
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 9, Number 2, pages 188–200, July 2019

Analyzing the Effect of Moving Target Defense for a Web System

Wai Kyi Kyi Oo

Graduate School of Information Science and Electrical Engineering, Kyushu University
744 Motooka, Nishi-ku, Fukuoka 819-0395, JAPAN

Hiroshi Koide

Graduate School of Information Science and Electrical Engineering,
Research Institute for Information Technology, Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395, JAPAN

Kouichi Sakurai

Graduate School of Information Science and Electrical Engineering, Kyushu University
744 Motooka, Nishi-ku, Fukuoka 819-0395, JAPAN

Received: February 15, 2019
Revised: May 6, 2019

Accepted: May 10, 2019
Communicated by Shuichi Ichikawa

Abstract

Moving target defense (MTD) is a feasible idea for reducing the ratio of successful attacks
by altering or diversifying the attributes or parameters of a protected system. As a result of
applying MTD techniques to a system, an attacker would have more difficulties in launching
attacks. Although several MTD techniques have been proposed for different types of attack,
estimating the effectiveness of combining these MTDs remains a challenge. With the aim of
setting up a method for evaluating MTDs, we first propose a model composed of two MTD
diversification techniques to compare an attack success ratio between theoretical and experi-
mental probability. To validate the proposed model, we conducted an experiment involving an
actual attack and then analyzed how our MTD model can adequately estimate a binary-code
injection attack. Results show that the rate of attack success is 100% when MTD diversification
is not implemented, while the rate is reduced depending on how many variants can be diversified
in a target system. Our method is an important first step toward establishing a method for
evaluating MTDs, as well as predicting an MTD’s defensive abilities.

Keywords: moving target defense, cyber defense, attack success ratio, binary-code injection,
diversification, web system

1 Introduction

With the huge rise in the number of networked systems in the cyberspace, users are increasingly at
risk and vulnerable to various types of cyber threats; thus, effective defense against these cyberat-
tacks is of paramount importance to researchers and security experts. As a web system is a primary
interface for an information system that provides web services as well as important information to

188

International Journal of Networking and Computing

users, it is particularly attractive to adversaries. Before an attack is launched, attackers already
have an edge because they have sufficient time to perform penetration tests to investigate a victim
system repeatedly until they reach their goals [1]. If they can identify a single flaw or vulnerability in
the victim system, they can compromise the system by deploying malicious codes through this vul-
nerability. Even a common vulnerability can be exploited in different systems with multiple attacks.
Moreover, attackers have the advantage of cost; a small-scale attack can easily be expanded to a
large scale at minimal cost, because the homogeneity in existing network configurations or attributes
is deterministic and static [1]. All of these situations can be exploited for creating, exploiting, and
spreading cyberattacks easily. While the defensive side rests in a passive position, the offensive side
is at an advantage in terms of time, information, and cost. Although several traditional defense
approaches and mechanisms are available, and have been explored for remedying this situation, they
hardly match the attackers’ advantage in terms of time, information, and cost. To reverse this
asymmetric situation between attackers and defenders, the MTD concept was proposed as a “game-
changing” theme in cybersecurity at the IEEE Security & Privacy Conference in 2010 [2]. Although
there is no standard definition of the MTD technology, the main idea is to create, evaluate, and
deploy mechanisms, and these techniques should be diversified, or constantly altered and adjusted
over time to make it harder and costlier to launch an attack. The MTD technology can also limit
the exposure of vulnerabilities, reduce the chances of an attack, and increase the protected system’s
resilience [2].

The implementation of the MTD technology on computing systems is comparatively new, and
is only recently receiving scholarly attention in the cyber security field. Although different MTD
mechanisms have been proposed over a decade, sufficient evaluation and analyses of these techniques
are yet to be conducted. In order to fill this gap, the contributions of this study are as follows:

• We propose a theoretical moving target defense method that combines two diversification
techniques with the aim of not only establishing an evaluation method for MTDs when applied
to a web system but also measuring the effectiveness of the proposed MTD system.

• We then conduct an experiment involving actual attacks to quantitatively analyze the idea of
an MTD defense system that can reduce the probability of an attack success rate.

Although the ideal implementation of our research is to prepare an actual system, for instance, a
Linux system that has a different system call numbering and executable and linkable format (ELF)
magic numbering with the aim of disrupting binary-code injection attacks, in this case, we conducted
these experiments on a pseudo-experimental environment. In this pseudo-experimental environment,
the assumption is that our web system imitates the shuffling system call number and the variation of
different ELF magic numbers. Our model can be viewed as a first step toward studying the essence
of an MTD approach and its applicability to a real-world information system. Because our study
is a preliminary work, and solely focuses on the attacker’s perspective, we will undertake a realistic
evaluation of the impact of our model, and conduct a more extensive study in future. Based on
the experimental results, our method shows that the MTD defense system decreases the window of
attack opportunities, while increasing the effort expended on finding and successfully executing an
attack. Moreover, even if an attacker launches a successful attack, it may take longer to exploit the
system because of the MTD techniques deployed.

The rest of this paper is structured as follows. Section 2 provides an overview of existing MTD
mechanisms and methods. Section 3 discusses the proposed evaluation model, and the two MTD
diversification methods studied, in relation to the proposed model. Section 4 presents the experi-
mental environment for the case study. Section 5 is about the experimental result, and Section 6
provides the analysis of MTDs based on experimental results. Finally, Section 7 includes conclusion
and recommendation for future work.

2 Moving Target Defenses

Moving target defense was pioneered by private industry, military research, and academic study;
it is actively researched in the field of security innovation today. Studies on MTD technology

189

Analyzing the Effect of Moving Target Defense for a Web System

are broadly classified into four categories: theory-based, strategy-based, diversification-based, and
evaluation-based studies [2, 3, 4, 5]. Table 1 is the overview of these four studies and the relevant
existing methods on each study. The theory-based study investigates the key components that can
determine the effectiveness of MTD implementation in a conceptual way. The strategy-based study
produces advantageous strategies that meet the expected safety goals, after examining the condition
of an existing system and potential security threats. These effective strategies can be generated by
modeling and designing various security methods. The diversification-based research is a feasible
solution that is currently being implemented in real computing systems. Under the diversification-
based study, existing research can be divided into three methods, depending on the layers of a
system. The application or software attributes of the system are diversified to produce different
variants. In the platform or host-level method, multiple operating systems or host machines are
configured to increase attackers’ difficulty in performing the penetration test or reconnaissance. In
the MTD methods based on the network-level method, IP addresses, and service port number, in
some cases, two or more network configurations are transformed or diversified to achieve different
behaviors. In order to measure the effect of these several MTD techniques, prior research work
have evaluated them based on four methods: experiments based on an attacker and defender model,
simulation-based method, mathematical evaluation method, and mixed analysis method.

Although MTD techniques are new in the security research field, a few techniques have already
been available and applied in the real world. The address space layout randomization (ASLR)
technique [6] is the most useful and successful MTD technique that has already been implemented
in modern operating systems. ASLR is a dynamic runtime environment method and a memory-
location technique that can thwart code-injection attacks by randomizing the memory layout of an
application program code. Another notable and conventional technique for thwarting code-injection
attacks is the instruction set randomization (ISR) technique [7]. The idea is to hide the behavior
of instruction set of the target system by randomly altering the instructions used by the system.
As a result, an injected code will not be correctly exploited because of the different behaviors.
A technique for measuring the effectiveness of ISR by analyzing two attack variations has been
proposed [8]. Most existing studies have focused on the theoretical analysis or basic simulations
to examine the effectiveness of the MTD approach; furthermore, all of them focused on a specific
MTD method. Some prior works propose producing frameworks in order to evaluate the impacts of
a combination of MTDs. Connell et al. proposed a quantification framework by combining multiple
existing MTDs in order to analyze the extent to which these MTDs could reduce the likelihood of
successful attacks [9]. Another framework [10] was also studied to evaluate the security effects on
a network system to determine the MTDs that were most effective in a realistic network system.
However, the authors mainly focused on extracting data for the effectiveness of MTDs, and did not
attempt to estimate an attacker’s effort. Huang et al. conducted a similar research work to predict
the best choice of MTD approach for optimal protection [11]. Evans et al. presented a model based
on dynamic diversity defense, and studied the effectiveness of MTD defenses in specific scenarios,
against specific attacks. They examined the effectiveness of three types of MTDs, ASLR, ISR, and
data randomization, for different types of attacks [12].

Table 1: Overview of MTD studies and methods

MTD Studies Methods
Theory-based study Conceptual method

Strategy-based study Modeling and design method

Diversification-based study
Application or software-level method

Platform or host-level method
Network-level Method

Evaluation-based study

Attacker-defender experiment method
Simulation-based experiment method

Mathematical-based experiment method
Mixed analysis method

190

International Journal of Networking and Computing

3 Mathematical Model

In this section, we discuss our proposed security evaluation method for MTDs as they perform two
diversification techniques. We implement our method with two actors: an attacker and a defender.
The defender is a web server that provides a web service, whereas the target of the attacker is
to deploy a malicious code in a web server through a specific vulnerability in its web application
successfully. In this situation, our web server is designed to disrupt this malicious code from being
executed normally in the system by using two MTD diversification techniques.

3.1 Basic Principle and Assumption

MTD is considered a proactive diversity defense for reducing an attacker’s success rate. In general,
attackers can exploit different attack types depending on vulnerabilities that he or she can identify
following reconnaissance. As we focus on the exploitation phase of the cyber kill chain [13], in our
research, we assume that attackers have already identified the vulnerability through which they can
invoke a malicious code with the aim of executing it in the web server. We first focus on evaluating
two MTD techniques that can disrupt the attacker’s exploitation at the low-level of a system. Hence,
we do not consider the attacks that attempt to exploit at the higher application-level of the system.
Moreover, we do not consider data storage-level because we target the examination of the binary-
code injection attack. We assume that the attacker, through guesswork, generates multiple variants
of a program to exploit the binary code being executed successfully.

In our method, we assume that two diversifications of system call numbering and ELF magic
numbering are implemented on the web server, the defender. For the threat model, we assume
that there is a web application that has a vulnerability being exposed to the public. We regard this
vulnerability as exploitable, and there is no file restriction on the web application. Thus, the attacker
tries to take advantage of this vulnerability by deploying the executable binary file as attack requests
to the web server. The web server will probably accept these requests, and execute and download
them as files. As we concentrate only on the attacker who attempts to compromise the system by
exploiting the malicious binary code, we do not consider the legitimate users in our method.

3.2 Proposed Model

As the main goal of our research is to explore the impact of MTD techniques in web systems, our
evaluation framework is based on four features: a web server, a web service, a specific vulnerability
of the web application, and two MTD techniques. We define K −MTD as a kind of web system
configured with two MTD techniques to provide a web service WS , and the vulnerability of the web
service is defined as Sv. For the configuration of the two MTD techniques, we define the system
call numbers diversification as NMTD, and the executable and linkable file (ELF) magic number
diversification as MMTD. The time taken to accomplish a successful attack, from the commencement
of exploitation to the conclusion, is defined as ts. Each successful attack is defined as Sa.

To determine the probability of a successful attack, we define P(Sa) for each MTD technique.
The rate of attack success varies for each MTD technique. We assume that the probability of
a successful attack is (P(Sa)=1), when the static (normal) system is deployed in a web system,
because the attacker can execute an attack easily without expending too much effort. If we assume
the attacker knows the vulnerability, Sv, of the web service, WS , he or she may then exploit this
vulnerability to compromise the K −MTD server. When considering code-injection attacks, we
intend to analyze the extent to which the attack success ratio can be estimated by deploying two
diversification techniques. The proposed method for estimating the attack success ratio of each
MTD diversification technique is as follows:

• System Call Number Diversification, NMTD: If an N -kind system call is used in a shell code,
the attack success ratio for one injection will be P(Sa) = 1

N ! .

• ELF Magic Number Diversification, MMTD: If an M -kind magic number is used in an exe-
cutable binary file, the attack success ratio of one injection will be P(Sa) = 1

M ! .

191

Analyzing the Effect of Moving Target Defense for a Web System

• The attack success ratio for the combination of two MTD diversification techniques will be:
P(Sa) = 1

N ! ×
1
M ! .

• To determine the mean attack successful time for the combination of two MTDs, if one attack
needs to be successfully exploited at ts, the mean attack success time will be: 1

2 ×N !M !× ts.

We also assume that each MTD diversification technique has distinct characteristics of attack
time and number of targets. If we have several K −MTD systems deployed with different config-
urations of the two diversification techniques, it is expected that the attack successful time needed
to compromise the K −MTD servers will take longer than when a single system is under attack.

3.3 Parameter for Expected Result

To evaluate the attack success rate based on our MTD model, we presume to take the numbers of
requests sent to the server and time taken to accomplish these requests as the expected parameters
that we want to achieve. The expected parameters we hope to achieve from our proposed model
following the experiments are listed in Table 2.

Table 2: The expected parameters to be achieved following experiments

Parameters Symbols
Number of attack requests per method Kr

Time taken for a request ts

3.4 Code-Injection Attack

Code-injection attacks occur when an attacker injects arbitrary or malicious codes into a vulnerable
application on the host’s operating system in order to gain unauthorized access to the target system,
extract sensitive information, or destroy the target system’s hardware. In this case, the arbitrary
code is invoked directly through vulnerability in the web application that allows users to upload
any files. Many code-injection attacks can be found in web security; a shell injection or binary
code injection is a form of attack in which a small code is used as the payload in the exploitation
of a program’s vulnerability. First, the malicious code is scripted as a program file, and compiled
by a compiler; then, it is linked with other library wrapper functions by a linker to generate the
output file. After generating a binary output file, the script file for injecting the binary code is
built. This code can be implemented in various programming languages such as PHP, Ruby, or even
Python. Then, an attacker will channel this code to the running service of a computing system as
several requests. After the task of uploading this code to the service of the system is accomplished,
many types of unwanted actions such as editing, deleting, or downloading any additional files on the
system can be performed. Before the victim system takes action to disrupt this attack, the system
is probably compromised; thus, the stage is set for a large-scale attack.

3.5 System Call Numbers Diversification

A system call plays the main role in requesting a service from a computer program to the kernel
of an operating system; in other words, the interaction between the user mode and kernel mode
is mediated through the system calls. As shown in Figure 1, when a user or computer program
requests a service; for instance, file opening or writing to an operating system’s kernel, it can invoke
file system calls such as open() or write(). System calls can be generally invoked directly or using
corresponding C library wrapper functions that perform the necessary steps to invoke the system
call. The C wrapper function and the system call it invokes are similarly named. However, it may
sometimes be different in some cases. If a user program needs to access the resources or services
from the operating system’s kernel, the user program must use at least one or more system calls
because it is the only entry point into the system’s kernel.

192

International Journal of Networking and Computing

Figure 1: Basic architecture of system call interface

System calls vary according to the system’s architecture. Usually, system calls for the 32-bit
architecture might differ from that of the 64-bit architecture in Linux and Unix-based operating
systems. Each system call has its own index number referred to as system call number. The num-
ber of system calls can vary according to the kernel version. System call numbers are listed with
their specific index number in a system call table, and can usually be located in the directory
“/usr/src/kernel-version/arch/x86/syscalls/syscall 32.tbl or syscall 64.tbl” for 32-bit and 64-bit ar-
chitectures respectively. In the Unix-based platform, there may be more than 320 system calls used
to provide the service between the kernel and user programs. Table 3 shows some examples of system
calls, their specific index numbers, and the name of entry points.

Table 3: Examples of system call numbers and their entry vectors

number name entry point
0 read sys read
1 write sys write
2 open sys open
3 close sys close

In this study, we analyzed Linux 64-bit architecture of kernel generic version 4.13, and the system
call number defined can be found in the directory “/usr/include/x86 64-linux-gnu/asm/unistd 64.h”.
As an instance of analyzing a system call and how its system call number is defined, we examined
execve() system call, application programming interface (API) function call that is used to execute
an executable binary or a script file in a 64-bit Linux system. As shown in Listing 1, it has three
parameters; the first parameter is either a binary we want to execute, or a script including strings.
The second parameter is an array of argument strings related to the program we want to execute,
and the third parameter can be any argument we want to pass to the program. The system call
number of execve is defined as 59, Listing 2, its entry point is named as sys execve.

In code-injection attacks, attackers commonly use execve system call to execute a shell; for
example, “/bin/sh” for the purpose of gaining unauthorized access to resources of a target system.
As a result, they can be able to run system commands, and perform unwanted actions with high
privilege.

Listing 1: execve() system call funtion in Linux 64 bit architecture

#include <uni s td . h>

int execve (const char ∗ f i l ename , char ∗const argv [] , char ∗const envp []) ;

193

Analyzing the Effect of Moving Target Defense for a Web System

Listing 2: execve() system call number defined in Linux 64-bit generic kernel

#d e f i n e NR execve 59

In this study, we aim to evaluate the MTD system call number diversification method that
is among the applications of the instruction set architecture randomization technique [7], and we
employed our method to render a binary executable injection. Previous research works [14, 15] have
proposed this MTD randomization technique. In this research, we attempt predicting the impact
of this technique from the attacker’s perceptive. If an attacker attempts to exploit the system’s
vulnerability by directing a malicious code to the system, one or more system calls must be used in
the code to gain control of the system. Hence, the system calls numbers and its entry point in the
kernel are shuffled in the protected web server. As a result, the user program that tries to invoke
the system by using system calls must also be shuffled. If not, it will not be correctly executed.

3.6 Executable and Linkable Format (ELF) Magic Number Diversifica-
tion

In a computer system, ELF is the format of the executable files, binaries, and libraries in Linux.
The executable files include the binary data that stores the specific machine language. When we
invoke an executable file, the operating system must know how to load it into the memory properly,
and how to solve dynamic library dependencies, and where to jump into the loaded executable to
start executing it.

The basic format of ELF file is presented in Figure 2. An ELF header describes the format of a
file at the beginning, followed by program header table in which an executable or shared object file
describes a segment or other information the system needs to prepare the program for execution.
Each section represents a part of a file; an executable code is always placed in a .text(code)section,
and .rodata contains read-only data. In data segment, all data variables initialized by the user are
placed in a .data section. A section header table presents extra information about the sections of a
file.

Each ELF has a header containing general information about the binary, and it is fixed at a
position in a file, followed by the file data. The ELF header starts with some magic numbers, and
has four bytes that contain information about the file. The ELF magic numbers are used to indicate
ELF files, and are the very first few bytes of a file. We can use a common tool “readelf”to determine
whether the file format is executable or not. The tool, “readelf”, is used to display the information
about ELF object files, and it has several options of what particular information we want to analyze.

As we focus on the part containing the magic number, we can use the command, “readelf -h
/bin/ls | grep Magic” to display the contents of magic bytes. The output of the magic bytes, Listing
3, shows 16 bytes identify “/bin/ls” as an ELF executable file. The first four bytes is the actual
magic number, and identifies the file format of executable. If there is an attempt to execute a file in
the system, the operating system declines the task when the specific magic number of that file is not
matched. Based on this insight, we achieve a variant of the MTD diversification that randomizes a
magic number, depending on how many variants of the magic bytes can be generated.

Listing 3: Analysis of ELF magic bytes /bin/ls with readelf tool

$ r e a d e l f −h / bin / l s | grep Magic
Magic : 7 f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

4 Case Study

To validate our proposed method to obtain the attack success ratio by analyzing the expected attack
time from the actual exploitation attacks, we carried out actual exploitation attacks. This section

194

International Journal of Networking and Computing

Figure 2: Basic architecture of ELF file format [16]

presents the setting of the experiment for both the attacker-side and defender-side, as well as the
attack strategy.

4.1 Experiment Setup

Our experimental platform is built on a Window desktop machine with 64 GB RAM and 4.2 GHz
18 core processors. A virtualization technology, Oracle VirtualBox version 5.2.8, is used to create
an attacker machine and a web server machine. For network configuration between two machines,
we utilized the bridged network, which supports virtual machine (VM) to VM, as well as host to
VM. The IP addresses assigned to both the attacker and the web server machines are 10.0.1.37
and 10.0.2.10, respectively. We use Linux distribution, Ubuntu operating system for both machines
because of its reputation for efficiency and fast performance.

The attacker VM machine was deployed with GNU compiler collection (gcc) 5.4.0, the standard
compiler for most Unix-like operating systems, to generate an executable binary file, and Python
requests library 2.21.0, to simplify requests via HyperText Transfer (HTTP) Protocol. A simple
script implemented by the C programming language is created first, and compiled by gcc to produce
the binary file.

The defender, the web server VM machine, was configured with Apache server 2.4.18, a well-
known web server software for supporting web service. As we chose to use the Python web framework,
we implemented the Python application server software, web-server gateway interface (WSGI), mod-
wsgi’s version 4.3.0, along with the Python Flask web framework, 1.0.2. We then configured a
simple web service that was assumed to have the vulnerability of being able to which can accept
users’ POST requests. In this study, the vulnerability we simulated is unrestricted file upload, a
form of web application vulnerabilities that is susceptible to simple attacks; however, simple attacks
are considered dangerous because they further weaken the application. From this vulnerability, the
attacker can send POST requests by directing malicious script to the server, and executing the code
remotely.

4.2 Attack Strategy

In our experiment, it is assumed that the attacker knows that our web application has a vulnerability
that allows users to upload any file via HTTP. As the first step is to exploit this vulnerability by
directing the binary executable file to the system, we have to create a binary file that produces
the configuration of normal ELF magic number. Then, the attacker sends a request that has a
normal ELF magic byte through the web server’s vulnerability, and measures the time taken to get
a response from the server. After that, we conducted the experiment by launching several binary

195

Analyzing the Effect of Moving Target Defense for a Web System

files that have varying ELF magic number diversification as attack requests via HTTP protocol
to the web server. The attacker needs to guess all possible variants of the ELF magic number to
succeed in the attack, as the MTD diversification method is implemented on the web server. These
procedures are presented in Figure 3.

start

create a binary
file that has a

normal ELF magic
number byte

send it to
the server

attack
fails?

attack success

try another binary
file with different

ELF magic
number bytes

end

Yes

No

Figure 3: Attack strategy

5 Experimental Result

In this section, we discuss the results of the experiment.

5.1 Results of ELF Magic Number Diversification Experiment

As shown in Figure 4, from the experimental validation of the proposed model, the number of ELF
magic number variants generated was Kr, and the time taken to accomplish a successful attack was
ts; thus, we achieved the expected parameters and their values. Based on these values, we evaluated
the attack success ratio P(Sa), shown in Table 4. For the ordinary system, the attack success rate is
100%, as no diversification method is used in the system. However, in our MTD system, the attack
success rate is less than 1%, as only one attack can be launched (Table 5).

Table 4: Result of ELF diversification method

Number of variants diversified(Kr) Time taken(ts) Attack success ratio P(Sa)
3 0.00724 0.33
27 3.4236 0.037

140608 942.07 0.000007

196

International Journal of Networking and Computing

 0.001

 0.01

 0.1

 1

 10

 100

 1000

3 27 140608

T
im

e
ta

ke
n(

se
co

nd
s)

Number of requests

Figure 4: Number of requests and time taken to complete the requests

Table 5: Success rate

System Success rate
Normal System (with no impact of diversification) 100%

MTD system (with impact of ELF magic number diversification) less than 1%

5.2 Analyzing System Calls of Attack Program

Though our experimental evaluation of system call number diversification is not included in this
study, we analyze the attack binary program by observing the number of system calls invoked. To
debug the number of system calls used in the attacker’s binary file, we use the “strace” debugging
tool to trace a system and the system call of a program. It intercepts and records the system
calls that are invoked by a process and the signals that are received by the process. Listing 4 is
the command used to monitoring and tracing the execution of the attack on the binary executable
program. The output shows how many system calls are used in the attack binary program; 12 system
calls are used in exploiting the binary program, though, we prepared the simple binary program.
These system calls, their call numbers, and total number of calls are listed in Table 6.

Listing 4: Analysis of system calls in attack program with “strace”

for f in /home/ user1 / f l a skapp / test . out ; do
s t r a c e −c $ f 2>&1 > /dev/ n u l l |
grep −v ' : ' | cut −−complement −c 42−50 |
sed ' 1 s/ˆ% /% /;2 d ' | head −n −2 ;

done | sed −n ' 1p;/ˆ%/d ; p ' | datamash −HW −sg5 sum 4 |
xargs printf “%−12s \ t%14s \n”

6 Analysis

Based on the experimental results in terms of time ts and the attack success ratio P(Sa), we can
conclude that if the attacker injects the binary code into the static (normal) behavior of the system,

197

Analyzing the Effect of Moving Target Defense for a Web System

Table 6: List of system calls used in attack program

System calls Call number Total number of calls
access 21 3

arch prctl 158 17
brk 12 3

close 3 2
execve 59 1
fstat 5 3
ioctl 16 1

mmap 9 7
mprotect 10 4
munmap 11 1

open 2 2
read 0 1
write 1 1

expectedly, he or she can execute an attack with higher successful attack probability in a shorter
time. However, when confronted with the MTD system, the attacker needs to expend effort to
generate multiple variants in guessing the possible ELF magic numbers for an attack to succeed,
but with a zero attack success rate. Thus, the time taken to accomplish the attack is shorter with a
higher successful attack ratio in the normal system; conversely, when the time needed to accomplish
an attack is longer, the successful attack ratio is lower.

6.1 ELF Magic Number Diversification

• For a normal static system that has no transformation impact:
If the attacker sends a request that has a normal magic number (ELF) to the static server,
the time taken to accomplish the attack is 7.023 milliseconds. Therefore, the success rate of
attack is 100%.

• For an MTD system that has the ELF transformation impact:
When the attacker had to guess in the hope of successfully deploying the malicious binary
code to the server that incorporates the ELF diversification, 27 attack requests were carried
out. Consequently, the time taken to accomplish all these requests was 3.4236s. We also sent
out 140608 attack requests to the MTD server, and this took 942.07s.

Based on the time taken to complete various requests, we can say that as the window of attack
opportunities decreases, greater effort is required to find and successfully execute an attack.
Moreover, even if an attacker succeeds, it may take longer time to exploit the system because
of the MTD techniques deployed on the defender’s side.

6.2 System Call Number Diversification

For a normal static system that is not shielded by system call number diversification, if the attacker
sends an attack program that deployed some system calls, the successful attack rate will expectedly
be 100% within a short time. However, when an attacker sends attack requests to the MTD utilizing
system call number diversification, the attack success rate is almost zero (Table 7).

Table 7: Estimation of success rate for system call number diversification

System Success rate Analysis
Normal System 100% an attack can be successful within a short time
MTD system zero attack success ratio 12 system call numbers diversification

198

International Journal of Networking and Computing

7 Conclusion and Future Work

This study presented a model with two MTD diversification techniques to predict the expected time
required for an attack to compromise a web system. Toward improving MTD techniques, attack-
based experiments are performed to evaluate the security provided by the MTD techniques against
binary code injection. In our research, we focus on the idea of altering variants at the low-level of
a system to disrupt the execution of binary exploitation. Our approach addresses the unrestricted
file uploading vulnerability by incorporating unpredictable diversity with secure architecture in the
web server to ward off binary executable file exploitation. This study is a preliminary work; our
investigation estimates the attack success ratio with focus on the impact of ELF magic number
diversification from the attacker’s point of view. We also analyzed the number of system calls used
in the simple binary code, and roughly estimated the attack success rate; thus, it is necessary to
develop a procedure of the actual attack by using system call number diversification to accurately
investigate the effectiveness of MTD. We are convinced that our method can be deployed at different
layers of an information system to analyze how MTD diversification techniques can reduce the attack
ratio for specific attacks.

Our model can be regarded as the first step toward analyzing the effect of the moving target
defense techniques quantitatively. Although we proposed an evaluation method for two MTD tech-
niques, we first carried out the experimental attacks by using ELF magic number diversification in
this study. Therefore, we shall further examine the system call number diversification in our future
work, in addition to investigating the attack success ratio and the time required to accomplish a
successful attack when exploiting shell codes implemented with system calls. The combination of
these two methods will also be further studied.

For realistic implementation, we will conduct a more extensive study that will practically evalu-
ate the impact of MTDs on web systems, as well as network systems. To study the effectiveness of
MTD techniques, our method can be extended to analyze different MTD techniques for particular
attack types based on the parameters we proposed: the number of variants that can be diversified,
number of requests, and the time taken to accomplish a successful attack. We believe that our study,
by underscoring the necessity of predicting the attacker’s approach and making it subject to uncer-
tainties, represents the very first step towards analyzing the impact of MTDs before implementation
in a real-world computing system.

Acknowledgment

This work was supported by Japan Science and Technology Agency(JST), Strategic International
Collaborative Research Program (SICORP), Japan.

References

[1] Gui-lin Cai, Bao-sheng Wang, Wei Hu, and Tian-zuo Wang. Moving target defense: state
of the art and characteristics. Frontiers of Information Technology & Electronic Engineering,
17(11):1122–1153, 2016.

[2] Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. Moving target
defense: creating asymmetric uncertainty for cyber threats, volume 54. Springer Science &
Business Media, 2011.

[3] Cheng Lei, Hong-Qi Zhang, Jing-Lei Tan, Yu-Chen Zhang, and Xiao-Hu Liu. Moving target
defense techniques: A survey. Security and Communication Networks, 2018, 2018.

[4] Jun Xu, Pinyao Guo, Mingyi Zhao, Robert F Erbacher, Minghui Zhu, and Peng Liu. Comparing
different moving target defense techniques. In Proceedings of the First ACM Workshop on
Moving Target Defense, pages 97–107. ACM, 2014.

199

Analyzing the Effect of Moving Target Defense for a Web System

[5] Hamed Okhravi, MA Rabe, TJ Mayberry, WG Leonard, TR Hobson, David Bigelow, and
WW Streilein. Survey of cyber moving target techniques. Technical report, MASSACHUSETTS
INST OF TECH LEXINGTON LINCOLN LAB, 2013.

[6] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan Boneh.
On the effectiveness of address-space randomization. In Proceedings of the 11th ACM conference
on Computer and communications security, pages 298–307. ACM, 2004.

[7] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Countering code-injection attacks
with instruction-set randomization. In Proceedings of the 10th ACM conference on Computer
and communications security, pages 272–280. ACM, 2003.

[8] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the feeb? the effectiveness of
instruction set randomization. In USENIX Security Symposium, volume 10, 2005.

[9] Warren Connell, Massimiliano Albanese, and Sridhar Venkatesan. A framework for moving
target defense quantification. In IFIP International Conference on ICT Systems Security and
Privacy Protection, pages 124–138. Springer, 2017.

[10] Kara Zaffarano, Joshua Taylor, and Samuel Hamilton. A quantitative framework for moving
target defense effectiveness evaluation. In Proceedings of the Second ACM Workshop on Moving
Target Defense, pages 3–10. ACM, 2015.

[11] Chu Huang, Sencun Zhu, and Yi Yang. An evaluation framework for moving target defense
based on analytic hierarchy process. ICST Trans. Security Safety, 4:e4, 2018.

[12] David Evans, Anh Nguyen-Tuong, and John Knight. Effectiveness of moving target defenses.
In Moving Target Defense, pages 29–48. Springer, 2011.

[13] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven computer net-
work defense informed by analysis of adversary campaigns and intrusion kill chains. Leading
Issues in Information Warfare & Security Research, 1(1):80, 2011.

[14] Zhaohui Liang, Bin Liang, and Lupin Li. A system call randomization based method for
countering code-injection attacks. In International Conference on Networks Security, Wireless
Communications and Trusted Computing, NSWCTC, pages 584–587, 2009.

[15] Monica Chew and Dawn Song. Mitigating buffer overflows by operating system randomization.
2002.

[16] Tool Interface Standards Committee et al. Executable and linkable format (elf). Specification,
Unix System Laboratories, 1(1):1–20, 2001.

200

