response2 message to Pi. Hence Pi is eventually unblocked. Because Pi is unblocked by a
single Response2 message, it is sufficient for each process to send a Response2 message at most once.

Class MUTIN (l) uses the following local variables for each process Pi ∈ V .

• reqCnti : integer, initially 0

– The request counter of Pi. This value is used by a Response1/Response2 message to
distinguish it from the corresponding Query message.

• procsInCSi : set of processIDs

– A set of processes in the InCS state found by Pi.

• currentInCSi : set of processIDs

– A set of processes in the InCS state found by Pi. That is, each process in this set is known
to be in the InCS state by some process in quorum Qi.

• ackFromi : set of processIDs, initially ∅

– A set of processes from which Pi received an Ack message. An Ack message is an acknowl-
edgment of an Acquire message sent to each Pj ∈ Qi, where Pi waits until ackFromi = Qi

holds. This handshake guarantees Pi < procsInCSj for each Pj ∈ Qi before Pi invokes
mx.Exit().

• responseAgainToi : processID, initially nil

– A process id Pj to which Pi should send a Response2 message when Pj is waiting for
|currentInCSj | to exceed l. This value is set when Pi receives a Query message.

• respAgainReqCnti : integer, initially 0

– The request count value for the Query of the process responseAgainToi.

4.1 Proof of Correctness of MUTIN (l)

In this subsection, we again denote the number of processes with state = InCS by #L.

Lemma 1 (Safety) The number of processes in the InCS state is at least l at any time.

Proof. First, at each point of the execution, for each Pi, we show that Pj ∈ procsInCS i ⇒ state j =

InCS.
In the initial configuration, procsInCS i is the set of processes in Ri in InCS. Thus, Pj ∈ procsInCS i ⇒

state j = InCS holds.
Consider the case in which, in a configuration where Pj ∈ procsInCS i ⇒ state j = InCS holds,

state j changes from InCS to OutCS. This case occurs only when Pj invokes Exit(). In the Exit()

154

International Journal of Networking and Computing

execution of Pj , because of mx.Enter()/mx.Exit() and waiting to update procsInCS i by Ack mes-
sage, Pj is not included in any procsInCS i when Pj finishes the execution of Exit(). Thus, Pj ∈

procsInCS i ⇒ state j = InCS holds.
Now, we show that safety is guaranteed. In the initial configuration, it is clear that safety is

guaranteed because #L ≥ l. We thus discuss the subsequent execution. In the algorithm, only
when |currentInCS i | ≥ l + 1 is satisfied does Pi exit from the CS. The value of currentInCS i is
computed based on Response1 and Response2 messages. That is, currentInCS i =

⋃
Pj ∈Qi

procsInCS j

holds. Because of mx in Exit() and because processes other than Pi do not invoke Exit(), Pj ∈

currentInCS i ⇒ state j = InCS holds. Thus, #L ≥ |currentInCS i | holds. Therefore, because #L ≥
l + 1, even if Pi changes its state to OutCS, #L ≥ l holds. That is, the lemma holds. �

Lemma 2 (Liveness) Each process Pi ∈ V alternates between OutCS and InCS states infinitely
often.

Proof. By contradiction, suppose that some processes do not alternate between the OutCS and
InCS states infinitely often. Let Pi be any of these processes. Because Entry() has no blocking
operation, we assume that Pi is blocked from executing the Exit() method. There are three possible
reasons that Pi is blocked in the Exit() method: (1) Pi is blocked by mx.Entry(), (2) Pi is blocked
by the first wait statement in the Exit() method, or (3) Pi is blocked by the second wait statement
in the Exit() method.

No process is blocked forever by case (3) because each Pj ∈ Qi immediately sends back an Ack
message in response to an Acquire message. Below, we consider cases (1) and (2).

First, we consider the case in which all of the blocked processes are blocked by mx.Entry(), that
is, all of the blocked processes are in case (1). However, this situation never occurs because liveness
is incorporated into the mutual exclusion algorithm. Thus, at least one process is blocked in case
(2).

The number of processes blocked in case (2) is exactly one because no two processes reach the
corresponding statement at the same time by mx.Entry().

Additionally, we claim that all of the processes are eventually blocked in case (1), except Pk

blocked in case (2). Each non-blocked process in the InCS state eventually calls the Exit() method
and is then blocked by mx.Entry() because Pk obtains the mutual exclusion lock. Now the system
reaches a configuration in which Pk is blocked in case (2), the remaining n − 1 processes are blocked
in case (1), and all the processes are in the InCS state.

Finally, we show that Pk is eventually unblocked. Recall that Pk is blocked in case (2), i.e., it is
waiting until the condition |currentInCS k | ≥ l + 1 becomes true.

The size of a collection
⋃

Pj ∈Qk
procsInCS j , each of which is attached to the Response1 message

sent from Pj to Pk , is at least l, i.e., |currentInCS k | ≥ l holds, because the atomic update of each
procsInCS j , #L ≥ l holds by the safety property, and, for any Px ∈ V , there exists Pj ∈ Qi such that
Pj ∈ Qx by the intersection property of quorums.

Although it is assumed that |currentInCS k | = l holds and Pk is blocked, a Release message from
some Py which is not in currentInCS k eventually arrives at some Pj in Qk , and Pj sends a Response2
message which includes Py to Pk . Note that such process Py exists because n > l is assumed and
Qy∩Qk , ∅ holds by the intersection property of quorums. Hence, Pk observes |currentInCS k | = l+1
when it receives the Response2 message and is unblocked. �

Lemma 3 The message complexity of MUTIN (l) is O(|Q |), where |Q | is the maximum size of the
quorums of a coterie used by MUTIN (l).

Proof. As noted above, we incorporate a distributed mutual exclusion algorithm with a message
complexity of O(|Q |), such as that proposed in [14]. Thus, mx requires O(|Q |) messages. In the Exit()
method, Pi sends |Qi | Query messages. For each Pj ∈ Qi, Pj sends exactly one Response1 message for
each Query message: |Qi | Response1 messages. Pi sends |Qi | Acquire messages. Then, each Pj ∈ Qi

sends an Ack message: |Qi | Ack messages. Hence, O(|Q |) messages are exchanged. In the Entry()
method, Pi sends |Qi | Release messages. For each Pj ∈ Qi, Pj sends at most one Response2 message

155

Asynchronous message-passing distributed algorithm for the global critical section problem

Algorithm 3 (l, k)-GCS

Local Variables:
lmin : CS object for l-mutual inclusion;
kmex : CS object for k-mutual exclusion;

Exit():
/* statei = InCS */

lmin.Exit(); /* Request */
/* statei = OutCS */

kmex.Exit(); /* Release */

Entry():
/* statei = OutCS */

kmex.Entry(); /* Request */
/* statei = InCS */

lmin.Entry(); /* Release */

for Query messages: |Qi | Response2 messages. Therefore, O(|Q |) messages are exchanged. In total,
O(|Q |) messages are exchanged. �

Lemma 4 The waiting time of MUTIN (l) is 7 time units.

Proof. The waiting time is 3 time units for the mutual exclusion algorithm employed by MUTIN (l),
as described by Maekawa [14] (2 for Entry() and 1 for Exit(); see [22].) In Exit(), a chain of messages,
i.e., Query, Response1, Acquire, and Ack, is exchanged between Pi and the processes in Qi. Hence, 4
additional time units are required. In total, the waiting time for exit is 7 time units. In Entry(), a
Release message and a Response2 message are exchanged between Pi and the processes in Qi. The
waiting time for entry is 2 time units. Thus, the waiting time is 7 time units. �

By Lemmas 1-4, we derived the following theorem.

Theorem 2 MUTIN (l) solves the l-mutual inclusion problem with a message complexity of O(|Q |),
where |Q | is the maximum size of a quorum of a coterie used by MUTIN (l). The maximum waiting
time of MUTIN (l) is 7 time units. �

5 Proposed Algorithm for the (l, k)-CS Problem

In this section, we propose a distributed algorithm for (l, k)-CS problem based on algorithms for l-
mutual inclusion and k-mutual exclusion. Our algorithm (l, k)-GCS is a composition of two objects,
lmin and kmex, which are MUTIN (l) and k-mutual exclusion derived from MUTIN (n − k), respec-
tively. The algorithm (l, k)-GCS for each process Pi ∈ V is presented in Algorithm 3. In (l, k)-GCS,
we note that each process state changes to OutCS (resp. InCS) immediately in (l, k)-GCS.Exit()
(resp. (l, k)-GCS.Entry()), just after the execution of lmin.Exit() (resp. kmex.Entry()), before the
execution of kmex.Exit() (resp. lmin.Entry()). We assume that for each Pi, (l, k)-GCS.state i =

lmin.state i = kmex.state i holds in the initial configuration.
In (l, k)-GCS, safety is maintained by lmin.Exit() and kmex.Entry() because objects lmin and

kmex guarantee their respective safety properties with these methods. That is, lmin.Exit() blocks if
l processes are in InCS, and kmex.Entry() blocks if k processes are in InCS.

5.1 Proof of Correctness of Algorithm (l, k)-GCS

In this subsection, for each Pi, let #Gi (resp. #Li,#Ki) be 1 if (l, k)-GCS.state i = InCS (resp.
lmin.state i = InCS, kmex.state i = InCS) holds; otherwise, let it be 0. Additionally, let #G (resp.

156

International Journal of Networking and Computing

#L,#K) be
∑

Pi
#Gi (resp.

∑
Pi

#Li,
∑

Pi
#Ki). That is, #G = |CS(l,k)-GCS(C)| (resp. #L =

|CSlmin (C)|,#K = |CSkmex (C)|) in a configuration C. Then, l ≤ #L ≤ n holds by the safety of lmin,
and 0 ≤ #K ≤ k holds by the safety of kmex. Because we assume that the initial configuration C0

is safe, i.e., l ≤ #G ≤ k holds in C0.

Lemma 5 In the initial configuration C0, lmin and kmex satisfy their respective safety properties.

Proof. In C0, because (l, k)-GCS.state i = lmin.state i = kmex.state i holds for each Pi, #Gi = #Li =

#Ki holds. Hence,
∑

Pi
#Gi =

∑
Pi

#Li =
∑

Pi
#Ki holds. Thus, #G = #L = #K holds. Because

l ≤ #G ≤ k holds in C0, l ≤ #L ≤ k and l ≤ #K ≤ k hold in C0. Thus, lmin and kmex satisfy their
safety properties in C0. �

Lemma 6 In any execution of (l, k)-GCS, CSMIC for lmin and kmex is confirmed globally.

Proof. Let Pi be any process. Because (l, k)-GCS.state i alternates by invocations of (l, k)-
GCS.Exit() and (l, k)-GCS.Entry(), CSMIC for (l, k)-GCS is confirmed at Pi. We show that CSMIC
for lmin and kmex is also confirmed at Pi. Below, we show only the case for lmin; we omit the case
for kmex because it can be shown similarly.

First, we show that an invariant (l, k)-GCS.state i = lmin.state i holds whenever (l, k)-GCS.Exit()
and (l, k)-GCS.Entry() have been just invoked. In C0, it is assumed that (l, k)-GCS.state i = lmin.state i

holds. Hence the invariant holds. We assume that (l, k)-GCS.state i = lmin.state i holds when (l, k)-
GCS.Exit() and (l, k)-GCS.Entry() are invoked.

• When (l, k)-GCS.Exit() is invoked, we have (l, k)-GCS.state i = lmin.state i = InCS at the begin-
ning of invocation. Then, Pi invokes lmin.Exit() with lmin.state i = InCS. When this invocation
finishes, we have (l, k)-GCS.state i = lmin.state i = OutCS.

• When (l, k)-GCS.Entry() is invoked, we have (l, k)-GCS.state i = lmin.state i = OutCS at the
beginning of invocation. Then, Pi invokes lmin.Entry() with lmin.state i = OutCS. When this
invocation finishes, we have (l, k)-GCS.state i = lmin.state i = InCS.

Hence, any invocation of (l, k)-GCS.Exit() and (l, k)-GCS.Entry() maintains the invariant.
Now, we show that CSMIC for lmin is confirmed at Pi. Because CSMIC for (l, k)-GCS is confirmed

at Pi, (l, k)-GCS.Exit() is invoked only when (l, k)-GCS.state i = InCS holds, and (l, k)-GCS.Entry() is
invoked only when (l, k)-GCS.state i = OutCS holds. Because of the invariant, lmin.Exit() is invoked
only when lmin.state i = InCS holds, and lmin.Entry() is invoked only when lmin.state i = OutCS
holds. Hence, CSMIC for lmin is confirmed at Pi.

Because CSMIC for lmin is confirmed at Pi for each Pi, CSMIC for lmin is confirmed globally.�

Lemma 7 In any execution of (l, k)-GCS, lmin and kmex satisfy their safety and liveness properties.

Proof. By Lemma 5, in C0, lmin and kmex satisfy their respective safety properties because
(l, k)-GCS.state i = lmin.state i = kmex.state i holds for each Pi. By Lemma 6, CSMIC for lmin and
kmex is confirmed globally. Because CSMIC is the precondition for the safety and liveness of lmin
and kmex, the lemma holds. �

Lemma 8 (Safety) The number of processes in the InCS state is at least l and at most k at any
time.

Proof. By the definition of (l, k)-GCS, CSMIC for (l, k)-GCS is confirmed globally and (l, k)-GCS.state i =

lmin.state i = kmex.state i in C0. We have #Gi = #Li = #Ki in C0. Thus, the values of #Gi, #Li

and #Ki at each point of the execution of Pi are as follows.

(l, k)-GCS.Exit():
// (#Gi,#Li,#Ki) = (1,1,1)

lmin.Exit();
// (#Gi,#Li,#Ki) = (0,0,1)

157

Asynchronous message-passing distributed algorithm for the global critical section problem

kmex.Exit();
// (#Gi,#Li,#Ki) = (0,0,0)

(l, k)-GCS.Entry():
// (#Gi,#Li,#Ki) = (0,0,0)

kmex.Entry();
// (#Gi,#Li,#Ki) = (1,0,1)

lmin.Entry();
// (#Gi,#Li,#Ki) = (1,1,1)

Therefore, the invariant #Gi ≥ #Li ∧#Gi ≤ #Ki is satisfied.

Because #G =
∑

Pi
#Gi ≥

∑
Pi

#Li = #L and #G =
∑

Pi
#Gi ≤

∑
Pi

#Ki = #K hold, we have
invariants #G ≥ #L and #G ≤ #K. Because #G ≥ #L ≥ l and #G ≤ #K ≤ k hold by the safety
of lmin and kmex, l ≤ #G ≤ k holds. �

Lemma 9 (Liveness) Each process Pi ∈ V alternates between states infinitely often.

Proof. By contradiction, suppose that some processes do not alternate between OutCS and InCS
states infinitely often. Let X be the set of such processes. In the kmex.Exit() (resp. lmin.Entry())
method, because Pi just releases the right to be in InCS (resp. OutCS), the method does not block
any process Pi forever. Thus, in (l, k)-GCS, Pi is blocked only in lmin.Exit() of (l, k)-GCS.Exit() and
kmex.Entry() of (l, k)-GCS.Entry().

Consider the case in which a process Pi ∈ X is blocked in (l, k)-GCS.Exit() forever. Note that we
omit the proof of the case in which Pi is blocked in (l, k)-GCS.Entry() forever because it is symmetric
to the following proof.

If other processes invoke (l, k)-GCS.Exit() and (l, k)-GCS.Entry() alternately and complete their
execution of these methods infinitely often, they complete the execution of lmin.Exit() and lmin.Entry()
infinitely often. However, because lmin satisfies its liveness property, Pi is not blocked forever.
Therefore, for the assumption, not only Pi but also all other processes must be blocked in (l, k)-
GCS.Exit() or (l, k)-GCS.Entry() forever. That is, X = V and all processes are blocked in lmin.Exit()
or kmex.Entry() forever.

Recall that it is assumed that l ≤ #L ≤ n holds by the safety of lmin, and 0 ≤ #K ≤ k holds
by the safety of kmex. By Lemma 8, l ≤ #G ≤ k holds. If a process Pj is blocked in lmin.Exit(),
(l, k)-GCS.state j = lmin.state j = kmex.state j = InCS holds, and if Pj is blocked in kmex.Entry(),
(l, k)-GCS.state j = lmin.state j = kmex.state j = OutCS holds. Therefore, #G = #L = #K holds.

• Consider the case in which all processes are blocked in lmin.Exit(). Then, #L = n holds.
However, by the assumption that lmin satisfies its safety property, l = n holds. This is a
contradiction because l < k ≤ n must hold by assumption.

• Consider the case in which there exists a process which is blocked in kmex.Entry(). By the
assumption that lmin satisfies its safety property, #L ≥ l holds.

– Consider the case in which #L = l holds. Because it is assumed that l < k holds, #L < k
holds, that is, #L = #K < k holds. Because kmex satisfies its liveness property, a process
which is blocked in kmex.Entry() is eventually unblocked. This is a contradiction by the
assumption that all processes are blocked forever.

– Consider the case in which #L > l holds. Because lmin satisfies its liveness property,
a process which is blocked in lmin.Exit() is eventually unblocked. This contradicts the
assumption that all processes are blocked forever. �

By Lemmas 8 and 9, we derived the following theorem.

Theorem 3 (l, k)-GCS solves the global (l, k)-CS problem. �

158

International Journal of Networking and Computing

Finally, we discuss the case in which, by the complementary theorem (Theorem 1), in (l, k)-GCS,
we use the proposed class as MUTIN (l) to obtain object lmin and as MUTIN (n− k) to obtain object
kmex.

Then, by the proof of Lemma 3, the message complexity is O(|Q |). Additionally, by the proof
of Lemma 4, the waiting times for both the exit and entry of (l, k)-GCS are 9 time units. Thus, by
Theorem 3, we derive the following theorem.

Theorem 4 (l, k)-GCS solves the global (l, k)-CS problem with a message complexity of O(|Q |), where
|Q | is the maximum size of a quorum of a coterie used by (l, k)-GCS. The maximum waiting time of
(l, k)-GCS is 9 time units. �

6 Conclusion

In this paper, we considered the global CS problem in asynchronous message passing distributed
systems. The proposed algorithm uses an ordinary quorum system. Its message complexity is O(|Q |),
and typically O(

√
n). Because this problem is relevant for the fault tolerance and load balancing of

distributed systems, we can consider various future applications.
In the future, we plan to perform extensive simulations and confirm the performance of our

algorithms under various application scenarios. Additionally, we plan to design a fault tolerant
algorithm for the problem.

Acknowledgement

This research was supported by the Japan Science and Technology Agency (JST) SICORP, KAK-
ENHI No. 19K11828 and No. 19K11826.

References

[1] Uri Abraham, Shlomi Dolev, Ted Herman, and Irit Koll. Self-stabilizing l-exclusion. Theoretical
Computer Science, 266(1-2):653–692, 2001.

[2] Mathieu Bouillageut, Luciana Arantes, and Pierre Sens. Fault tolerant k-mutual exclusion
algorithm using failure detector. In Proceedings of the International Symposium on Parallel
and Distributed Computing, pages 343–350, 2008.

[3] Shailaja Bulgannawar and Nitin H. Vaidya. A distributed k-mutual exclusion algorithm. In
Proceedings of the 15th International Conference on Distributed Computing Systems, pages
153–160, 1995.

[4] Ye-In Chang and Bor-Hsu Chen. A generalized grid quorum strategy for k-mutual exclusion in
distributed systems. Information Processing Letters, 80(4):205–212, 2001.

[5] Pranay Chaudhuri and Thomas Edward. An algorithm for k-mutual exclusion in decentralized
systems. Computer Communications, 31(14):3223–3235, 2008.

[6] Edgar W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

[7] Satoshi Fujita, Masafumi Yamashita, and Tadashi Ae. Distributed k-mutual exclusion problem
and k-coteries. In Proceedings of the 2nd International Symposium on Algorithms, pages 22–31,
1991.

[8] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed system. Journal
of the ACM, 32(4):841–860, October 1985.

159

Asynchronous message-passing distributed algorithm for the global critical section problem

[9] Rob R. Hoogerwoord. An implementation of mutual inclusion. Information Processing Letters,
23(2):77–80, 1986.

[10] Hirotsugu Kakugawa. Mutual inclusion in asynchronous message-passing distributed systems.
Journal of Parallel Distributed Computing, 77:95–104, 2015.

[11] Hirotsugu Kakugawa. On the family of critical section problems. Information Processing Letters,
115:28–32, 2015.

[12] Hirotsugu Kakugawa, Satoshi Fujita, Masafumi Yamashita, and Tadashi Ae. Availability of
k-coterie. IEEE Transaction on Computers, 42(5):553–558, 1993.

[13] Sayaka Kamei and Hirotsugu Kakugawa. An asynchronous message-passing distributed algo-
rithm for the generalized local critical section problem. Algorithms, 10(38), 2017.

[14] Mamoru Maekawa. A
√

N algorithm for mutual exclusion in decentralized systems. ACM
Transaction on Computer Systems, 3(2):145–159, 1985.

[15] Kia Makki, P. Banta, K. Been, N. Pissinou, and E. K. Park. A token based distributed k mutual
exclusion algorithm. In Proceedings of the Fourth IEEE Symposium on Parallel and Distributed
Processing, pages 408–411, 1992.

[16] Kia Makki, Niki Pissinou, and E. K. Park. An efficient solution to the critical section problem.
In Proceedings of the International Conference on Parallel Processing, volume 2, pages 77–80,
1994.

[17] Kerry Raymond. A distributed algorithm for multiple entries to a critical section. Information
Processing Letters, 30:189–193, February 1989.

[18] Michel Raynal. Algorithms for Mutual Exclusion. North Oxford Academic, 1986. (Translated
by D. Beeson).

[19] Vijay Anand Reddy, Prateek Mittal, and Indranil Gupta. Fair k mutual exclusion algorithm
for peer to peer systems. In Proceedings of the 28th International Conference on Distributed
Computing Systems, 2008.

[20] Luiz A. Rodrigues, Jaime Cohen, Luciana Arantes, and Elias P. Duarte. A robust permission-
based hierarchical distributed k-mutual exclusion algorithm. In Proceedings of the12th Interna-
tional Symposium on Parallel and Distributed Computing, pages 151–158, 2013.

[21] Luiz A. Rodrigues, Elias P. Duarte Jr., and Luciana Arantes. A distributed k-mutual exclusion
algorithm based on autonomic spanning trees. Journal of Parallel and Distributed Computing,
115:41–55, 2018.

[22] Papa C. Saxena and Jagmohan Rai. A survey of permission-based distributed mutual exclusion
algorithms. Computer Standards & Interfaces, 25(2):159–181, 2003.

[23] Pradip K. Srimani and Rachamallu L.N. Reddy. Another distributed algorithm for multiple
entries to a critical section. Information Processing Letters, 41(1):51–57, 1992.

[24] Nisha Yadav, Sudha Yadav, and Sonam Mandiratta. A review of various mutual exclusion al-
gorithms in distributed environment. International Journal of Computer Applications, 129(14),
2015.

160

