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Abstract

In recent years, the amount of Internet traffic has been growing beyond the enhancement of
its capacity. Moreover the amount of published information is also growing at an exponential
rate. Consequently, there are the demands on performance, robustness, and low latency for a
worldwide Internet population. To solve these problems, traditional solutions have led to web
proxy cache systems. However, to use such systems, administrators and/or clients are required
to do some tedious and error-prone operations because cache systems generally need to be
accessed through layer 4-7 scripts and commands, such as the route command on Posix systems,
and usually, manual configuration or JavaScript code for a web proxy. If cache systems work at
the switching layer (layer-2), administrators can introduce the system just by inserting it into the
network and clients can use the system transparently. This paper describes OpenWeb, a layer-2
redirection engine implemented as an application of the OpenFlow switch architecture. New
open protocols at the switching layer now enable far more robust and seamless packet redirection,
without user configuration or unreliable scripts. In addition, performance evaluations compared
with traditional systems and simulations run in random networks show that OpenWeb is clearly
beneficial.
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1 Introduction

In recent years, the amount of Internet traffic has been growing beyond the enhancement of its ca-
pacity. Moreover the amount of published information is also growing at an exponential rate. Conse-
quently, there are the demands on performance, robustness, and low latency for a worldwide Internet
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population. These problems are often addressed as exaflood[20] and information explosion[3]. In
Japan, the Ministry of Education, Culture, Sports, Science and Technology has supported researches
related to these phenomena[1].

To solve these problems, traditional solutions have led to web proxy cache systems (hereinafter
just referred to as cache systems). Cache systems process requests from clients on behalf of web
servers. Currently, cache systems are generally accessed through layer 4-7 scripts and commands,
such as the route command on Posix systems, and usually, manual configuration or JavaScript
code for proxy settings. As another approach, DNS records which are used to resolve web servers’
IP address are often rewritten to make clients use cache systems such as CDNs (Contents Delivery
Network). Thus, administrators and/or clients are required some tedious and error-prone operations
to use these cache systems. This is far from robustness.

If cache systems work at the switching layer (layer-2), administrators can introduce the system
just by inserting it into the network and clients can use the system transparently. It is considerably
robust. Using the OpenFlow[13] switch architecture, it is possible to implement a cache system
which works at the switching layer. The OpenFlow is a new programmable switch abstraction
defined by the OpenFlow Switch consortium centered at Stanford University. The overall intent of
OpenFlow is to separate the control plane of a switch from its data plane, and make the control
plane programmable.

This paper proposes to use new advances at the switching layer to redirect requests of clients
to cache systems seamlessly and effortlessly. Technically, OpenWeb, an overlay transfer application
of the OpenFlow programmable switching layer, is introduced. OpenWeb can provide good user
experience and server load balancing without any troublesome user configuration and difficult-frail
administrator management.

The remainder of this paper is organized as follows. In Section 2, basics and related work in the
field are described. In Section 3, the OpenFlow framework is introduced and described. Section 4
describes the OpenWeb application on OpenFlow, and show how it seamlessly incorporates new web
applications. In Section 5 and 6, a prototype of OpenWeb and some performance results are shown.
Then some discussions, conclusions, and directions for further work are offered.

2 Background

This section provides a brief overview of web content and cache systems.

2.1 Web Content Handled by Cache Systems

Generally, there are two types of Web content handled in the field. One is static content and the
other is dynamic content. The difference between these two types of content is whether the same
content is delivered to all users by the same URL overtime. In the case of static content, the
same content is delivered to all the users exactly as it is stored. For example, HTML documents,
cascading style sheets, and image files are typical static content. On the other hand, in the case of
dynamic content, content is generated and delivered to the users in accordance with the each user’s
interaction, the time, and so on. For example, personalized pages and frequently-updated pages
such as the top pages of news portals are typical dynamic content.

Although cache systems mainly handle static content, some dynamic content can be handled by
cache systems considering a certain unit time. For instance, news articles and blog entries can be
cached for a certain time. Moreover, even if a web page needs to be generated dynamically, the page
will contain some static content such as template HTML documents, image files, and so on. These
kinds of content also can be handled by cache systems.

2.2 Contents Delivery Systems

The past decade has seen the gradual introduction of contents delivery systems. From the viewpoint
of using data cache, these systems can be seen as a type of cache system and divided into 3 types.
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2.2.1 Contents Delivery Network

CDNs seek to provide scalable and high-performance delivery of block data, notably including web
pages, saving load on both clients and original hosts, namely a web server which has original content.
Examples of CDNs are Akamai[14], CoDeen[15][21][17], and Coral[6].

Some CDNs require several configurations of clients to use the systems. This means that the
effect of the systems depends on client behavior. Although other CDNs do not require clients to do
something, server administrators need to rewrite DNS records which are used to resolve web servers’
IP address. This means that the servers are inseparably connected with the cache systems. These
kinds of cache systems are expected to be independent from web servers for robustness.

2.2.2 Peer-to-Peer Service

P2P services seek to provide high-performance and robustness in content distribution/sharing among
many collaborating clients. Examples of P2P services are BitTorrent[10], Antfarm[18], and Squirrel[8].

Some P2P services achieve very good performance. To use P2P services, however, clients need to
install special softwares. Moreover, cache management in P2P services is difficult to be implemented
because clients which have data cache join and leave whenever they like. Although there are some
cache management methods such as distributed-hash-table algorithms and simple management by
a central server, these methods sacrifice performance and scalability. Note that some methods
even have a single point of failure. For these reasons, it can be said that clients should not do
anything special to benefit from the systems and the systems should work keeping its performance
and scalability.

2.2.3 Storage System

Storage systems seek to provide distributed storage services for high-performance content distribu-
tion. Examples of storage systems are Amazon S3 (Simple Storage Service)[16], OceanStore[19], and
the Internet Logistics Service[2]. Storage systems can be regarded as a storage-specific CDNs.

Obviously, to benefit from these storage systems, data must be stored in these systems. Moreover
the same problems with CDNs can be pointed out.

2.3 Other Related Works

As other existing works which are similar to the proposed method in this paper, there are at least
two efforts at the application layer, and one transport-layer protocol.

Ocala[9] is an overlay convergence layer sitting below the transport layer and above the IP
layer in the host networking stack. Its fundamental purpose is to intercept networking API calls
and redirect them to the appropriate service. It consists of an overlay-independent layer, which
services all registered overlay services, and an overlay-dependent layer, which formats specific and
appropriate requests for the specific service. Ocala was demonstrated on a NAT traversal service
and a secure connection service.

Oasis[12] was, similarly, a modified networking layer below the transport layer on the end-host IP
stack. Oasis concentrated heavily on adaptive, rule-based routing of end-user packets onto a number
of overlays; the rules were sufficiently general to support a wide variety of application protocols.

The WCCP (Web Cache Communication Protocol)[5] is a Cisco-systems inspired protocol offered
on a number of Cisco routers. It redirects traffic for the web to a group of web servers, utilizing load
balancing. However, this is available only on router products, not on switches definitely.

To the authors’ best knowledge, the work described in this paper is the first effort to offer web
redirection at the switching layer, without use of modification to end-host code, nor to require IP
redirection. Of course it is not necessity to rewrite DNS records.
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3 OpenFlow

To implement a cache system which works at the switching layer, the OpenFlow programmable
switch abstraction is used. This section introduces and describes the OpenFlow framework based
on the OpenFlow white paper[13].

3.1 Feature

An OpenFlow switch adds a controller to a network of switches, which is a single commodity server
connected to each switch in the network over a secure connection. The controller acts as the control
plane for the switches, directing packets on a network-wide basis. Of course the controller cannot
make packet decisions at line speed. Thus, the switches present to the controller a data abstraction
which permits the controller to program the switches on a coarser grain than the individual packet.

The basic abstraction in OpenFlow is a flow, which one can think of as a single TCP session or
stream of UDP packets between a single source and a single destination, over a single TCP/UDP
port. The OpenFlow switch maintains a flow table, which contains the directives to route and
manage flows. The controller sends the OpenFlow switch rules for processing flows. This instruction
is very powerful, as it permits the controller to make a packet-by-packet decision and also update
the switch flow table for subsequent processing of further packets in this flow or packets in similar
flows.

3.2 Implementation

OpenFlow has been implemented by a number of vendors on their switch lines, notably including
NEC, Cisco Systems, Juniper Networks, and Hewlett-Packard. The level of support for OpenFlow
and the efficacy of the implementation varies from vendor to vendor; NEC has announced full
support for OpenFlow as a product offering, and HP has made a significant effort achieving a robust
OpenFlow implementation as a research project with high bandwidth and extensive support.

In addition, NetFPGA[11] can be used as a OpenFlow switch. NetFPGA is a kind of layer-2
programmable switch based on FPGA (Field-Programmable Gate Array). Note that NetFPGA is
made not only for OpenFlow but also all network modules that use hardware rather than software
to forward packets.

3.3 Example Application

OpenFlow has been the platform for a wide variety of innovative networking projects. Some examples
follow.

• Network Management and Access Control
OpenFlow’s canonical example is Ethane[4]. Indeed, OpenFlow is essentially the network
portion of Ethane. Ethane enabled the central definition of network-wide policy on access
control and quality of service. The controller checks a new flow against a set of rules, such as:

– Guests on the network can communicate using HTTP, but only via a specific web proxy;
– Only IP addresses belonging to human resources can access the personnel database;
– VOIP phones are not allowed to communicate with laptops.

• Multipathing in Wireless Networks
It enables clients to achieve good quality of service such as bandwidth and fault tolerance in
wireless networks.

• Virtual Machine Migration
It enables server administrators to migrate virtual machines from an old server to a new server
while keeping IP addresses of virtual machines constant.

There are a lot of other examples. OpenFlow has been used for a lot of advanced network
researches.
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Figure 1: Working Image of OpenWeb

4 OpenWeb

In this section, OpenWeb is proposed as a new open protocol at the switching layer (layer-2). This
protocol enables far more robust and seamless packet redirection without requiring user configuration
or unreliable scripts. OpenWeb is a layer-2 redirection engine implemented as an application of the
OpenFlow switch architecture.

4.1 Concept

The goal of OpenWeb is to enable users to use the cache system without any configurations, and
administrators to manage the cache system easily and robustly. In order to achieve this goal, three
things described below should be kept in mind.

Independency 　
The system should be independent from web servers and can handle unexpected requests.
This is quite different from traditional systems. For instance, in DNS-based systems, ad-
ministrators need to rewrite DNS records which are used to resolve web servers’ IP address
before requests come to the web servers. Thus, if administrators cannot predict the flood of
requests and rewrite DNS records, the systems cannot work well. However, if a system can
work independently from web servers, unexpected requests can be possibly handled.

Transparency 　
The system should be able to be used without any troublesome configurations by clients. This
means that the effect of the cache system does not depend on client behavior; some clients
cannot/do not install special softwares and/or do configurations. This is quite different from
traditional systems such as BitTorrent or Coral.

Performance 　
Processing performance should be the same as traditional systems because it is directly linked
with user experience.

Working image of OpenWeb is illustrated in Fig.1. This image just represents the servers, the
OpenWeb systems and the clients on the Internet. Requests form the clients go through an array of
the OpenWeb systems. OpenWeb is a kind of web proxy systems which works between the clients
and the servers at switching layer. This means that if an OpenWeb system has cache of requested
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Figure 2: A Typical Architecture

content, content is delivered to the user by the OpenWeb system. Additionally, the clients can use
OpenWeb systems transparently.

If sufficient amounts of OpenWeb components are arranged in the Internet uniformly, OpenWeb
will autonomously organize a tree structure CDN which represents the paths from clients to a
server, which is shown as server S in Fig.1, determined by IP routing. In the CDN, a server which
has original contents will be a root, OpenFlow switches will be nodes, and clients will be leafs.
Moreover, the CDN tree structure is not application level but network level. This CDN enables
scalable and high-performance delivery of content saving load on web servers and providing good
user experience.

4.2 Architecture

A general architecture of OpenWeb is illustrated in Fig.2. At least one OpenFlow switch, one
controller, and one proxy server are required in one OpenWeb system. When the switch detects
a request from the client-side network, the switch notifies it to the controller. Then the controller
checks the request if it needs to be redirected or not. According to the controller’s decision, the
switch puts the request through to the server-side network or redirects the request to the proxy
server.

The role of each component is as follows:

• Proxy Server
General proxy servers are used so far. It processes requests from clients on behalf of web servers.
(In the future, other advanced functions such as application containers will be introduced to
support real-dynamic content.)

• OpenFlow Switch
The OpenFlow switch is the heart of the OpenFlow platform and OpenWeb. It is a layer-2
switch managed under the controller as described in Section 3.

• Controller
The controller determines whether to redirect a request using the redirection methods de-
scribed in the next section. This decision can be made according to static configurations by
administrators or dynamic configurations based on access trends.

Besides the components listed above, clients and servers which have original contents would
belong to their own networks. Clients are normal computers used by web users and servers are
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Figure 3: IP-based Redirection

normal computers managed by server administrators. Note that this server administrators are
different from administrators of OpenWeb systems; although they can be an administrator of both
normal servers and OpenWeb systems at the same time naturally. Of course, no proxy configuration
is required on clients and no server configuration is required on servers to use the system because
the system works at layer-2. Moreover, clients/servers and OpenFlow switch can belong to either
the same network or different networks.

4.3 Redirection Method

The redirection methods determine whether to redirect a request to a proxy or transfer it to a
server. Two types of packet redirection methods are formulated for OpenWeb. One is the IP-based
redirection and the other is the URL-based redirection. In both methods, after a two-way redirection
between a client and a proxy is established, client’s communication path is redirected to a proxy
server until redirection rules become time out. Once the request is decided to be redirected, an
OpenFlow switch redirects the request to a proxy server using NAT (Network Address Translation)
or NAPT (Network Address Port Translation).

4.3.1 IP-based Redirection

A traditional web server is associated with one IP address per one host name. Therefore, the simplest
way of packet redirection is to redirect toward a proxy server a packet which contains an IP address
of a host as its destination.

Typical packets flow of the IP-based redirection is illustrated in Fig.3. First, the client sends
a SYN (TCP) packet to a host. The OpenFlow switch notifies the receipt of the packet to the
controller. The controller looks into the packet and if the destination IP address of the packet is
redirection target, the controller sets a rule to the switch to rewrite the destination IP address of
the packet with the IP address of the proxy server. In the IP-based redirection, a list of target hosts
are prepared as a list of IP-addresses as a condition of redirections. Then, the proxy server replies
with a SYN/ACK (TCP) packet to the client. Likewise, the switch notifies the receipt of the reply
packet to the controller and the controller sets a rule to the switch to rewrite the source IP address
of the packet with the IP address of the host. In this way, a two-way redirection is established.
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Figure 4: URL-based Redirection

4.3.2 URL-based Redirection

Nowadays, many web sites employ the DNS round robin for load-balancing and the virtual hosts for
server resources sharing. It means that there can be several web servers (or IP addresses) for one
host name and several host names for one web server (or IP address). The IP-based redirection is
not suitable for these situations because making redirection rules one by one is not realistic and far
from robustness. For instance, it is almost impossible to know all IP addresses of hosts operated
by a DNS round robin system. To solve this problem, the URL-based redirection is proposed. In
the URL-based redirection, the controller uses not the destination IP address of the packet, but the
URL of the HTTP request.

Typical packets flow of the URL-based redirection is illustrated in Fig.4. First, the client sends
a SYN (TCP) packet to a host. The OpenFlow switch notifies the receipt of the packet to the
controller. The controller checks if the packet is an HTTP packet or not, by looking at the port
number of the packet. If the packet is not an HTTP packet, the controller passes the packet through.
If the packet is an HTTP packet, in URL redirection, the controller analyzes the body of the packet.
This time, because there is no content in the body of the SYN (TCP) packet, the controller passes
the packet through. Then, the packet comes to the host and the host replies with a SYN/ACK
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Figure 5: Connection between the Client and the Proxy

(TCP) packet to the client. Likewise, the switch notifies the receipt of the packet to the controller
and the controller passes the packet through. An ACK (TCP) packet sent by the client is delivered
to the host in the same way.

After that, the client sends a GET (HTTP) packet to the host and the switch notifies it. This
time, the controller finds the GET command in the body of the packet. Then the controller looks
into it and if the URL of the request is redirection target, the controller sets a rule to the switch
to rewrite the destination IP address of the packet with the IP address of the proxy server. In
the URL-based redirection, a list of target hosts are prepared as a list of URLs as a condition of
redirections. Then, the proxy replies with an OK (HTTP) packet to the client. Likewise, the switch
notifies the controller the receipt of the reply packet and the controller sets a rule to the switch to
rewrite the source IP address of the packet with the IP address of the host. In this way, a two-way
redirection is established.

To be exact, although the basic idea of the URL-based redirection method is as explained above,
there is a connection matter between the client and the proxy (see the noted rectangle in Fig.4).
That is how to enable the client to communicate with the proxy. Because a connection between the
client and the proxy is not established at first, it is impossible to make the proxy process the GET
(HTTP) packet just by redirecting the packet. The simplest strategy to solve this situation is to
make the client take a reconnect action. Typical packets flow of the reconnect strategy is illustrated
in Fig.5. First, the client sends a GET (HTTP) packet and the controller detects it and sets a
rule to the switch to rewrite the destination IP address of the packet with the IP address of the
proxy. The proxy receives the GET (HTTP) packet and returns a RST (TCP) packet because the
proxy does not have the connection of it. Then the OpenFlow switch notifies the receipt of the RST
(TCP) packet to the controller and the controller sets a rule to rewrite the source IP address of the
packet with the IP address of the host. After that, a connection between the client and the proxy
is established through the 3-way handshake and now the proxy can process HTTP packets from the
client normally. Note that the reconnect strategy depends on TCP implementations and/or client
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applications such as web browsers. However, most TCP implementations and client applications take
a reconnect action when they receive a RST (TCP) packet for fault resilient. Therefore, OpenWeb
employs this strategy so far. More general discussion about connections between clients and proxy
servers is held in Section 7.2.

4.4 Caching Algorithm

For the redirection methods, a list of target hosts must be prepared as a condition of redirections.
In addition, if there are several proxy servers in a OpenWeb system, redirections should be set to
suitable proxy servers. However, in this paper, how to create a list of target hosts and proxy server
selection method are not discussed because there a lot of works related these problems. For example,
proxy servers can simply cache content which is requested more than a threshold and proxy servers
can be selected by fastest response times, and so on. Though it is also not discussed in this paper,
if an administrator manages several OpenWeb systems, he or she can combine controllers of the
systems and apply extensions such as pre-caching of contents to another OpenWeb proxy servers.
This kind of caching algorithm could be proposed in the future.

5 Performance Evaluation

A prototype system of OpenWeb has been built based on NetFPGA. Using a prototype, the latency
required to redirect packets with NAT and NAPT is evaluated.

5.1 Prototyping

To implement a prototype of OpenWeb, NetFPGA is employed as an OpenFlow switch. In addition,
NOX[7] is employed to write a controller program of the OpenFlow platform. Using NOX, control
programs can be written in Python. This time, OpenFlow 0.9.0, NOX 0.6.0, and Python 2.6.4 are
used.

The NetFPGA-based OpenFlow switch and its controller are working on the same machine. The
machine specification is Intel Pentium 4 CPU 3.20 GHz with 1024MB memory, running CentOS 5.4
(Linux 2.6.18).

5.2 Evaluation Setting

The evaluation environment is the same as Fig.2. The controller and the proxy server are connected
with the OpenFlow switch and the client is connected with its network. Two network devices, a
normal layer-2 switch and a Linux machine running iptables, are prepared to be compared with.
The Linux machine is the same machine used by OpenWeb system. The normal layer-2 switch
just transfers packets as usual and the iptables do NAT or NAPT. These two devices replace the
OpenFlow switch when each device is evaluated. All components are connected by gigabit Ethernet.

The client tries to get content 100 times per each combination of NAT/NAPT and the network
devices. As subject content of the client, 128KB, 256KB, 512KB, 1024KB, and 2048KB files are
prepared. The interval time for trial is 1000ms. Every execution time is recorded, and minimum,
maximum and mean are evaluated.

5.3 Result

The results comparing OpenWeb with the normal layer-2 switch and the iptables are illustrated in
Fig.6 and Fig.7. Fig.6 and Fig.7 represent the results for NAT and NAPT, respectively. Note that
the scales of the vertical axes of the two graphs are different. The “Direct” represents results by the
normal layer-2 switch, the “IPT-*-*” represents results by the iptables, the “OPF-*-*” represents
results by the OpenFlow switch (OpenWeb), the “*-NAT” and the “*-*-NAT” represent results by
NAT, the “*-NAPT” and the “*-*-NAPT” represent results by NAPT, the “OPF-IP-*” represents
results by IP-based redirection, and the ”OPF-URL-*” represents results by URL-based redirection.

166



International Journal of Networking and Computing

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
0

2
4

K
B

2
0

4
8

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
0

2
4

K
B

2
0

4
8

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
0

2
4

K
B

2
0

4
8

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
0

2
4

K
B

2
0

4
8

K
B

Direct IPT-NAT OPF-IP-NAT OPF-URL-NAT
OpenFlow Switch

(IP-based OpenWeb)
Normal Layer-2

Switch iptables OpenFlow Switch
(URL-based OpenWeb)

Mean

Max

Min

Figure 6: Execution Time of NAT
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Fig.6 shows that OpenWeb with NAT (the “OPF-IP-NAT” and the “OPF-URL-NAT”) works
faster than iptables with NAT (the “IPT-NAT”) at large. Furthermore, OpenWeb with NAT works
faster than the “Direct” in some cases. The reason for that will be due to the NetFPGA’s high
performance and/or the layer-2 switch’s poor performance. The “OPF-IP-NAT” is a little faster
than the “OPF-URL-NAT.”

Fig.7 shows that OpenWeb with NAPT (the “OPF-IP-NAPT” and the “OPF-URL-NAPT”)
works much faster than iptables with NAPT (the “IPT-NAPT”). But this time, they work slower
than the “Direct” because additional process, rewriting a source and a destination port, is needed.
Then there is a little difference between the “OPF-IP-NAPT”’s performance and the “OPF-URL-
NAPT”’s performance in this index.

In these figures, outliers in the results are omitted using the Grubbs’ test, which is a statical
method for outliers. For instance of an outlier, in the OpenWeb environment, the actual maximum
time of OPF-IP-NAT for 2048KB is 0.99218321 seconds, which is about 22 times of its mean. We
could not identify the reason of this, but there is no factor in the OpenWeb environment itself to
cause the delay. This problem would be resolved by the improvements of the OpenFlow environment
including NetFPGA and Python.

As seen above, although the stabilization is required, OpenWeb will be favorably comparable to
a normal layer-2 switch and iptables.

6 Network Simulation

Network simulations are done to investigate how OpenWeb works in a random network. If OpenWeb
works effectively even in a random network, OpenWeb will work in the real Internet more effectively
because prior knowledge can be used to arrange OpenWeb components.

6.1 Simulated Environment: Random Network

It it presupposed that 1024 nodes exist in one random network. A node represents an autonomous
system. In this simulation, two types of nodes are prepared. One is normal node and the other is
OpenWeb node.

• Normal Node
Normal nodes only forward requests to a server according to routing information.

• OpenWeb Node
OpenWeb nodes redirect requests to proxy servers as far as its maximum number of incoming
connections allows. If the capacity is full, it works as a normal node.

The nodes are connected by 5238 (1/100 of complete graph) edges. An edge represents a con-
nection between nodes. Then, a server and clients are arranged in the network randomly. Note that
the server and the clients are not nodes, but they belong to nodes. The number of clients is decided
at random for each simulation.

6.2 Simulation Scenario

The simulation scenario is as follows.

1. Generate a random network

2. Generate a total of 1024 requests from randomly-arranged clients; all the requests try to reach
the server which is the sole server in the network

3. The requests head for the server according to routing control which mimics IP routing

4. Requests coming to OpenWeb nodes will be redirected to proxy servers as far as its capacity
allows
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Table 1: Possible Ways of Request Process
Processed by How processed

Server
Served
Waited to be served
Rejected

OpenWeb Redirected
Waited to be redirected

Table 2: Parameter Value
Parameter Value

Number of OpenWeb Nodes 0, 1, 2, 3, ..., 1024
Cache Ratio of OpenWeb Nodes 0%, 25%, 50%, 75%, 100%,

Server MaxClients 256
ListenBackLog 511

OpenWeb Node MaxClients 1, 2, 4, 8, 16, 32, 64, 128, 256, 512

5. Requests coming to the server will be processed as far as its capacity allows

6. Check how each of the requests is processed

Requests can be processed in five ways as shown in Table.1. Served indicates that requests are
served by the server. Waited to be served indicates that requests are waited but served by the server.
Rejected indicates that requests are rejected and not served by the server. Redirected indicates that
requests are redirected to proxy servers by OpenWeb. Waited to be redirected indicates that requests
are waited but redirected to proxy servers by OpenWeb.

6.3 Parameter Setting

All parameters for the simulations are shown in Table.2. First, the number of OpenWeb nodes is a
parameter. In one random network, 1024 nodes exist as explained before. Accordingly, the number
of OpenWeb nodes ranges from 0 to 1024. Once the number of OpenWeb nodes is determined, a
cache ratio of it—how many OpenWeb nodes already have content cache—needs to be determined.
The ratio is represented by the percentage of the number of OpenWeb nodes.

Next, there are two parameters for a server and one parameter for OpenWeb nodes. MaxClients
represents the maximum number of connections that can be processed concurrently. At the server,
requests are served. At the OpenWeb nodes, requests are redirected to proxy servers. ListenBackLog
represents the maximum length of the queue of pending connections which means that requests are
waited but they will be surely served later. This time, default values of Apache 2.2 are used for
these server parameters. A value of MaxClients for OpenWeb node is fixed to 1, 2, 4, 8, 16, 32, 64,
128, 256, and 512. Finally, 1000 trials are done for each parameter combination.

6.4 Result

Because it is not realistic to show all of the simulation results, as an example, Fig.8 shows the results
in case when the cache ratio parameter and the MaxClients parameter of OpenWeb node are fixed
to 50% and 1, respectively. The horizontal axis represents the number of OpenWeb nodes in the
random network. The vertical axis represents the number of requests. Each line represents each
result of request processes. As the number of OpenWeb nodes increase, Served, Waited to be Served,
and Rejected requests decrease naturally because the total capacity of request redirection increases.
In contrast, Redirected and Waited to be redirected increase of course.
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Figure 8: All Requests (OpenWeb::Cache Ratio = 50%, OpenWeb::MaxClients = 1)
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Figure 9: Served Requests (OpenWeb::MaxClients = 1)

The detailed results in case when the MaxClients parameter is fixed to 1 are illustrated in Fig.9
through 13. This time each line represents each result of cache ratios. Throughout Fig.9-13, although
the difference between cache ratios seems significant, from the viewpoint of content serving to clients,
it is not much difference because Fig.11 shows that Rejected requests are decreasing in the same way
in the latter half. This means that if there are sufficient amount of OpenWeb nodes, it is not a major
matter whether OpenWeb nodes initially have content cache or not for content serving to clients.

Clearly, the key of load-balancing is to decrease the number of Rejected requests because Rejected
requests are no more than major source of overload; they demand content from a server which is
already in full capacity. It is also directly linked with user experience. Fig.14 and 15 indicate
Rejected results for a MaxClients value of OpenWeb node at 8 and 64, respectively. As shown in
these graphs, the number of Rejected requests decrease faster than the increase of the number of
OpenWeb nodes in any case. The results show that even if OpenWeb systems are arranged in a
network randomly, it plays a role as load balancer well.

According to these results, even if a MaxClients value of OpenWeb node is increased, Rejected
requests cannot be zero if the number of OpenWeb nodes is less than approximately 128. This
convergence means that about 128 OpenWeb nodes are enough to satisfy all the requests in this
simulation settings.

Considering user experience, it’s an important factor if a user’s request is waited or not waited
(or even rejected). According to the results, as a MaxClients value of OpenWeb node increases,
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Figure 10: Waited to be served Requests (OpenWeb::MaxClients = 1)
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Figure 11: Rejected Requests (OpenWeb::MaxClients = 1)
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Figure 12: Redirected Requests (OpenWeb::MaxClients = 1)
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Figure 13: Waited to be redirected Requests (OpenWeb::MaxClients = 1)
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Figure 14: Rejected Requests (OpenWeb::MaxClients = 8)
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Figure 15: Rejected Requests (OpenWeb::MaxClients = 64)
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Figure 16: Waited to be redirected Requests (OpenWeb::MaxClients = 8)
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Figure 17: Waited to be redirected Requests (OpenWeb::MaxClients = 64)

a bell curve of Waited to be redirected requests gets smaller but it also seems to converge. Fig.16
and 17 indicate Waited to be redirected results for a MaxClients value of OpenWeb node at 8 and
64, respectively. This convergence means that at least about 110 clients need to be waited if all
OpenWeb nodes do not have content cache.

7 Discussion

7.1 User Experience Metric

To know how much OpenWeb nodes are required for real situation, user experience metrics should
be formulated.

Table.3 shows three possible metrics. A satisfaction level of clients is indicated by the number,
from 0 to 1. 0 indicates that clients are completely dissatisfied and 1 indicates that clients are
completely satisfied. S1 is the most loose metric; no matter how long clients are waited and who
served clients with content, the clients are satisfied if they can get content. S2 is focused on waiting
time; no matter who served clients with content, the clients are satisfied if they do not be waited.
S3 is one of strict metrics; clients mind waiting time and who served them with content.

For instance, from the results of Section 6, Fig.18 shows the results in case when the cache ratio
parameter and the MaxClients parameter of OpenWeb node are fixed to 50% and 1, respectively.
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Table 3: User Experience Metric
Served Waited to be served Rejected Redirected Waited to be redirected

S1 1 1 0 1 1
S2 1 0.5 0 1 0.5
S3 1 0.5 0 0.5 0.25

Fig.19 shows the results in case when the cache ratio parameter and the MaxClients parameter of
OpenWeb node are fixed to 50% and 8, respectively. Fig.20 shows the results in case when the
cache ratio parameter and the MaxClients parameter of OpenWeb node are fixed to 50% and 64,
respectively. The horizontal axis represents the number of OpenWeb nodes in the random network.
The vertical axis represents the total score of user experience.

Throughout Fig.18-20, it would be fair to say that S1 and S2 can be used as a metric to determine
the number of OpenWeb node in a network because they seem to converge in any case. On the other
hand, S3 would be hard to use as a metric because its curve seems to transform depending on the
MaxClients parameter of OpenWeb node.

For example, in case when the cache ratio parameter and the MaxClients parameter of OpenWeb
node are fixed to 50% and 64, using S1 metric, it can be said that about 128 OpenWeb nodes are
enough to satisfy all clients demands.

7.2 Connections Between Clients and Proxy Servers

Of course, clients get content from proxy servers through TCP connections. Therefore, it’s a key
perspective how connections are established between clients and proxy servers in redirection-based
cache systems like OpenWeb.

If a cache system works at layer-2 to layer-4, TCP connections are established between clients
and proxy servers directly. In this case, the number of TCP connections used in a session is one as
clients connect to original hosts.

In contrast, if a cache system works at layer-5 to layer-7, TCP connections between clients and
the cache system are established first because information of layer-5 to layer-7 is not available before
TCP connections are established. After the information is obtained, TCP connections between the
cache system and proxy servers are established. In this case, the number of TCP connections used
in a session is at least two.

Obviously the former can achieve better performance than the latter because the number of TCP
connections is small. TCP connections supply sequence control, congestion control, and so on which
take some processing time. Alternatively the latter can control the system’s behavior more flexibly
than the former because information of layer-5 to layer-7 can be used.

Though OpenWeb can use information of all layers (layer-2 to layer-7), OpenWeb works at layer-
2. This means that the number of TCP connections is basically one. However, to get information of
layer-5 to layer-7, TCP connections should be established. OpenWeb employ the reconnect strategy
to get the information as explained in Section 4.3.2.

Although this strategy will work for the time being, there is a little problem of transparency.
Technically, clients can find some traces of redirections but they cannot believe that their requests are
redirected because the traces are the same as normal error recovery protocols of TCP connections.
In order to hide the redirection form clients completely, at least two TCP connections are required
like the latter case. Of course it is easy to establish two TCP connections. However, performance
would be more important than transparency in this case. Alternatively, though proxy servers get
to be difficult to be maintained, it is also possible to modify a TCP implementation and a proxy
application to enable the proxy servers to process HTTP packets even there are no connections
before the HTTP packets arrive at the proxy servers.
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Figure 18: User Experience (OpenWeb::Cache Ratio = 50%, OpenWeb::MaxClients = 1)
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Figure 19: User Experience (OpenWeb::Cache Ratio = 50%, OpenWeb::MaxClients = 8)
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Figure 20: User Experience (OpenWeb::Cache Ratio = 50%, OpenWeb::MaxClients = 64)
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7.3 Verification of Research Goal

Before the conclusion, the aim of this research is revisited. The aim of the research is to enable
users to use the cache system without any configurations, and administrators to manage the cache
system easily and robustly. Achieving this aim, three things have been kept in mind.

The first was independency. The system should be independent from web servers and handle
unexpected requests. The network simulations which have been done in random network have
confirmed these requirements.

The second was transparency. Clients can use the system without any troublesome configurations
and the effect does not depend on client behavior. Of course, these are satisfied because OpenWeb
redirects requests at layer-2 using the OpenFlow platform.

The last was performance. The basic performance evaluation shows that performance of Open-
Web achieves some positive results.

As seen above, it can be said that the goal has been almost accomplished. In addition, using prior
knowledge to arrange OpenWeb components, and applying advanced caching algorithm, OpenWeb
can evolve toward the future.

8 Conclusion

This paper presented the design of OpenWeb, a transparent overlay connection proxy resident on an
OpenFlow layer-2 switch. OpenWeb requires no configurations of clients to use the system. While
only the context of an HTTP connection proxy is described in this paper, the functionality is fully
generalizable to any IP-based overlay proxy service, including the services accessed by predecessor
services such as Oasis and Ocala. Further, the programmability and fine-grained nature of the
OpenFlow programming and switching environment offers possibilities which are not presented for
earlier writes in this field; in particular, different proxy and overlay services can be accessed on a
per-application, per-content, or per-user basis, among others. As future work, it is planed to explore
those possibilities, and other rich application areas.
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