
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 10, Number 2, pages 111–126, July 2020

A Tensor Factorization on Rating Prediction for Recommendation
by Feature Extraction from Reviews

Yang Sun

Dept. of Information Engineering, Graduate School of Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8527 JAPAN

Guan-Shen Fang

National Institute of Technology, Tsuyama College,
624-1, Numa, Tsuyama-City, Okayama, 708-8509 JAPAN

Sayaka Kamei

Graduate School of Advanced Science and Engineering, Hiroshima University,
1-7-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8521 JAPAN

Received: February 12, 2020
Revised: May 4, 2020
Accepted: June 1, 2020

Communicated by Kouzou Ohara

Abstract

In many online review sites or social media, each user is encouraged to assign a numeric rating
and write a textual review as a feedback to each item that he had gotten, e.g., a product that he
had bought, a place that he had visited, a service that he had received. Sometimes, feedbacks
by some users would be affected by some contextual factors such as weather, distance, time,
and season. Therefore, the context-aware approach is being developed by utilizing the user’s
contextual information to produce more precise recommendations than traditional approaches.
Furthermore, previous works [6, 14] have already approved the drawback of the ignorance of
textual reviews would bring mediocre performance for rating prediction.

In this work, we propose a framework TF+ for rating prediction models based on Tensor
Factorization (TF) which is an extended version of Matrix Factorization (MF) by adding another
dimension. We consider seasonal context as the additional dimension. Firstly, in our framework,
each of the reviews is characterized by a numeric feature vector. Secondly, it uses TF which
is trained by the proposed first-order gradient descent method for TF named Feature Vector
Gradient Descent (FVGD). For the training of TF in TF+, FVGD decides the learning rates
based on the feature vectors of reviews. In our evaluation, we use pre-processed data of five
cities in YELP challenge dataset, and apply one of LDA, Doc2Vec and SCDV to get numeric
feature vectors of reviews. We conduct experimental comparisons, and the results show that
methods by TF+ improve the performance significantly as compared to the basic TF model.

Keywords: Rating prediction, Tensor factorization, Doc2Vec, LDA, SCDV, Recommendation
system

111

A TF on Rating Prediction by Feature Extraction from Reviews

1 Introduction

Nowadays, recommender systems are an essential part of online services and social networks [20].
The systems would give recommendations to users by using feedback from them. The feedbacks are
offered by the users after their purchases or experiences, and each of them includes a numeric rating
and a textual review as the evaluation. Also, the reviews have some relationship with ratings to
some extent. From reviews, we can roughly understand why users give such ratings for the items.

Collaborative Filtering (CF) method is considered as the most effective and widely-used method
to predict ratings. According to the similarity of preferences of the neighborhoods, we can calculate
a numeric value that can represent whether a user would like the item or not. Despite the high
accuracy that the CF method can offer, data sparsity still causes a big effect for first-used users that
contain little information.

Among all the CF methods, Matrix Factorization (MF) is an ideal method to predict ratings [13].
However, recent research pointed out that the ignorance of the context is the major shortcoming
of basic MF. Setiowati et al. [23] published a survey paper and pointed out that the context-aware
approach is being developed by utilizing contextual information to produce more precise recommen-
dations according to user’s preferences. The results of some studies [1, 8, 14, 28] have shown that
the implementation of context-awareness on a recommendation system has given better results for
personalized recommendations rather than the ones without it. Additionally, recent research [4,6,14]
pointed out that the ignorance of the reviews is the major shortcoming of basic MF and brings it
mediocre performance.

For context-awareness on model-based recommendation systems, Tensor Factorization (TF) [12]
is used by adding a context dimension to MF. Based on TF, many researchers proposed context-
aware recommender systems, e.g., [24], [9], [26]. Frolov et al. showed a good survey in [7]. However,
they also ignore the textual reviews or are inefficient even if they consider the textual reviews. If
they consider the textual reviews, they could extract some particular information elements (e.g.,
the user’s preference, the user’s attributes, and the specific contexts and aspects) from the textual
reviews by text analysis and mining techniques, and combine them as an additional dimension for
each element into TF model [4].

In this paper, in order to offer a high quality of recommendation, we propose a new framework
TF+ of methods to predict the rating on the user’s purposeful POI for the recommendation by
considering seasonal context factors and reviews by extending TF [12]. Various contexts appear in
the information attached to the feedback and in the review text itself, such as the distance and
the temperature of that time. However, in this paper, we will consider the season from the posting
date, which is easy to obtain from the information attached to each feedback (not textual reviews).
Although it is difficult to estimate the actual day and time when the reviewer went to the POI from
the posting date, by expanding the time range to the season, we consider that the season when
he/she went to the POI can be estimated from the posting date.

In TF+, we use textual reviews for the training of such TF. In methods of TF+, firstly, we set up
to construct feature vectors of reviews by a method to get distributed representations of documents,
e.g., LDA [3], Doc2Vec [15], SCDV [17]. We assume that the distributed representation of a review
by a user for a POI represents weights distribution of each latent factor to represent how much the
user shows interest to the POI. That is, in our framework, against each visited POI, each of the
users would be assigned a unique feature vector with numeric values. After that, the method by
TF+ learns the feature vectors of users by the proposed first-order gradient descent method, called
Feature Vector Gradient Descent (FVGD). It decides the learning rates based on the feature vectors
of reviews.

In our evaluation, we conduct experiments using data about restaurants in five cities in YELP
challenge dataset. We compare the performance of the following eight methods: basic MF method,
three MF-based methods with FVGD (i.e., MF-LDA [6], MF-Doc2Vec and MF-SCDV), basic TF
method, three methods by our framework (i.e., TF-LDA, TF-Doc2Vec and TF-SCDV). Meanwhile,
we use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) performance indicators
to evaluate which method would get the best result.

The contributions of this paper are as follows:

112

International Journal of Networking and Computing

• We use a more complex TF model framework TF+ to predict ratings than traditional (basic)
MF method and TF method. Not only users and items (POIs) are corresponding to the latent
factor but also the season would have some relationship with the latent factor to some extent.
To consider textual review contents, we propose a new gradient descent method FVGD to train
the model by TF+.

• In the evaluation, we compare the performance of our methods with other five approaches
in rating prediction. The results obviously show that the performance of context-aware TF-
based methods is better than MF-based methods respectively. Also, proposed methods by
TF+ expressed better performance than the basic TF method.

The remainder of this paper is organized as follows: Section II overviews related works of MF
and TF models. Section III gives the problem definition and the description of the basic MF and TF
models. Section IV describes the existing method, i.e., MF-LDA. Section V describes our framework.
Section VI represents the experiment to compare eight methods including proposed methods. Finally,
section VII concludes the paper with future work.

2 Related Work

In recent years, researchers have paid more attention to the MF and TF methods because it can
solve the data sparsity problem of CF methods [25]. Salakhutdinov et al. [22] proposed probabilistic
MF and introduced Gaussian priors as hyper-parameters to present latent factors. They noted that
maximizing the log-posterior of the ratings over users’ and items’ latent factors is equivalent to
minimizing the squared errors of the rating prediction.

Against the ignorance of the contextual information in the MF method, there are various ap-
proaches. Karatzoglou et al. [11] proposed a model, called multiverse recommendation, in which
different types of context are considered as additional dimensions in the representation of the data.
This method can address the N -dimensional factorization, and their experimental result has shown
that their method improved upon non-contextual basic MF up to 30% in terms of the MAE. Yao
et al. [27] proposed the non-negative TF method that exploits a high-order tensor instead of the
traditional user-location matrix to model multi-dimensional contextual information. Experimental
results on real-world datasets demonstrate it has higher accuracy than basic MF.

To consider textual reviews with the MF model, [16] and [2] proposed methods with the trans-
formation of the topic distribution of reviews to latent factors of MF. Although their methods
outperform the basic MF, the drawback of their methods is their complexity. In response, Fang et
al. [6] proposed a novel method MF-LDA of rating prediction which uses both the ratings and reviews,
including a first-order gradient descent method for MF, named Topic Gradient Descent (TGD). This
method binds the latent topics by LDA to latent factors via the training process of MF. While
MF-LDA is without the complicated transformation, it provides better performance compared with
methods in [16] and [2]. We will explain more details about this in section 4.

3 Preliminaries

3.1 Problem Definition

Each feedback includes a numerical rating in scale of [1, 5] and a textual correlated review. We
consider the season as a context. Thus, we suppose, in a set of feedbacks, we have I users, J
items (POI) and S seasons. So, in a feedback, the rating made by user ui(i ∈ {1, . . . , I}) to item
vj(j ∈ {1, . . . , J}) under season cs(s ∈ {1, . . . , S}) is denoted as ri,j,s. We assume that, if ri,j,s exists
in the set of feedbacks, it must have a correlated review di,j,s written by ui. Therefore, the feedback
is a 5-tuple < ui, vj , cs, ri,j,s, di,j,s >. Then, we consider the problem to predict a missing rating1

r̂i,j,s for a given user ui and a given item vj under season cs.

1There is no rating ri,j,s by ui about vj under cs in the dataset.

113

A TF on Rating Prediction by Feature Extraction from Reviews

χ
≈

u1 uku2

v1 v2 vk＋ ＋ ＋…

c1 c2 ck

User

(I×K)

Item factor
(J×K)

Season factor
(S×K)

Item

Figure 1: The basic TF (CP tensor decomposition).

3.2 Matrix Factorization for Recommendation

MF is regarded as an ideal method to predict ratings. In this subsection, we describe the basic
MF and biased MF, which are used in this paper. Biased MF [13] is also an influential method to
predict the missing ratings based on the basic MF. At first, it will initialize two predefined arbitrary
matrices with K dimensional latent factor space. Accordingly, one is user matrix U in which each
vector Ui ∈ RK is associated with user ui. The elements of the vector in the matrix measure the
user’s extent of interest to such factors. The other matrix is item matrix V in which each vector
Vj ∈ RK is associated with item vj . The vector Vj presents the positive or negative extent of those
factors that vj possesses. The inner product of Ui and Vj represents the interaction of ui and vj ,
and approximates the corresponding rating ri,j as follows:

ri,j ∼ r̂i,j = UTi Vj + µ+ bi + bj , (1)

where µ is the average of ratings overall users and items, and bi and bj denote the observed biases
of user ui and item vj , respectively. The objective of biased MF (Equation (1)) is to learn Ui and
Vj by given training set including real ratings, by minimizing the loss function as follows:

£ =
1

2

∑
i,j

[(ri,j − r̂i,j)2 + λ(||Ui||2 + ||Vj ||2 + b2i + b2j)], (2)

where λ is the parameter to control the regularization to avoid over-fitting in learning. A typical
way to minimize the objective function (2) is to use a gradient descent algorithm. It calculates the
gradients of Ui and Vj for every given rating ri,j as follows:

gUi = −(ri,j − r̂i,j)Vj + λ · Ui,
gVj = −(ri,j − r̂i,j)Ui + λ · Vj .

(3)

We can get the basic MF by deleting the terms of µ, bi and bj from the Equations (1) and (2).

3.3 Tensor Factorization for Recommendation

The CP-tensor decomposition is one of TF algorithms [5], [27]. We call it basic TF. The objective
of TF is to predict user ratings for some items under a contextual condition. Comparing to the MF,
the TF can be considered as a generalization of MF that allows for flexible and generic integration of
contextual information by modeling the data as a User-Item-Context K-dimensional tensor instead
of the traditional 2D User-Item matrix.

In Figure 1, we show a three-dimensional space, i.e. a tensor χ, as a predicted rating model for
the recommendation system. It maps users, items, and contexts into a joint latent factor space with
K dimensions where K is arbitrarily predefined. Unlike MF in section 3.2, let C be an additional

114

International Journal of Networking and Computing

contextual matrix whose vector Cs ∈ RK is associated with a given context cs. Each element ri,j,s
of the tensor χ on the position index (i, j, s) is approximated as follows:

ri,j,s ∼ r̂i,j,s =

K∑
k=1

uik · vjk · csk. (4)

The objective of basic TF is also to minimize the following function of regularized squared error:

£ =
1

2

∑
(i,j,s)

(ri,j,s − r̂i,j,s)2 +
λ

2

K∑
k=1

(||Ui||2 + ||Vj ||2 + ||Cs||2), (5)

where λ is the parameter to control the regularization to avoid over-fitting in learning, and || · ||2
denotes the L2 norm.

A similar way to minimize the objective function (5) is also to use stochastic gradient descent.
It calculates the gradients of Ui, Vj and Cs for every given rating ri,j,s as

gUi = −(ri,j,s − r̂i,j,s)Vj ◦ Cs + λ · Ui,
gVj = −(ri,j,s − r̂i,j,s)Ui ◦ Cs + λ · Vj ,
gCs = −(ri,j,s − r̂i,j,s)Vi ◦ Uj + λ · Cs,

(6)

where ◦ represents Hadamard product between two vectors, and updates three gradients to the
inverse direction of gradient iteratively. The updating step is often unique and controlled by a
constant learning rate. So the squared error would be converged with a proper learning rate.

3.4 The methods of natural languages processing

In our framework, to get distributed representations of documents (i.e., reviews), we use one of the
following Natural Languages Processing (NLP) methods: Latent Dirichlet Allocation (LDA) [3],
Document to Vector (Doc2Vec) [15], Sparse Composite Document Vectors (SCDV) [17].

LDA is a probabilistic generative latent topic model of a set of semantic documents. Its idea is
that each latent topic is characterized by a distribution over words, and a document is a random
mixture over such topics. It models a document as a distribution of multiple latent topics, thus
we can regard the topic distribution of a document as its feature vector. For LDA, if we set the
number of topics to too large, the topics in each document cannot be distinguished well in the topic
distribution.

Doc2Vec is also one of the widely used techniques for document vector representation in recent
years. It is inspired by the word-level vector representation method Word2Vec [18] using neural
networks. By using vector of words from Word2Vec, Doc2Vec further trains the vector representation
for documents considering the sequence of words. Therefore, different from the traditional method
of Bag-of-words and the way of summing the word vectors by Word2Vec in each document, it
can characterize the semantic features of component words of documents. We use the Distributed
Memory Model of Paragraph Vectors (PV-DM) as the training method for Doc2Vec in this paper.

SCDV is a new document vector representation method that can capture some special features of
words like synonyms and polysemy. Through some extensive experiments in [17], the SCDV signifi-
cantly outperforms the Doc2Vec method in the document classification tasks. By using Word2Vec
and Gaussian Mixture Models (GMM) [19] which is a soft clustering technique, SCDV combines
word embedding models and a latent topic model. That is, it combines syntax and semantics.

In Doc2Vec and SCDV, the characterization of words (i.e., their features in syntax and semantics)
in each document is not changed largely by the number of dimensions of the document vectors.

4 Existing Method

In this section, we explain an existing method MF-LDA proposed by Fang et al. [6]. It is a novel
method of rating prediction which uses both the ratings and reviews, and includes a new first-order
gradient descent method for MF, named TGD. It is based on the biased MF.

115

A TF on Rating Prediction by Feature Extraction from Reviews

Reviews

User's feedbacks

Ratings

Pre-processing

Feature
Extraction

Training Process

Proposed
Gradient
Decent

Feature
Vector

TF Model

User
latent

vectors

Rating
Prediction

Item
latent

vectors

Context
latent

vectors

Figure 2: The construction of TF+.

In MF-LDA, they derive topic distribution from user’s reviews via LDA. MF-LDA binds the latent
topics to latent factors via the training process of MF instead of the complicated transformation as
in [16] and [2].

With a given set of the history of feedbacks, the first task is to derive the topic distribution from
each review by LDA. Each review in the feedbacks was regarded as a single document and all reviews
as the corpus D. Assume that there are K topics overall in D, which are shared by all documents.
A topic is denoted by tk with k ∈ {1, . . . ,K}. For a review di,j ∈ D to item vj by user ui, its topic
distribution is denoted by θi,j , which is a K-dimensional stochastic vector. Therefore, each of the
elements θki,j represents the proportion of corresponding topic tk having been mentioned in di,j .

The next step is to model the ratings using MF and further to predict the ratings for users.
The difficulty comes from the link of the topic distributions of reviews and latent factors without
a complicated transformation between them. So the TGD method is to correlate them through the
training process of MF. Since the reviews provide an efficient tool for the users to explain their
ratings, important topics are often mentioned much in the reviews. The key idea is to use θki,j to
affect the learning of Ui and Vj in the training process of MF. With the denotation of gradients gUi
and gVj in Equation (3), the updating equations for Ui and Vj are

Ui ← Ui − γMHθ
i,j · gUi,

Vj ← Vj − γMHθ
i,j · gVj ,

where γM is a pre-defined constant for MF model, and Hθ
i,j is a K ×K diagonal matrix such that

the k-th diagonal element is θki,j . Hθ
i,j is together with γM to be the learning rate, which assigns

various updating steps for each latent factor.
With the MF model trained by TGD, for a given user ui and a given item vj , we calculate the

rating prediction r̂i,j using Equation (1).

5 Proposed Method

In this section, we propose a framework TF+ of methods to predict missing ratings, based on the
basic TF. The structure of TF+ is shown in Figure 2. In the method by TF+, first, one of the
NLP methods in section 3.4 is used for feature extraction to get feature vectors of reviews. Then, if
we use LDA (resp. Doc2Vec, SCDV), we call our method TF-LDA (resp. TF-Doc2Vec, TF-SCDV).
After that, based on the feature vectors, methods by TF+ train TF models using a gradient descent
method respectively. To this end, we propose a new first-order gradient descent method named
Feature Vector Gradient Descent (FVGD) based on TGD [6].

From a set of user’s reviews, the first task for our methods is to pre-process the corpus D. We
can regard each review by user ui to item vj in season cs as a document di,j,s ∈ D. Then we can use
one of NLP methods in section 3.4 to convert a document di,j,s to a K-dimensional numeric vector
δi,j,s called a feature vector. In each feature vector δi,j,s, each element is weight δki,j,s corresponding

116

International Journal of Networking and Computing

to the latent factor k ∈ {1, . . . ,K}. The size of the corresponding latent factor K is determined
by the dimension number of the feature vector. Then, we assume that δki,j,s represents how much
interest user ui shows to a latent factor k of item vj in season cs. That is, we assume that the
feature vector δi,j,s represents the importance of the degree of features in the evaluation of ui to vj
in cs.

Next, we use a TF model to predict the missing rating values. The method by TF+ integrates
the feature vectors of reviews and latent factors. So we propose FVGD to correlate them during the
training of TF. Assume that the number of latent factors of TF is equal to K. The key idea is to
make δki,j,s affect the learning of TF. With the denotation of gradients gUi, gVj and gCs in Equation
(6), we write the updating equation for Ui, Vj and Cs as

Ui ← Ui − γTHδ
i,j,s · gUi,

Vj ← Vj − γTHδ
i,j,s · gVj ,

Cs ← Cs − γTHδ
i,j,s · gCs,

where γT is a pre-defined constant which is the original learning rate that we initialize a proper value
for TF firstly before the training process started. Hδ

i,j,s is a K ×K diagonal matrix such that the

k-th diagonal element is δki,j,s. H
δ
i,j,s is together with γT to be the new learning rate which assigns

various updating steps for each latent factor.
For the features which have high importance and generate much error, their corresponding latent

factors are updated with large steps in every epoch of training. In contrast, factors of unimportant
features are updated with small steps in every epoch of training. When Ui, Vj and Cs are initialized
with vectors of extremely small constant, such factors will remain the initial values and further
have little impact on the rating prediction. Then, by using the TF model trained by FVGD, we can
calculate the rating prediction r̂i,j,s using Equation (4).

Note that, we can apply FVGD to the basic MF model. That is, we can get the feature vectors
δi,j , and use the following equations:

Ui ← Ui − γMHδ
i,j · gUi,

Vj ← Vj − γMHδ
i,j · gVj ,

where Hδ
i,j is a K ×K diagonal matrix such that the k-th diagonal element is δki,j . We call it MF-

Doc2Vec (resp. MF-SCDV) when we use Doc2Vec (resp. SCDV). With the MF model trained by
FVGD, for a given user ui and a given item vj , we calculate the rating prediction r̂i,j using Equation
(1).

6 Evaluation

6.1 Datasets and Implementation

We use YELP challenge dataset2 which contains many types of business, such as supermarket, salon,
event, and restaurant. Here, we only use data with the ”restaurant” label for our experiment because
we consider the feedback for restaurants reflects the change of seasons. After that, we filter out the
users and items with the following constraints to guarantee the quality of feedback:

• Each review contains at least 10 words,
• Each of the users has at least 5 feedbacks under at least one season, and
• Each of the items concerns with at least 5 feedbacks under at least one season.

Following, we select five cities whose data sparsity and whose average number of words in reviews
are as large as possible. Then, from the dataset, we only independently utilize the feedbacks from
following five cities: Champaign, Cleveland, Glendale, Peoria and Richmond Hill. For each review,

2https://www.yelp.com/

117

A TF on Rating Prediction by Feature Extraction from Reviews

Table 1: The description of five cities of YELP used in experiments.

city #feedbacks avg.rating #users #items sparsity avg.words
Champaign 2824 3.7178 203 104 0.134 61.9
Cleveland 7637 3.9497 313 203 0.120 84.5
Glendale 4527 3.7018 346 211 0.062 62.8
Peoria 3116 3.6874 324 152 0.063 57.5

Richmond Hill 2336 3.4486 171 122 0.112 79.6

Table 2: Parameter setting.

Method Parameter Value
LDA max iter 500

learning offset 50
learning method online (EM algorithm)

Doc2Vec training model PV-DM
window 5

min count 5
workers 5
sample 1e-3

Word2Vec model skip-gram
window 5

min count 5
workers 5
sample 1e-3

Table 3: Parameter setting for GMM.

Parameter Value
convariance type tied

init params kmeans
max iter 50

#clusters Champaign 60
Cleveland 100
Glendale 60
Peoria 20

Richmond Hill 20
sparse threshold Champaign 0.09

Cleveland 0.06
Glendale 0.07
Peoria 0.05

Richmond Hill 0.03

we discard the stop words, repeated words and punctuations, and do the stemming. With these pre-
processes, Table 1 shows their statistics including the number of feedbacks, the average of ratings,
the number of users, the number of items, the sparsity and the average of the number of words in
reviews. The sparsity of a dataset is calculated as #feedbacks/(#users ×#items). For each dataset,
we use 5-fold cross-validation that randomly takes 80% of the feedbacks as the training set and the
rest as the test set to conduct the experiments.

According to month, we set four seasons Cs = {Spring, Summer, Autumn, Winter} for TF mod-
els as follows:

• Spring: March, April, May
• Summer: June, July, August
• Autumn: September, October, November
• Winter: December, January, February

As a comparison, we train basic MF, MF-LDA3, MF-Doc2Vec, MF-SCDV and basic TF with the
same parameter values as TF-LDA, TF-Doc2Vec and TF-SCDV to guarantee fairness. For each of
the training sets, we train each model until the squared error converges. To this end, we set the
number of epochs of each model to 1000. We test by changing parameter K from 5 to 60, and fixed
regularization λ to 0.0005. As for the learning rate γM and γT , it is much easier to converge with a
smaller learning rate, so we set γM = γT = 0.0002 for our following experiments. The latent factors
in Ui, Vj , and Cs are initialized by randomly generated values following uniform distribution over
[0, 1). To implement TF-LDA (resp. TF-Doc2Vec), we use LDA (resp. Doc2Vec) in sklearn (resp.
gensim) library of Python. To implement TF-SCDV, we use Word2Vec and GMM in gensim and
sklearn libraries respectively. We describe parameter settings for these methods changed from their
default in Table 2. For GMM clustering, the number of clusters and the sparse threshold for each
city are decided to their better values pre-experimentally as Table 3.

For the problem to predict the ratings, the performance of each model is evaluated by observing
the accuracy of predictions. For the given feedbacks from the test set, we compare the rating
prediction r̂i,j,s with its actual rating ri,j,s. Then, as evaluation indicators, we employ Mean Absolute

3We use basic MF as the base model of MF-LDA, while the original MF-LDA by Fang et al. uses biased MF. By
our preliminary experiment, for our dataset, basic MF (resp. MF-LDA based on basic MF) outperforms biased MF
(resp. the original MF-LDA).

118

International Journal of Networking and Computing

Table 4: Average RMSE for five cities and all.

TF TF-LDA TF-D2V TF-SCDV
Champaign 1.1494 1.0777 1.0621 1.0594
Cleveland 1.0128 0.9600 0.9800 0.9552
Glendale 1.2253 1.1348 1.1491 1.1390
Peoria 1.3312 1.2428 1.2233 1.2136
Richmond Hill 1.0301 1.0003 0.9688 0.9608
Average 1.1498 1.0831 1.0767 1.0656

Table 5: t-test for five cities and all. The symbol * (resp. **) means that p < 0.05 (p < 0.01).

TF-LDA vs TF TF-D2V vs TF TF-SCDV vs TF TF-LDA vs TF-SCDV TF-D2V vs TF-SCDV TF-LDA vs TF-D2V
Champaign 4.63E-18 ** 3.82E-48 ** 3.46E-34 ** 0.0024 ** 0.5062 0.0059 **
Cleveland 2.23E-15 ** 4.24E-25 ** 1.18E-37 ** 0.3605 6.17E-09 ** 0.0028 **
Glendale 7.25E-24 ** 1.36E-38 ** 1.47E-41 ** 0.5240 0.0173 * 0.0710
Peoria 1.26E-20 ** 1.81E-49 ** 1.45E-38 ** 2.15E-05 ** 0.0256 * 0.0016 **
Richmond Hill 9.42E-06 ** 5.54E-38 ** 0.0256 * 1.52E-09 ** 0.0701 2.35E-09 **
Average 3.97E-73 ** 2.52E-166 ** 1.88E-158 ** 1.52E-10 ** 9.51E-09 ** 0.0220 *

Error (MAE) and Root Mean Square Error (RMSE) which are calculated as follows:

MAE =
1

N

∑
i,j,s

(|ri,j,s − r̂i,j,s|)

RMSE =

√
1

N

∑
i,j,s

(ri,j,s − r̂i,j,s)2,

where N denotes the number of feedbacks in the test set, and | · | denotes the absolute value. In
general, RMSE is more sensitive than MAE for the large error of prediction.

6.2 Results of Evaluation

In this subsection, we show the results of the evaluation. In the figures and tables, we abbreviate
Doc2Vec to D2V.

First, to compare four TF-based methods, i.e., the basic TF, TF-LDA, TF-Doc2Vec, and TF-
SCDV, we show the average RMSE for all values K = 5, 10, 15, · · · , 60 in Table 4 and the p-value of
the t-test in Table 5. Recall that K denotes the number of overall features, also the dimension of
Ui, Vj , and Cs. By these results, TF-SCDV provides significantly better performance than others.
Additionally, methods of TF+ outperform basic TF significantly.

Next, to discuss the effect of dimension size K for each model, Figure 3 shows the RMSE values
of basic TF, TF-Doc2Vec, TF-LDA and TF-SCDV with K changed from 5 to 60 for each city. In the
cases of TF-Doc2Vec and TF-SCDV, the value of RMSE is almost stable and better than basic TF.
In the case of TF-LDA, RMSE increases directly with K. However, in the case K ≤ 20, TF-LDA
outperforms other methods. To discuss this in detail, we calculate the perplexity score [10] and the
coherence score [21] of LDA for each K by gensim. Perplexity is a measure of the ability of a model
to generalize documents, and its score should be lower. On the other hand, coherence represents the
average of the semantic similarities of words in topics, and its score should be higher. Figure 4 shows
these scores with K changed from 5 to 60 for each city. From this result, the optimal number of K is
smaller than 20 for any city. Note that, the dataset includes only reviews about restaurants. Thus,
for TF-LDA, K ≤ 20 is better. On the other hand, on TF-Doc2Vec and TF-SCDV, the difference in
K has an insignificant effect.

In the following, we set K to 10, 20, 30, 40 and 50 to conduct a detailed evaluation of the perfor-
mance in rating prediction. Tables 6 and 8 summarize the results of RMSE and MAE respectively
with the best performance emphasized in boldface for each dataset. Tables 7 and 9 summarize

119

A TF on Rating Prediction by Feature Extraction from Reviews

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20 25 30 35 40 45 50 55 60

TF TF-LDA TF-D2V TF-SCDV

(a) Champaign.

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20 25 30 35 40 45 50 55 60

TF TF-LDA TF-D2V TF-SCDV

(b) Cleveland.

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20 25 30 35 40 45 50 55 60

TF TF-LDA TF-D2V TF-SCDV

(c) Glendale.

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20 25 30 35 40 45 50 55 60

TF TF-LDA TF-D2V TF-SCDV

(d) Peoria.

0.9

1

1.1

1.2

1.3

1.4

5 10 15 20 25 30 35 40 45 50 55 60

TF TF-LDA TF-D2V TF-SCDV

(e) Richmond Hill.

Figure 3: RMSE with K fixed from 5 to 60.

120

International Journal of Networking and Computing

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

1000

2000

3000

4000

5000

6000

7000

8000

5 10 15 20 25 30 35 40 45 50 55 60

co
h
er
en
ce

p
er
p
le
xi
ty

K

perplexity

coherence

(a) Champaign.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 10 15 20 25 30 35 40 45 50 55 60

co
h
er
en
ce

p
er
p
le
xi
ty

K

perplexity

coherence

(b) Cleveland.

0

0.1

0.2

0.3

0.4

0.5

0.6

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25 30 35 40 45 50 55 60

co
h
er
en
ce

p
er
p
le
xi
ty

K

perplexity

coherence

(c) Glendale.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50 55 60

co
h
er
en
ce

p
er
p
le
xi
ty

K

perplexity

coherence

(d) Peoria.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30 35 40 45 50 55 60

co
h
er
en
ce

p
er
p
le
xi
ty

K

perplexity

coherence

(e) Richmond Hill.

Figure 4: Perplexity and Coherence by LDA with K fixed from 5 to 60.

121

A TF on Rating Prediction by Feature Extraction from Reviews

Table 6: The performance in terms of RMSE of eight methods on all datasets. The best performance
is emphasized in boldface for each dataset.

K Dataset MF MF-LDA MF-D2V MF-SCDV TF TF-LDA TF-D2V TF-SCDV
10 Champaign 1.1783 1.1041 1.1952 1.1067 1.1622 1.0056 1.0625 1.0463

Cleveland 1.0720 0.9918 1.0652 0.9902 1.0482 0.9665 1.0214 0.9568
Glendale 1.2364 1.1712 1.2458 1.1725 1.2663 1.0955 1.1888 1.1448
Peoria 1.3254 1.2706 1.2943 1.2706 1.3580 1.2076 1.2592 1.2263
Richmond Hill 1.0242 0.9862 1.0615 1.0017 1.0661 0.9580 0.9949 0.9736
Average 1.1673 1.1048 1.1724 1.1083 1.1802 1.0466 1.1053 1.0696

20 Champaign 1.2210 1.1743 1.1894 1.1188 1.1638 1.0491 1.0648 1.0607
Cleveland 1.1170 1.0541 1.1040 1.0479 1.0214 0.9350 0.9918 0.9500
Glendale 1.2634 1.3046 1.2483 1.2264 1.2128 1.0983 1.1441 1.1491
Peoria 1.3437 1.4289 1.3223 1.2702 1.3404 1.1971 1.2323 1.2136
Richmond Hill 1.0824 1.1396 1.0655 1.0799 1.0214 0.9516 0.9728 0.9632
Average 1.2055 1.2203 1.1859 1.1486 1.1520 1.0462 1.0811 1.0673

30 Champaign 1.2420 1.1679 1.2448 1.2013 1.1461 1.0668 1.0726 1.0787
Cleveland 1.1310 1.0311 1.1474 1.0827 1.0097 0.9396 0.9759 0.9596
Glendale 1.2869 1.2053 1.2962 1.2730 1.2131 1.0981 1.1380 1.1418
Peoria 1.3657 1.3205 1.3670 1.3343 1.2968 1.2386 1.2238 1.2130
Richmond Hill 1.1050 1.0680 1.1442 1.1179 1.0209 0.9642 0.9491 0.9588
Average 1.2261 1.1586 1.2399 1.2018 1.1373 1.0614 1.0719 1.0704

40 Champaign 1.3019 1.1796 1.2998 1.2699 1.1490 1.0832 1.0657 1.0615
Cleveland 1.1552 1.0612 1.1713 1.1356 0.9911 0.9558 0.9591 0.9628
Glendale 1.3179 1.2263 1.3706 1.3566 1.2090 1.1078 1.1540 1.1197
Peoria 1.4694 1.3362 1.4809 1.4907 1.2742 1.2069 1.1972 1.2000
Richmond Hill 1.1986 1.1666 1.2044 1.2248 1.0175 1.0242 0.9682 0.9579
Average 1.2886 1.1940 1.3054 1.2955 1.1282 1.0756 1.0688 1.0604

50 Champaign 1.3246 1.2072 1.3730 1.3431 1.1341 1.1220 1.0645 1.0728
Cleveland 1.2089 1.0849 1.2309 1.2059 0.9970 0.9700 0.9552 0.9495
Glendale 1.4545 1.2667 1.4715 1.4439 1.2198 1.1510 1.1345 1.1289
Peoria 1.5248 1.7541 1.5625 1.6057 1.3207 1.2464 1.2061 1.1852
Richmond Hill 1.3736 1.1608 1.3556 1.3490 1.0168 1.0275 0.9591 0.9394
Average 1.3773 1.2947 1.3987 1.3895 1.1377 1.1034 1.0639 1.0551

Average for all 1.2529 1.1945 1.2605 1.2288 1.1471 1.0667 1.0782 1.0646

the improvement of TF-SCDV (difference from other methods) for each dataset, and the best per-
formance is also emphasized in boldface. The improvement is calculated by (A − B)/A where A
is the value by other methods and B is the value by TF-SCDV. Also, among TF-based methods,
we conducted the t-test for each city and each K value. The improvement emphasized in boldface
represents significant.

First, TF-SCDV outperforms MF-SCDV significantly in all cities while parameters are in the same
settings. Similarly, comparing basic TF (resp. TF-LDA, TF-Doc2Vec) with basic MF (resp. MF-
LDA, MF-Doc2Vec), the performance of the corresponding TF-based method have increased to some
extent. It indicates that, in the feedbacks about restaurants, the user’s rating would be affected
certainly by seasons.

TF-SCDV shows the best performance in terms of RMSE and MAE in most of the cases that
K ≥ 40. Comparing with MF-based methods, the improvement of TF-SCDV is more than 10%
in both RMSE and MAE. Additionally, TF-SCDV significantly outperforms basic TF in almost all
cases. TF-LDA presents a better result than TF-SCDV in the cases K ≤ 20, while the performance of
TF-LDA would decrease along with the increment of K. When we consider the average performance,
TF-SCDV and TF-LDA are similar and outperform TF-Doc2Vec.

Note that, in the case of MF-based methods, we got similar results, i.e., MF can be improved by
NLP methods and MF-LDA is the best among MF-based methods.

122

International Journal of Networking and Computing

Table 7: The improvement in terms of RMSE of TF-SCDV on all datasets (%). The improvement
emphasized in boldface represents significant.

K Dataset vs MF vs MF-LDA vs MF-D2V vs MF-SCDV vs TF vs TF-LDA vs TF-D2V
10 Champaign 11.20 5.23 12.46 5.46 9.97 -4.05 1.53

Cleveland 10.75 3.53 10.18 3.37 8.72 1.00 6.32
Glendale 7.41 2.25 8.11 2.37 9.60 -4.50 3.70
Peoria 7.48 3.49 5.26 3.49 9.70 -1.54 2.62
Richmond Hill 4.94 1.28 8.28 2.81 8.68 -1.63 2.14
Average 8.36 3.16 8.86 3.50 9.33 -2.14 3.26

20 Champaign 13.13 9.67 10.82 5.19 8.85 -1.10 0.38
Cleveland 14.94 9.88 13.95 9.34 6.99 -1.60 4.21
Glendale 9.04 11.92 7.95 6.30 5.25 -4.63 -0.44
Peoria 9.69 15.07 8.22 4.46 9.46 -1.37 1.52
Richmond Hill 11.01 15.48 9.60 10.80 5.70 -1.22 0.98
Average 11.56 12.40 10.11 7.22 7.25 -1.99 1.33

30 Champaign 13.15 7.64 13.34 10.21 5.88 -1.12 -0.56
Cleveland 15.15 6.93 16.36 11.37 4.96 -2.13 1.67
Glendale 11.27 5.27 11.91 10.30 5.87 -3.98 -0.34
Peoria 11.18 8.14 11.27 9.09 6.46 2.07 0.88
Richmond Hill 13.23 10.22 16.20 14.23 6.08 0.55 -1.02
Average 12.80 7.64 13.82 11.04 5.85 -0.92 0.13

40 Champaign 18.47 10.01 18.33 16.41 7.61 2.00 0.40
Cleveland 16.65 9.27 17.80 15.22 2.86 -0.73 -0.39
Glendale 15.04 8.69 18.31 17.46 7.39 -1.08 2.96
Peoria 18.34 10.20 18.97 19.50 5.83 0.58 -0.23
Richmond Hill 20.08 17.89 20.46 21.79 5.86 6.47 1.06
Average 17.71 11.21 18.77 18.08 5.91 1.45 0.76

50 Champaign 19.01 11.13 21.87 20.13 5.41 4.38 -0.77
Cleveland 21.46 12.48 22.87 21.27 4.77 2.12 0.60
Glendale 22.39 10.88 23.28 21.82 7.46 1.92 0.50
Peoria 22.27 32.43 24.15 26.19 10.26 4.92 1.73
Richmond Hill 31.61 19.07 30.70 30.36 7.62 8.57 2.05
Average 23.35 17.20 24.57 23.95 7.10 4.38 0.82

Average for all 14.76 10.32 15.23 12.76 7.09 0.16 1.26

7 Conclusion

In this paper, we propose a new framework TF+ including TF-Doc2Vec, TF-LDA and TF-SCDV.
From the given textual reviews, TF-Doc2Vec (resp. TF-LDA, TF-SCDV) extracts features of reviews
by Doc2Vec (resp. LDA, SCDV), and these feature vectors affect the learning process of TF. In
the evaluation, we conduct a series of experiments utilizing five cities information about restaurants
from YELP challenge dataset. According to the comparison, the RMSE of rating prediction by
methods in our framework TF+ improves 5.8–7.3% significantly comparing to the basic TF method
on average of all five cities by K = 5, · · · , 60. If K ≤ 20, TF-LDA outperforms other methods,
otherwise, TF-SCDV is better.

While we tried LDA, Doc2Vec and SCDV as the NLP methods for TF+ in this paper, in the
future, we plan to identify the characteristics of NLP which are better or worse for our framework
even if we apply other NLP methods. Additionally, while we tried basic MF and basic TF as base
models for TF+, we also plan to try other new models.

References

[1] Jie Bao, Yu Zheng, and Mohamed F. Mokbel. Location-based and preference-aware recom-
mendation using sparse geo-social networking data. In Proceedings of the 20th international
conference on advances in geographic information systems, pages 199–208, 2012.

123

A TF on Rating Prediction by Feature Extraction from Reviews

Table 8: The performance in term of MAE of eight methods on all datasets. The best performance
is emphasized in boldface for each dataset.

K Dataset MF MF-LDA MF-D2V MF-SCDV TF TF-LDA TF-D2V TF-SCDV
10 Champaign 0.9322 0.8697 0.9406 0.8683 0.9160 0.7909 0.8389 0.8296

Cleveland 0.8349 0.7700 0.8245 0.7713 0.8156 0.7462 0.7959 0.7417
Glendale 0.9729 0.9169 0.9690 0.9175 0.9933 0.8556 0.9297 0.8999
Peoria 1.0398 0.9995 1.0236 1.0039 1.0691 0.9543 0.9882 0.9641
Richmond Hill 0.7993 0.7735 0.8303 0.7929 0.8387 0.7518 0.7829 0.7683
Average 0.9158 0.8659 0.9176 0.8708 0.9265 0.8198 0.8671 0.8407

20 Champaign 0.9636 0.9321 0.9285 0.8843 0.9213 0.8278 0.8395 0.8349
Cleveland 0.8725 0.8377 0.8621 0.8127 0.7969 0.7288 0.7718 0.7470
Glendale 0.9900 1.0176 0.9745 0.9591 0.9589 0.8539 0.9005 0.8964
Peoria 1.0652 1.1122 1.0452 1.0070 1.0545 0.9397 0.9780 0.9591
Richmond Hill 0.8479 0.8845 0.8372 0.8400 0.7965 0.7486 0.7650 0.7534
Average 0.9479 0.9568 0.9295 0.9006 0.9056 0.8198 0.8510 0.8382

30 Champaign 0.9805 0.9195 0.9819 0.9448 0.9005 0.8398 0.8464 0.8571
Cleveland 0.8827 0.8089 0.8936 0.8421 0.7912 0.7402 0.7629 0.7476
Glendale 1.0119 0.9485 1.0133 0.9980 0.9526 0.8618 0.8954 0.8914
Peoria 1.0741 1.0473 1.0648 1.0291 1.0148 0.9719 0.9663 0.9647
Richmond Hill 0.8625 0.8410 0.8915 0.8778 0.8024 0.7618 0.7481 0.7540
Average 0.9624 0.9130 0.9690 0.9384 0.8923 0.8351 0.8438 0.8430

40 Champaign 1.0265 0.9388 1.0315 0.9911 0.9035 0.8543 0.8448 0.8416
Cleveland 0.9038 0.8369 0.9113 0.8829 0.7777 0.7498 0.7520 0.7510
Glendale 1.0321 0.9692 1.0758 1.0541 0.9553 0.8753 0.9054 0.8753
Peoria 1.1503 1.0494 1.1517 1.1524 1.0017 0.9512 0.9463 0.9501
Richmond Hill 0.9352 0.9180 0.9407 0.9522 0.8003 0.8054 0.7643 0.7544
Average 1.0095 0.9425 1.0222 1.0065 0.8877 0.8472 0.8426 0.8345

50 Champaign 1.0428 0.9612 1.0844 1.0550 0.8906 0.8937 0.8465 0.8459
Cleveland 0.9434 0.8492 0.9607 0.9368 0.7526 0.7974 0.7327 0.7394
Glendale 1.1312 0.9966 1.1490 1.1217 0.9587 0.9069 0.8988 0.8858
Peoria 1.1771 1.3297 1.2051 1.2321 1.0487 1.0034 0.9626 0.9397
Richmond Hill 1.0703 0.9135 1.0563 1.0485 0.8050 0.8092 0.7512 0.7342
Average 1.0729 1.0100 1.0911 1.0788 0.8962 0.8741 0.8407 0.8290

Average for all 0.9817 0.9376 0.9859 0.959 0.9017 0.8392 0.8490 0.8371

[2] Yang Bao, Yang Bao, and Jie Zhang. Topicmf: Simultaneously exploiting ratings and reviews
for recommendation. In Proceedings of the 28th AAAI Conference on Artificial Intelligence,
pages 2–8, 2014.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3:993–1022, 2003.

[4] Li Chen, Guanliang Chen, and Feng Wang. Recommender systems based on user reviews:the
state of the art. User Modeling and User-Adapted Interaction, (25):99–154, 2015.

[5] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link prediction using matrix
and tensor factorizations. ACM Transactions on Knowledge Discovery from Data, 5(2), 2011.

[6] Guan-Shen Fang, Sayaka Kamei, and Satoshi Fujita. Rating prediction with topic gradient
descent method for matrix factorization in recommendation. INTERNATIONAL JOURNAL
OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 8(12):469–476, 2017.

[7] Evgeny Frolov and Ivan Oseledets. Tensor methods and recommender systems. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 7(3):e1201, 2017.

[8] Md. Ahsan Habib, Md. Abdur Rakib, and Muhammad Abul Hasan. Location, time, and
preference aware restaurant recommendation method. In Proceedings of the 19th International
Conference on Computer and Information Technology, pages 315–320, 2016.

124

International Journal of Networking and Computing

Table 9: The improvement in term of MAE of TF-SCDV on all datasets (%). The improvement
emphasized in boldface represents significant.

K Dataset vs MF vs MF-LDA vs MF-D2V vs MF-SCDV vs TF vs TF-LDA vs TF-D2V
10 Champaign 11.00 4.61 11.80 4.46 9.43 -4.89 1.11

Cleveland 11.17 3.67 10.04 3.83 9.07 0.60 6.81
Glendale 7.51 1.86 7.13 1.92 9.40 -5.18 3.21
Peoria 7.28 3.55 5.82 3.97 9.82 -1.03 2.44
Richmond Hill 3.88 0.68 7.46 3.11 8.39 -2.19 1.86
Average 8.17 2.87 8.45 3.46 9.22 -2.54 3.09

20 Champaign 13.36 10.43 10.09 5.58 9.38 -0.86 0.55
Cleveland 14.38 10.83 13.36 8.09 6.27 -2.50 3.22
Glendale 9.46 11.91 8.02 6.54 6.52 -4.90 0.46
Peoria 9.96 13.76 8.24 4.76 9.05 -2.06 1.93
Richmond Hill 11.15 14.82 10.01 10.31 5.41 -0.64 1.52
Average 11.66 12.35 9.94 7.06 7.32 -2.21 1.53

30 Champaign 12.59 6.79 12.71 9.28 4.82 -2.06 -1.26
Cleveland 15.31 7.58 16.34 11.23 5.51 -1.00 2.00
Glendale 11.91 6.02 12.03 10.68 6.42 -3.43 0.45
Peoria 10.19 7.88 9.40 6.25 4.94 0.74 0.17
Richmond Hill 12.58 10.35 15.42 14.11 6.03 1.02 -0.79
Average 12.51 7.72 13.18 10.31 5.54 -0.95 0.11

40 Champaign 18.01 10.35 18.41 15.08 6.85 1.49 0.38
Cleveland 16.91 10.26 17.59 14.94 3.44 -0.17 0.13
Glendale 15.19 9.69 18.63 16.96 8.37 0.00 3.32
Peoria 17.40 9.47 17.50 17.55 5.15 0.12 -0.40
Richmond Hill 19.33 17.82 19.81 20.77 5.74 6.33 1.30
Average 17.37 11.52 18.39 17.06 5.91 1.55 0.95

50 Champaign 18.88 11.99 21.99 19.82 5.02 5.35 0.07
Cleveland 21.62 12.93 23.04 21.07 5.60 3.00 1.33
Glendale 21.70 11.12 22.91 21.03 7.60 2.33 1.45
Peoria 20.17 29.33 22.02 23.73 10.39 6.35 2.38
Richmond Hill 31.40 19.63 30.49 29.98 8.80 9.27 2.26
Average 22.75 17.00 24.09 23.13 7.35 5.13 1.36

Average for all 14.49 10.29 14.81 12.20 7.07 0.20 1.41

[9] Balázs Hidasi and Domonkos Tikk. General factorization framework for context-aware recom-
mendations. Data Mining and Knowledge Discovery, 30(2):342–371, 2016.

[10] Matthew D. Hoffman, David M. Blei, and Francis Bach. Online learning for latent dirichlet al-
location. In Proceedings of the 23rd International Conference on Neural Information Processing
Systems, pages 856–864, 2010.

[11] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Multiverse
recommendation: n-dimensional tensor factorization for context-aware collaborative filtering.
In Proceedings of the 4th ACM conference on Recommender systems, pages 79–86, 2010.

[12] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[13] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[14] Wei-Ti Kuo, Yu-Chun Wang, Richard Tzong-Han Tsai, and Jane Yung jen Hsu. Contextual
restaurant recommendation utilizing implicit feedback. In Proceedings of the 24th Wireless and
Optical Communication Conference, 2015.

[15] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In
Proceedings of the 31st International Conference on Machine Learning, pages 1188–1196, 2014.

125

A TF on Rating Prediction by Feature Extraction from Reviews

[16] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating
dimensions with review text. In Proceedings of the 7th ACM conference on Recommender
systems, pages 165–172, 2013.

[17] Dheeraj Mekala, Vivek Gupta, Bhargavi Paranjape, and Harish Karnick. Scdv: Sparse compos-
ite document vectors using soft clustering over distributional representations. arXiv preprint
arXiv:1612.06778, 2016.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems, pages 3111–3119, 2013.

[19] Douglas Reynolds. Gaussian mixture models. Encyclopedia of biometrics, pages 827–832, 2015.

[20] Francesco Ricci, Lior Rokach, and Bracha Shapira, editors. Recommender Systems Handbook.
Springer, 2015.

[21] Michael Röder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data
Mining, pages 399—-408, 2015.

[22] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Proceedings of
the 20th International Conference on Neural Information Processing Systems, pages 1257–1264,
2008.

[23] Sulis Setiowati, Teguh Bharata Adji, and Igi Ardiyanto. Context-based awareness in location
recommendation system to enhance recommendation quality: A review. In Proceedings of
International Conference on Information and Communications Technology, pages 90–95, 2018.

[24] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Hanjalic, and Nuria
Oliver. Tfmap: Optimizing map for top-n context-awarerecommendation. In Proceedings of
the 35th international ACM SIGIR conference on Research and development in information
retrieval, pages 155—-164, 2012.

[25] Panagiotis Symeonidis and Andreas Zioupos. Matrix and Tensor Factorization Techniques for
Recommender Systems. Springer, 2016.

[26] Wenmin Wu, Jianli Zhao, Chunsheng Zhang, Fang Meng, Zeli Zhang, Yang Zhang, and Qiuxia
Sun. Improving performance of tensor-based context-aware recommenders using bias tensor
factorization with context feature auto-encoding. Knowle dge-Base d Systems, (128):71–77,
2017.

[27] Lina Yao, Quan Z. Sheng, Yongrui Qin, Xianzhi Wang, Ali Shemshadi, and Qi He. Context-
aware point-of-interest recommendation using tensor factorization with social regularization. In
Proceedings of the 38th international ACM SIGIR conference on research and development in
information retrieval, pages 1007–1010, 2015.

[28] Jun Zeng, Feng Li, Haiyang Liu, Junhao Wen, and Sachio Hirokawa. A restaurant recommender
system based on user preference and location in mobile environment. In Proceedings of the 5th
IIAI International Congress on Advanced Applied Informatics, pages 55–60, 2016.

126

