
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 10, Number 2, pages 127–143, July 2020

Non-volatile memory driver to drastically reduce input-output response time and maintain Linux
device-mapper framework

Kazuichi Oe

FUJITSU LABORATORIES LTD.
KAWASAKI, JAPAN

ooe.kazuichi@fujitsu.com

Takeshi Nanri

Kyushu University
FUKUOKA, JAPAN

nanri.takeshi.995@m.kyushu-u.ac.jp

Received: February 13, 2020
Revised: April 21, 2020
Accepted: June 1, 2020

Communicated by Ikki Fujiwara

Abstract

Automated tiered storage with fast memory and slow flash storage (ATSMF) is a hybrid
storage system located between non-volatile memories (NVMs) and solid state drives (SSDs).
ATSMF reduces the average response time for input-output (IO) accesses by migrating concen-
trated IO-access areas from an SSD to an NVM. However, the current ATSMF implementation
cannot sufficiently reduce the average response time because of the bottleneck caused by the
Linux brd driver, which is used for the NVM access driver. The response time of the brd driver
is more than ten times longer than memory-access speed. To sufficiently reduce the average
response time, we developed a block-level driver for an NVM called a “two-mode (2M) memory
driver.” This driver has a .map-access mode and direct-access mode to reduce the response time
while maintaining compatibility with the Linux device-mapper framework. The direct-access
mode has a drastically lower response time than the Linux brd driver because the ATSMF driver
can directly execute the IO-access function of the 2M memory driver. Experimental results in-
dicate that ATSMF using the 2M memory driver reduced the IO access response time to less
than that of ATSMF using the Linux brd driver in most cases.

Keywords: Hybrid storage system, dynamic random-access memory, non-volatile memory (NVM),
flash storage; NVM driver, Linux device-mapper

1 Introduction

Automated tiered storage with fast memory and slow flash storage (ATSMF) [22] is a hybrid storage
system located between non-volatile memories (NVMs) and SSDs. To reduce the response time,
ATSMF should be used on a server system with direct-attached storage and executed using applica-
tions on the same server system. ATSMF migrates the area of input-output (IO) concentration from
an SSD to an NVM if it predicts that doing so can reduce the average response time. Previous stud-
ies [21, 22] investigated the workloads of a virtual desktop infrastructure (VDI), online transaction

127



Non-volatile memory driver to drastically reduce input-output response time

processing (OLTP), a shared file server, web server, and mail server and discussed the characteristics
of IO concentration. IO concentration takes up only a small percentage of the storage volume and
either remains for a long time or shifts to a neighboring area of the storage volume after several
minutes on average. Furthermore, this narrow region includes most IO accesses and appears at
unpredictable logical block addresses (LBAs). This narrow region is in 1-GB by 1-minute intervals.

In a previous study [22], however, ATSMF could not sufficiently reduce the response time because
it used the Linux brd driver as its NVM access driver, and the brd driver had a slow response time
and slow migration speed on joining ATSMF. The response time of the brd driver was more than
ten times longer than memory-access speed. ATSMF has to use the brd driver because the ATSMF
driver is built on the Linux device-mapper framework and should be connected to both the NVM
access driver and NVMe driver by using the Linux device-mapper framework.

To reduce the response time of these workloads, we developed a block-level driver for an NVM
called a “two-mode (2M) memory driver.” This driver has simple memory management, a direct-
access mode, and .map-access mode. Simple memory management reduces the overhead of retrieving
a target memory area by dividing this area not into pages but into 1-GB units. For the direct-access
mode, the 2M memory driver exposes the symbol of its IO access function to other kernel drivers to
reduce software overheads for the Linux device-mapper framework. The .map-access mode provides
the functions to be added to the Linux device mapper framework [3] and handles an IO request by
using the Linux BIO structure [7]. For both modes to coexist, the memory-access code of the 2M
memory driver is shared among both modes, and the ATSMF driver calls both modes exclusively for
each sub-logical unit number (sub-LUN). The sub-LUN is a portion of storage volume, and ATSMF
manages a storage volume by sub-LUN units. The 2M memory driver is effective even when applied
to other than ATSMF. This is because the simple memory management can reduce the response
time even if the .map-access mode is used. Therefore, the 2M memory driver reduces the response
time and becomes compatible with the Linux device-mapper framework.

The key contributions of this work are as follows.

• We developed the 2M memory driver, which has simple memory management, direct-access
mode, and .map-access mode, for simultaneously achieving both low IO-access response time
and compatibility of the Linux device-mapper framework.

– The average response time for the 2M memory driver is almost one digit shorter than
that for a Linux brd driver by accessing the direct-access mode with simple memory
management (1 microsecond on average).

– The 2M memory driver can support the Linux device-mapper framework by using the
.map-access mode with simple memory management.

• We succeeded in reducing the average response time of ATSMF by 27% when we replaced the
NVM access driver from the Linux brd driver with the 2M memory driver.

• We also succeeded in reducing the average response time of ATSMF even when the memory
capacity for an NVM was set to 10% of the entire volume.

2 ATSMF with Linux brd driver

2.1 Characteristics of IO Concentration

ATSMF reduces the average response time by migrating the whole IO concentration area from an
SSD to an NVM dynamically. The IO concentration is included in many workloads, which consist
of a VDI server, OLTP, a shared file server, web server, and mail server [21, 11].

The characteristics of IO concentration are summarized in Figure 1. One square denotes a 1-GB
by 1-minute interval, and the set of red squares denotes the IO concentration. The size of this
concentration is a small percentage of the entire storage volume. Its duration is more than one
minute, and its concentration is more than 50 % of the IO access for this interval. Almost all the
start LBAs for IO concentration are unpredictable.

128



International Journal of Networking and Computing

Figure 1: Characteristics of IO concentration

Migration for conventional caching is done by page (4-KB) unit, and its typical migration algo-
rithms are least recently used (LRU), adaptive replacement cache (ARC) [17], and so on. However,
its cache hit ratios vary with each workload including IO concentration, but most workloads have
low ratios. This is because the IO-concentration area often includes few continuous and few recursive
IO-access patterns [23].

2.2 Overview of ATSMF

ATSMF [22, 23] is a hybrid storage system located between NVMs and SSDs to effectively handle
IO concentration. Figure 2 shows an overview of ATSMF. Its migration algorithm finds an entire
area of IO concentration and migrates it from an SSD to an NVM if the migration is predicted
to improve performance for the user. To determine the entire IO concentration, its migration unit
should be around 1 GB. The assumed environment is a server with an NVM and SSD, with the user
application executed on the server as this reduces the average response time.

The overview of ATSMF’s migration algorithm is as follows. The system predicts the effective-
ness of migration by monitoring the increase in response time during migration and the decrease
in this time after migration. The system continually monitors this increase, this decrease, and the
duration of migration then uses the monitored data to predict the average increase and average
decrease in the times and duration of each IO concentration. It also continually monitors the occur-
rence of IO concentrations. When it identifies a concentration, it first predicts the concentration’s
remaining duration then calculates and compares the response-time increase during migration and
response-time decrease after migration by using the predicted duration and monitored values. If
the response-time decrease after migration exceeds the response-time increase during migration, the
system migrates the data in the target regions to the NVM. It also identifies regions that will likely
be targeted in the immediate future and immediately migrates the data in those regions to the NVM.

When the memory consumption of 2M ATSMF reaches the upper limit of memory capacity, the
exclusion algorithm of 2M ATSMF is similar to that of LRU. 2M ATSMF selects the least accessed
U sub-LUNs and migrates these U sub-LUNs from the memory to the SSD before the replacement
judgment from the SSD to memory described in a previous study [22]. We set U to 10 in the
evaluation of this paper.

2.3 Overhead of ATSMF using Linux brd driver

Figure 3 shows the overhead of the previous implementation of ATSMF, i.e., ATSMF using the
Linux brd driver (brd ATSMF). This ATSMF is composed of a tiering manager and tiering driver.
The tiering manager executes the migration algorithm described in Section 2.2. The tiering driver
executes the migration between an NVM and SSD when the tiering manager orders the migration

129



Non-volatile memory driver to drastically reduce input-output response time

Figure 2: Overview of ATSMF

to the tiering driver. If NVM migration is completed, the tiering driver registers the migration area
to the tiering table. This driver also distributes the IO request by referring to the tiering table.
The kcopyd driver is a default device-mapper driver [3], and ATSMF orders the kcopyd driver to
execute migration. The non-volatile memory express (NVMe) driver [9] is a default Linux driver for
handling NVMe SSDs.

The brd driver [2] is installed in the Linux OS by default, and ATSMF uses the driver as its
NVM access driver. The brd driver can join the ATSMF tiering driver because it is a device-mapper
driver and can be accessed using the Linux BIO structure [7]. However, the brd driver incurs large
software overheads and an average response time of around 10 microseconds per IO request, while
NVM latency is less than 1 microsecond. Thus, the ATSMF using the brd driver cannot sufficiently
reduce the average response time even if its NVM hit ratio is more than 80%. Moreover, when the
workload, whose IO concentrations often shift to a neighboring area in a short interval, is executed,
the ATSMF cannot sufficiently improve the NVM hit ratio because of the occurrence of frequent
migration. Frequent migration often cannot be completed in time since the response time of the brd
driver is slow. We want to make the average response time of the NVM access driver to be as close
as possible to memory-access speed.

To clarify the reason for the slow response time of the Linux brd driver, we added an internal
latency measurement mechanism to the Linux brd driver, built ATSMF with this updated brd driver,
and evaluated this ATSMF by replaying a portion of the MSR Cambridge src1 0 workload. Its replay
duration was about 90 minutes, and we calculated the average values of these internal latencies by
using measured values. As a result, the total latency of the Linux brd driver was 9 microseconds on
average and the latency for memory management function was 7 microseconds on average. In the
study of this latency of the Linux brd driver using the kernel profiler, lock-wait of the radix-tree [8]
is found to occupy the major part of the time. At this point, concentrated IO requests are supposed
to be causing frequent lock-waits, since the driver assigns the memory area for each page through
the radix tree. The remaining latency was 2 microseconds on average, and the major overhead was
the device-mapper handling.

3 NVM driver with low response time and Linux device-
mapper compatibility

As explained in Section 2.3, brd ATSMF cannot sufficiently reduce the average response time because
of large software overheads for the Linux brd driver. We believe that this is a common problem for
device-mappered storage systems with Dual Inline Memory Module (DIMM) attached NVMs. To
solve this problems, we developed the 2M memory driver, which dramatically reduces response time

130



International Journal of Networking and Computing

Figure 3: Overhead of ATSMF using Linux brd driver

Figure 4: Overview of 2M memory driver

and is compatible with the Linux device-mapper framework.

The 2M memory driver has three features: simple memory management, a direct-access mode,
and .map-access mode (see Figure 4). Simple memory management dramatically reduces the
memory-management overhead. The direct-access mode reduces the device-mapper overhead be-
tween the 2M memory driver and a device-mapper driver by using an original application program-
ming interface (API). The .map-access mode can access data between the 2M memory driver and a
device-mapper driver by using the default API for device-mapper framework.

Then, the 2M memory driver’s strong point is to achieve low-latency access by using both the
simple memory management and the direct-access mode. Its weak point is that programmer should
consider how to use properly both the direct-access mode and .map-access mode. The programmer
should choose the .map-access mode when he implement the functions for device-mapper framework.
He should choose the direct-access mode when he implement the function for data access. He should
also use both mode separately by each block of the storage volume.

A traditional device driver for device-mapper framework can also use the 2M memory driver by
only using .map access mode. Then, its performance improvement will be limited.

We explain these three features in the following sub-sections.

131



Non-volatile memory driver to drastically reduce input-output response time

3.1 Simple memory management

Figure 4 shows an overview of simple memory management, which manages the memory area by not
page but by a large unit to dramatically reduce the search latency for retrieving the target memory
area. The large unit will be dramatically larger than page size to unuse the radix tree search. During
initialization for the 2M memory driver, it allocates several large memory units for the NVM storage
region. When handling an IO request, it specifies the memory area by calculating the offset of the
allocated NVM regions. The brd driver executes the radix tree search for each IO request to retrieve
the target memory area. The search often incurs large overhead (see Section 2.3).

When the brd driver is set by using a large page (ex.1-GB) unit, the overhead for radix tree
search may be reduced because the number of leaf for radix tree will be greatly decreased. Then,
the latency for brd driver with large page may be almost same as that for 2M memory driver when
the NVM capacity is less than 800 GB, which is the capacity of this paper’s evaluation. However,
the capacity for intel Optane DC Persistent Memory (DCPM) [12] reaches 6 TB when a general
2-socket server is used. And, the DCPM’s capacity will be extended in the near future. Therefore,
the overhead for radix tree with large page will increase when the brd driver is executed with almost
all the DCPM’s capacity.

3.2 Direct-access mode

Figure 4 shows an overview of the direct-access mode. This mode can be accessed using an original
API and reduces response time by skipping the Linux device-mapper interface. The parameter for
this original API is only a pointer of the Linux BIO structure, which is also used by calling the Linux
device-mapper interface. When the 2M memory driver is initialized, it registers the memory-access
function in the kernel’s symbol table by using “EXPORT SYMBOL”. Then, a driver can directly
call the memory-access function with only a pointer of the Linux BIO structure when the driver
executes IO requests. It then calculates the offset of areas by using simple memory management and
copies them between the calculated memory area and IO request when it executes an IO request.
The copy code retrieves the multiple memory pointers of an IO request from its BIO structure, maps
the pointed areas using “kmap atomic”, and copies them between the calculated memory area and
IO request.

When a programmer uses the direct-access mode, he should get the pointer for its memory-access
function from the kernel’s symbol table and call the memory-access function with the pointer of the
Linux BIO structure.

3.3 .map-access mode

The Linux device-mapper framework can generate a virtual storage volume by combining multiple
storage drivers. Thus, the hybrid storage structure for ATSMF is built using the device-mapper
framework. Figure 4 also shows an overview of the .map access mode. When the 2M memory driver is
initialized, it registers the .map function, which handles IO requests, to the target table of the device-
mapper by using the “dm register target” function. The .map function must be registered when the
2M memory driver is added to the device-mapper, and the dm register target function is a device-
mapper management function. When handling IO requests, a driver calls the “dm io async bvec”
function, which is an IO-request function of the device-mapper, with target information. Then, the
device-mapper searches the target table for the .map function of the target driver and calls that
function.

The Linux brd driver can also handle an IO request by using the Linux device-mapper interface.
However, its response time is higher than that of the 2M memory driver because of simple memory
management.

3.4 2M memory driver for applying ATSMF

Figure 5 shows the prototype system for ATSMF with the 2M memory driver on Linux. The 2M
memory driver allocates memory area in 1-GB units because 1 GB is the upper limit for the vmalloc

132



International Journal of Networking and Computing

Figure 5: ATSMF with 2M memory driver on Linux

function (Linux 3.10.0-229.el7.x86 64). The system uses dynamic random access memory (DRAM)
as a substitute for an NVM.

In the next subsection, we briefly explain ATSMF architecture, and the tiering-driver implemen-
tation for accessing the 2M memory driver.

3.4.1 ATSMF architecture

ATSMF consists of a tiering manager, tiering driver, and the 2M memory driver. The tiering
manager retrieves the number of IOs per sub-LUN and determines whether the sub-LUN should
be migrated by using the algorithms mentioned in [22, 23]. The tiering manager requests that the
tiering driver migrates the sub-LUN if the judgment states so.

The tiering driver has three functions. First is distribution of IO request between an NVM and
SSD by using the tiering table. Second is the temporary buffer. It keeps the IO request data of a
sub-LUN that is migrating. When the migration is completed, its data write back either the NVM or
SSD. Third is the response time monitor. The monitored values are used by the migration algorithm
mentioned in [22, 23].

3.4.2 Tiering driver implementation for accessing 2M memory driver

The storage volume for ATSMF is divided and managed by sub-LUN unit. Each sub-LUN is assigned
to either an NVM region or SSD region. When a sub-LUN is migrating between NVM and SSD
regions, the IO requests for migrating sub-LUN are stored to the temporary buffer until the migration
is completed. Therefore, the tiering driver accesses the NVM-assigned sub-LUN by direct-access
mode.

The sub-LUN migration is executed from the kcopyd driver. The kcopyd driver, which is a default
function of the Linux device-mapper, accesses the NVM region by using the .map-access mode of the
2M memory driver. The tiering driver orders the migration to the kcopyd driver when it receives the
migration order from the tiering manager. The kcopyd driver moves data of the specified sub-LUN
between the NVM and SSD regions. When the sub-LUN migration is completed, the tiering driver
moves the written data from the temporary buffer to the NVM region or SSD region and updates
the tiering table.

133



Non-volatile memory driver to drastically reduce input-output response time

Table 1: Workloads used in experiments

Workload GB Write Comments
ratio
(%)

VDI 8000 22.98
DBT2 800 100.00
src1 0 (MSR) 293 84.24 retrieved from 1920 to 2020 (*1)
src1 1 (MSR) 293 0.91 retrieved from 480 to 600 (*1)
proj1 (MSR) 800 1.16 retrieved from 230 to 550 (*1)
proj2 (MSR) 800 42.29 retrieved from 6760 to 6890 (*1)
proj4 (MSR) 236 0.22 retrieved from 7390 to 7600 (*1)
usr1 (MSR) 800 0.25 retrieved from 2090 to 2350 (*1)
usr2 (MSR) 569 0.22 retrieved from 5970 to 6130 (*1)
web2 (MSR) 182 0.03 retrieved from 5870 to 5930 (*1)
src1 0+ (samba) 293 82.84 created from src1 0
src1 1+ (samba) 293 0.87 created from src1 1

*1: Elapsed time (minutes) from first trace logs

3.4.3 2M memory driver for applying a general device-mapper driver

The 2M memory driver is also effective when applied to a general device-mapper driver. This is
because the simple memory management can reduce the response time even if the .map-access mode
is used. The major examples for general device-mapper driver is the Linux Logical Volume Manager
(LVM). It can attach the 2M memory driver by using .map-access mode.

4 Evaluation

4.1 Experimental system

We implemented the prototype of ATSMF with the 2M memory driver (2M ATSMF) on a Fujitsu
PRIMERGY TX300S8, which included two Intel Xeon E5-2660 processors, 896-GB memory, and
four 2-TB Intel P3700 SSDs and was installed with Linux CentOS 7.1. We also created an 8-TB
logical volume management (LVM) volume by using four 2-TB Intel P3700 SSDs.

The 2M memory driver used a portion of the 896-GB memory, as per the experimental conditions.
ATSMF also used the 8-TB LVM as an SSD volume. We used DRAM as a substitute for an NVM
because some NVMs [1] have almost the same memory-access latency as DRAM.

The output of the Linux blktrace command was used as block-trace logs, which was the input of
the tiering manager. ATSMF migrates the data between an NVM and SSD in sub-LUN units. In
this study, a sub-LUN was 1 GB, and the execution interval of the tiering manager was 24 seconds.
The interval included the execution time (20 seconds) and post-process (4 seconds) of the block
trace. ATSMF then determined the migration at intervals of 24 seconds.

4.2 Methodology

Our intention was to clarify whether 2M ATSMF can handle workloads that generate many IO
concentrations. We evaluated its performance in terms of average response time and memory-access
ratio. The average response time determines the overall effectiveness of this system including the
migration overhead. The memory-access ratio determines its effectiveness without the overhead.
We compared the performance of 2M ATSMF with that of brd ATSMF, SSD only, and caching
between the memory and SSD by replaying VDI and DBT-2 workloads and several shared fileserver
workloads described in Table 1. The VDI workload consisted of the eight 8-TB volumes logs [21]. We
chose the log that had the most IO accesses. We also prepared the workloads divided into units of
800 GB (0–800, 800–1600, 1600–2400, 2400–3200, 3200–4000, 4000–4800 GB) because we evaluated
the relationship between the number of sub-LUN migrations and memory-access ratio. We did not
prepare the workloads whose addresses were more than 4800 GB because these areas had no IO

134



International Journal of Networking and Computing

requests. We used the DBT-2 trace logs described in a previous study [22]. The shared fileserver
workloads consisted of the MSR Cambridge [19] and Samba [21] workloads. Most MSR Cambridge
workloads appear alternatively when many IO accesses are included and when few IO accesses are
included. and these durations are about a week. We then selected one period including many IO
accesses from each workload. The duration for each selected period was between 60 to 120 minutes.
We created trace logs for the Samba workloads by using portions of the MSR Cambridge src1 0 and
src1 1 workloads because their logs were in an aggregate of 1-GB by 1-min units. Oe et al. [20]
explained how to create the trace logs.

We used both the Facebook FlashCache [5] and Facebook FlashCache with lazy adaptive replace-
ment (FlashCache-LARC) [15, 4] for the caching implementation. We set the replacement algorithm
of FlashCache to least recently used (LRU) and set the replacement algorithm of FlashCache-LARC
to LARC. We believe that LARC is one of the most effective cache replacement algorithms because
it determines a replacement by using both recency and frequency. We loaded these drivers with a
write-back mode and used the Linux brd driver as a block-level access memory driver of FlashCache.
The other options of these drivers were the defaults. We downloaded their latest editions and used
them for our evaluation.

The trace logs we created were reproduced using the Linux btreplay command. Options -X 1 -W
1 in btreplay were specified, where -X 1 means single speed and -W 1 means write enable.

We conducted three evaluations. The first was on the effectiveness of the 2M memory driver by
using all workloads except for VDI ALL(8000 GB). This is because in a previous study [22], the
authors executed brd ATSMF by using the workloads of up to 800 GB. Moreover, we divided these
workloads into two groups. One was VDI and DBT-2, and other was MSR Cambridge and Samba.
The execution for the VDI and DBT-2 workloads incurred SSD overload because they both included
many IO accesses. On the other hand, the execution for the MSR Cambridge and Samba workloads
did not incur SSD overload. The second evaluation was on the effectiveness of 2M ATSMF when
the upper limit of the memory amount was 10% of the entire volume capacity. The third evaluation
was on the effectiveness of 2M ATSMF on executing the VDI ALL workload.

4.3 Evaluation results

A response time for ATSMF depends on the memory-access ratio, response time of the memory part,
and that of the SSD part. When the memory-access ratio is high, the response time of its memory
part greatly affects the whole response time for ATSMF. When the memory-access ratio is low, the
response time of its SSD part greatly affects the whole response time for ATSMF. Therefore, we
discuss the evaluation results for ATSMF by using these three data sets.

4.3.1 Effectiveness of 2M memory driver (MSR and Samba)

Figure 6 shows the average response times of the 8-TB LVM SSD volume (SSD only), which consisted
of four 2-TB Intel P3700 SSDs, FlashCache-LARC (LARC), FlashCache-LRU (LRU), and ATSMF.
Figure 7 shows the average response times of ATSMF’s memory driver, and Figure 8 shows the
memory-access ratios of the LARC, LRU, and ATSMF for all workloads. This figure also shows
the maximum memory consumption (MMC) of ATSMF. The MMC is a percentage of each GB
column for Table 1. ATSMF migrated the IO cocentrated areas from SSD to memory (NVM) when
it detected the IO concentrations described in a previous paper [22]. It also migrated the areas from
memory to SSD when the IO concentration had already been completed. Therefore, the memory
consumption of ATSMF changed over time. We also set the memory capacity of both LARC and
LRU to the MMC of ATSMF.

We compared the average response times between brd ATSMF and 2M ATSMF. Our 2M ATSMF
was the most effective except for usr1 (see Figure 6). We succeeded in reducing the average response
time by 27% when we changed the NVM access driver from brd to 2M. Figure 7 shows the average
response times for both the 2M memory driver and Linux brd driver. The average response times
for the 2M memory driver are almost one digit shorter than those for the Linux brd driver (1
microseconds on average).

135



Non-volatile memory driver to drastically reduce input-output response time

0.026 0.074

0.201

0.104
0.128

0.311

0.171

0.066 0.024 0.068

0.018
0.07

0.123 0.082 0.107

0.294

0.118 0.061 0.017 0.06
0

0.2

0.4

0.6

0.8

1

MSR

src1_0

MSR

src1_1

MSR

proj1

MSR

proj2

MSR

proj4

MSR

usr1

MSR

usr2

MSR

web2

Samba

src1_0+

Samba

src1_1+

M
il

li
se

co
n

d
s

SSD LARC LRU brd ATSMF 2M ATSMF

Figure 6: Average response times for MSR and Samba (milliseconds)

0.001 0.001 0.001 0.001 0.001

0.002

0.001 0.001 0.001 0.001

0

0.005

0.01

MSR

src1_0

MSR

src1_1

MSR

proj1

MSR

proj2

MSR

proj4

MSR usr1MSR usr2 MSR

web2

Samba

src1_0+

Samba

src1_1+

A
v

e
ra

g
e

 r
e

sp
o

n
se

 !
m

e
 (

m
il

li
se

co
n

d
s)

the Linux brd driver 2M memory driver

Figure 7: Average response times of ATSMF’s memory drivers (MSR and Samba)

Figure 8 shows that the memory-access ratios for 2M ATSMF were almost the same as those for
brd ATSMF except for proj1 and usr2. When both proj1 and usr2 were executed, the memory-access
ratios for 2M ATSMF surpassed those of brd ATSMF because their IO concentrations often shift to
a neighboring area in a short interval, and migration of brd ATSMF often could not be completed
in time. Previous studies [22, 23] also discussed the results of proj1 execution.

The average response times for both LARC and LRU were drastically higher than those for
ATSMF except for usr1 because of the memory-access ratios. The memory-access ratios of both
LARC and LRU were drastically lower (see Figure 8). The poor memory-access ratios of both
LARC and LRU mean that their replacement algorithms could not effectively handle the IO accesses
of these workloads and most of the IO accesses involved in the IO concentrations. Therefore, we
determined that their IO concentrations included few page-level regularities and few repeat accesses
to the same pages. On the other hand, ATSMF could handle the IO concentrations effectively
because it identified IO accesses not by page but by 1-GB units. Thus, it could determine the entire
IO-concentration area.

When usr1 was executed, the average response time of ATSMF was highest and its memory-
access ratio was lowest among other systems (see Figure 8). This is because almost all IO accesses
appeared in about the 10-GB range of the entire volume, and usr1 had IO and non-IO concentrations
that repeated in short intervals. Therefore, the replacement algorithm of ATSMF could not keep
the IO concentrations on the memory.

136



International Journal of Networking and Computing

0

10

20

30

40

50

0

20

40

60

80

100

M
a

x
im

u
m

 m
e

m
o

ry
 c

o
n

su
m

p
!

o
n

 (
M

M
C

) 
(%

)

M
e

m
o

ry
 a

cc
e

ss
 r

a
!

o
 (

%
)

LARC LRU brd ATSMF 2M ATSMF MMC

Figure 8: Memory-access ratios for all workloads (%)

4.3.2 Effectiveness of 2M memory driver (VDI and DBT2)

Figure 9 shows the average response times of the 8-TB LVM SSD volume (SSD only), FlashCache-
LARC (LARC), FlashCache-LRU (LRU), and both ATSMF implementations. Figure 10 shows the
average response times of both ATSMF’s memory drivers.

First, we explain the results for SSD only. Figure 9 shows that the average response times for SSD
only were more than 100 milliseconds due to SSD overload. Both VDI and DBT-2 included many
IO accesses. Thus, the average response times for LARC, LRU, brd ATSMF, and 2M ATSMF also
greatly increased compared to those for MSR and Samba’s results. However, the average response
times for both ATSMF implementations were drastically shorter than those for SSD only, LARC,
and LRU when both the DBT2 and VDI 1600-2400 GB were executed because of high memory-
access ratios and low average response times for the 2M memory driver. Figure 8 shows that the
memory-access ratios for both ATSMF implementations were more than 60%. Figure 10 shows that
the average response times for the 2M memory driver were less than 2 micro-seconds when both
DBT2 and VDI 1600-2400 GB were executed.

Figure 10 shows that the average response times of the 2M memory driver were almost the same
as those of the Linux brd driver probably because of large delay for software interrupt of the 2M
memory driver. The 2M memory driver used workqueue, which was prepared by the Linux kernel,
when the .map-access mode was executed. The workqueue handling resulted in software interrupt.
The 2M memory driver had large delay when the read-dominant workloads were executed because
of this interrupt. However, it had small delay when both DBT-2 and VDI 1600-2400 GB were
executed because they were write-dominant workloads. We compared the average response times
between brd ATSMF and 2M ATSMF when replaying VDI 1600-2400 GB. Both memory-access
ratios were almost the same (64%), and the average response time of the 2M memory driver (0.002
ms )was dramatically lower than that of the Linux brd driver (0.013 ms). However, the average
response time of the 2M ATSMF (68.17 ms) was slightly higher than that of the brd ATSMF (63.73
ms) because of worse SSD response time. The average response time of the 2M ATSMF’s SSD part
(186 ms) was slightly higher than that of the brd ATSMF’s SSD part (176 ms). The reason for this
difference is under investigation.

Figure 8 also includes the memory-access ratios for VDI and DBT-2. The memory-access ratios of
both ATSMF implementations were drastically higher than those for LARC and LRU. We assume
that the average response times for both ATSMF implementations will be drastically lower than
those for SSD only, LARC, and LRU if there is no SSD overload.

137



Non-volatile memory driver to drastically reduce input-output response time

141.34

216.95 228.32

63.73

271.84

123.59

203.97

6.26
139.97

236.23 217.79

68.17

264.4

129.56
181.28

6.79

0

200

400

600

800

1000

VDI ALL

(8000 GB)

VDI 0-800

GB

VDI 800-

1600 GB

VDI 1600-

2400 GB

VDI 2400-

3200 GB

VDI 3200-

4000 GB

VDI 4000-

4800 GB

DBT2

M
il

li
se

co
n

d
s

SSD LARC LRU brd ATSMF 2M ATSMF

Figure 9: Average response times for VDI and DBT-2 (milliseconds)

0.249

0.037 0.032

0.002

0.042
0.048

0.022

0.001
0

0.1

0.2

0.3

VDI ALL

(8000 GB)

VDI 0-800

GB

VDI 800-

1600 GB

VDI 1600-

2400 GB

VDI 2400-

3200 GB

VDI 3200-

4000 GB

VDI 4000-

4800 GB

DBT2

A
v

e
ra

g
e

 r
e

sp
o

n
se

 !
m

e
 (

m
il

li
se

co
n

d
s)

the Linux brd driver 2M memory driver

Figure 10: Average response times of ATSMF’s memory driver (VDI and DBT-2)

4.3.3 Effectiveness on executing 10-percent memory capacity

ATSMF migrates the IO- concentrated areas from SSD to memory (NVM) when it detects the IO
concentrations and migrates the areas from memory to SSD when the IO concentrations have already
been completed. In other words, the memory consumption of 2M ATSMF changed in accordance
with the number of IO concentrations included in the workloads. Moreover, our current implementa-
tion prioritizes memory migration; therefore, it may not execute SSD migration immediately. Figure
8 shows the results for the MMC of the evaluation explained in Sections 4.3.1 and 4.3.2. The results
revealed that most of the MMC was about 10–40%.

We then investigated the performance of 2M ATSMF when the upper limit of memory was 10%
of the entire volume capacity. We chose VDI 0–800 GB, VDI 800–1600 GB, VDI 1600–2400 GB,
VDI 2400–3200 GB, VDI 4000–4800 GB, src1 0, src1 1, proj1, proj4, usr2, and web2 because the
MMC of these workloads was more than 10%. We compared the performance of 2M ATSMF with
that of SSD only and FlashCache-LARC (LARC) by replaying the above workloads. We also set the
memory capacity of LARC to 10% of the entire volume capacity. When the memory consumption
of 2M ATSMF reaches the upper limit of memory capacity, the exclusion algorithm of 2M ATSMF,
which is described in Section 2.2, is executed.

Figure 11 shows the results of this evaluation. The average response times of 2M ATSMF were
lowest among the other systems, and its memory access ratios were also higher than those of LARC.
The average response times in this evaluation were slightly higher than those in the other evaluations

138



International Journal of Networking and Computing

0

20

40

60

80

100

0.01

0.1

1

10

100

1000

M
e

m
o

ry
 a

cc
e

ss
 r

a
!

o
 (

%
)

A
v

e
ra

g
e

 r
e

sp
o

n
se

 !
m

e
 (

m
il

li
-s

e
co

n
d

s)

SSD LARC 2M ATSMF LARC (%) 2M ATSMF (%)

Figure 11: Average response times when MMC was 10%

0

2

4

6

8

10

0

20

40

60

80

100

120

140

160

180

SSD LARC LRU brd ATSMF 2M ATSMF
M

e
m

o
ry

 a
cc

e
ss

 r
a

!
o

 (
%

)

A
v

e
ra

g
e

 r
e

sp
o

n
se

 !
m

e
 (

m
s)

Average response !me (ms) Memory access ra!o (%)

Figure 12: Average response times and memory-access ratios for VDI ALL

(Figures 9 and 6), and the memory-access ratios were slightly lower than those in Figure 8. The
size of the difference depended on the migration frequency for each workload. We assumed that the
high frequency increased the average response time because not all migrations could be completed in
time. To reduce the average response time involving high-frequency migrations, we should accelerate
the migration speed between memory and SSDs.

4.3.4 Effectiveness on executing VDI ALL workload

Figure 12 shows the average response times and memory-access ratios for VDI ALL workload. SSD
did not have a result for memory-access ratio because SSD is executed using only an SSD. When we
executed VDI ALL, 2M ATSMF’s average response time was 139.97 milliseconds and its memory-
access ratio was only 3.6 %. However, the VDI workloads, divided into units of 800 GB, were from
7.2 to 64.0 % (see Figure 8). This is because the migration of VDI ALL could not be completed in
time. The MMC of VDI ALL (2.3%) was smaller than that of the divided workloads, although the
capacity of VDI ALL was eight times higher than that of the divided workloads. We also prepared
the workloads divided into units of both 2400 and 1600 GB (0–2400, 2400–4800, 0–1600, 1600–3200,
3200–4800 GB) and executed them with 2M ATSMF. Figure 13 shows the results. The memory-
access ratios of 2M ATSMF increased as size division decreased. When 1600–2400 GB was executed,
2M ATSMF’s average response time was drastically lower than for other 800-GB portions. This is
probably because its memory-access ratio is drastically higher and its migration frequency is smaller
than for other 800-GB portions. This is evidence that migration cannot be completed in time when

139



Non-volatile memory driver to drastically reduce input-output response time

0

20

40

60

80

100

0

50

100

150

200

250

300

M
e

m
o

ry
 a

cc
e

ss
 r

a
!

o
 (

%
)

A
v

e
ra

g
e

 r
e

sp
o

n
se

 !
m

e
 (

m
il

li
se

co
n

d
s)

Average response !me (ms) Memory access ra!o (%)

Figure 13: Average response times and memory-access ratios for VDI workloads

Table 2: Estimated average response times with Intel 3D XPoint

Workload Average Memory Estimated average
response access response time (ms)
time (ms) ratio (%) (=A + 0.0005*B/100)
(A) (B)

src1 0 (MSR) 0.018 82.9 0.018
src1 1 (MSR) 0.070 76.3 0.070
proj1 (MSR) 0.123 48.3 0.123
proj2 (MSR) 0.082 69.5 0.082
proj4 (MSR) 0.107 65.5 0.107
usr1 (MSR) 0.294 3.9 0.294
usr2 (MSR) 0.118 92.8 0.118
web2 (MSR) 0.061 82.0 0.061
src1 0+ (Samba) 0.017 80.5 0.017
src1 1+ (Samba) 0.060 80.7 0.060

VDI ALL is executed. Therefore, we should divide workloads and operate 2M ATSMF with each
divided workload if its migration cannot be completed in time.

5 Discussion

Intel 3D XPoint [6], another NVM under development, uses a new technology that is not flash. Its
SSD version has come onto the market, and a DIMM-attached version will come onto the market
later in 2019. Therefore, we estimate the average response time of ATSMF with the DIMM-attached
Intel 3D XPoint when its access latency is 500 nanoseconds. This is because its write latency was
reported as approximately 500 nanoseconds in a prior study [18] [14]. For this estimation, we used the
results of executing 2M ATSMF on the MSR and Samba workloads because their average response
times were under 1 milli second.

Table 2 lists the estimation results. The estimated average response times were almost the same
as the current average response times, because they were on the order of more than ten micro-
seconds. This shows that 2M ATSMF is effective at reducing the average response time when its
NVM is Intel 3D XPoint instead of DRAM.

Finally, we explained write endurance of Intel 3D XPoint. The latest review document for
Intel Optane [12] showed that Intel Optane DC persistent memory, which is the same as Intel 3D
XPoint DIMM-attached version, was measured in Petabytes Written (PBW). PBW means that this
persistent memory has a 5-year lifetime. Therefore, the 2M memory driver will be able to maximize
performance of the persistent memory even if it has no implementation for wear leveling.

140



International Journal of Networking and Computing

6 Related work

We now discuss other block-level NVM device drivers. Bankshot [13] is a caching system between
an NVM and disk and has two access paths for the NVM area. To reduce the response time of appli-
cations, the NVM area can be directly accessed from a cache library of the user space when a cache
hits. If a cache misses, the cache library should access the NVM area by using the Bankshot driver of
the OS space. The difference between 2M ATSMF and Bankshot is versatility. An application must
use the cache library of Bankshot when operating Bankshot, though the application’s response time
is drastically reduced when a cache hits. On the other hand, 2M ATSMF’s direct-access mode can
reduce the average response time without any modification to an application, and its .map-access
mode makes it compatible with the Linux device-mapper framework.

“PMEM Block Driver” [16] is a default Linux block driver for Intel 3D-Xpoint DIMM-attached
version. The driver can access it like an SSD. ATSMF can be then constructed using the driver.
However, the driver has no implementation for the direct-access mode of the 2M memory driver.
Therefore, the response time for ATSMF with “PMEM Block Driver” will be higher than that for
ATSMF with the 2M memory driver.

The pmem.io web site [10] provides the Persistent Memory Development Kit (PMDK) and many
documents explaining how to use it. The PMDK includes libraries to access an NVM device from
the user level. The memory-access codes of the 2M memory driver must be re-written when the
libraries, which can be accessed in the kernel, are released.

Next, we discuss research on ATSMF. Rajasekaran et al. [24] proposed Multi-Cache, a multi-
layer cache-management system that uses a combination of cache devices of varied speeds and costs,
such as SSDs and NVMs, to dynamically allocate cache capacities among different virtual machines
(VMs). Multi-Cache partitions each device dynamically at runtime in accordance with the workload
of each VM and its priority. It uses a heuristic optimization technique that ensures the maximum
utilization of caches, resulting in a high hit ratio. In comparison, ATSMF dynamically detects and
migrates IO concentrations in one VM; therefore, we can reduce the average response times by
combining both ATSMF and Multi-Cache.

On-the-fly automated storage tiering (OTF-AST) [20] is a hybrid storage system located between
SSDs and HDDs. The OTF-AST replacement algorithm also identifies IO concentrations lasting for
moderately long durations and migrates the data in targeted regions from an HDD to an SSD.
The durations are long enough after migration to reduce the overall average response time. This
is because the change in HDD latency is very large when migrating between SSDs and HDDs, so
the changes in average response time cannot be precisely predicted. The algorithm for identifying
IO concentration uses a static parameter for each workload that is determined by analyzing the
workload in advance.

7 Conclusion

There are applications, particularly, virtual desktop infrastructures and in-memory database sys-
tems, that require storage systems with shorter response times than an SSD’s response time. Their
workloads were found to contain many IO concentrations.

ATSMF is a hybrid storage system located between NVMs and SSDs. ATSMF migrates the area
of IO concentration from an SSD to an NVM if it predicts that doing so will reduce average response
time. However, in previous studies, it could not sufficiently reduce the response time because its
NVM access driver has a slow response time and slow migration speed on joining ATSMF. The Linux
brd driver has been used as the NVM access driver. ATSMF has to use the brd driver because the
ATSMF driver joins its NVM access driver by using the Linux device-mapper framework.

To reduce the response time of these workloads, we developed the 2M memory driver, which has
two IO access modes, i.e., direct-access and .map-access modes, to balance reduction in response time
and compatibility with the Linux device-mapper framework. The response time of the direct-access
mode is made drastically lower than that of the Linux brd driver by directly calling the memory
access function of the 2M memory driver (reduced from 10 to 1 microseconds on average). We

141



Non-volatile memory driver to drastically reduce input-output response time

re-wrote the tiering driver of ATSMF to use the direct-access mode, and its NVM access response
time was drastically lower than the previous implementation (brd ATSMF).

We experimentally evaluated ATSMF with the 2M memory driver (2M ATSMF) by measuring the
average response time for replaying the VDI, DBT-2, and several shared file-system workloads. 2M
ATSMF outperformed brd ATSMF for almost all workloads (17 microseconds under best conditions)
and drastically outperformed SSD only and caching between the memory and SSD for almost all
workloads. Our 2M ATSMF also reduced the average response time even if its memory amount was
10% of the entire volume capacity. We also evaluated 2M ATSMF with an 8-TB workload and found
that its average response time could not be sufficiently reduced because the migration could not be
completed in time. We could also reduce 2M ATSMF’s workload and operate it with each divided
workload. Through these evaluations, we demonstrated the superiority of 2M ATSMF under various
workloads including IO concentration, memory-amount limitation, and larger volume.

References

[1] AGIGARAM DDR4 NVDIMM. http://www.agigatech.com/.

[2] brd driver. https://www.kernel.org/doc/Documentation/
blockdev/ramdisk.txt.

[3] Device mapper. https://en.wikipedia.org/wiki/Device mapper.

[4] Facebook FLACHCACHE with LARC. https://github.com/seth-hg/flashcache.

[5] Facebook FLASHCACHE. https://github.com/facebook/flashcache.

[6] intel 3D-Xpoint. https://en.wikipedia.org/wiki/3D XPoint.

[7] Linux BIO structure. http://lse.sourceforge.net/io/bionotes.txt.

[8] Mastering Linux Kernel Development. ISBN 978-1-78588-305-7.

[9] NVMe Linux driver. http://www.nvmexpress.org/resources/drivers/linux-driver-information/.

[10] Persistent Memory Programming. https://pmem.io.

[11] SNIA trace data MSR Cambridge. http://iotta.snia.org/traces/388.

[12] Intel Optane DC Persistent Memory Module (PMM), April 2019.
https://www.storagereview.com/
intel optane dc persistent memory module pmm.

[13] Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven Swanson. Bankshot: Caching Slow
Storage in Fast Nov-Volatile Memory. In Interactions of NVM/Flash with Operating-Systems
and Workloads (INFLOW’13), November 2013.

[14] Subramanya R Dulloor, Amitabha Roy, Zhenguang Zhao, Narayanan Sundaram, Nadathur
Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. Data Tiering in Heterogeneous
Memory Systems. In Proc. the 11th ACM European conference on Computer systems (EuroSys
2016), April 2016.

[15] Sai Huang, Qingsong Wei, Jianxi Chen, Cheng Chen, and Dan Feng. Improving flash-based
disk cache with Lazy Adaptive Replacement. In Proc. of 29th IEEE Storage Conference on
Massive Data Storage (MSST 2013), 2013.

[16] Intel. NVDIMM Namespace Specification (Revision 1.0), April 2015.
https://nvdimm.wiki.kernel.org/.

142



International Journal of Networking and Computing

[17] Nimrod Megiddo and Dharmendra S. Modha. ARC: A SELF-TUNING,LOW OVERHEAD
REPLACEMENT CACHE. In Proc. 2th USENIX conference on File and Storage Technorogies
(FAST2003), March 2003.

[18] Sparsh Mittal and Jeffrey S. Vetter. A Survey of Software Techniques for Using Non-Volatile
Memories for Storage and Main Memory Systems. IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS , VOL.27, NO.5, May 2016.

[19] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write Off-Loading: Practical
Power Management for Enterprise Storage. In in Proc. of 6th USENIX Conf. on File and
Storage Tech, Feb 2008.

[20] Kazuichi Oe, Satoshi Iwata, Takeo Honda, Motoyuki Kawaba, and Koji Okamura. On-The-
Fly Automated Storage Tiering (OTF-AST). In Proc. of The Third Asian Conference on
Information Systems – Special Session on Information Storage (ACIS-IS 2014), Nha Trang,
Viet Nam, Dec 2014.

[21] Kazuichi Oe, Takeshi Nanri, and Koji Okamura. Analysis of storage workloads of input-output
access locality and designing of hybrid storage system. In Proc. of the 5th IIAI International
Congress on Advanced Applied Informatics, July 2016.

[22] Kazuichi Oe, Mitsuru Sato, and Takeshi Nanri. Automated tiered storage system consisting
of memory and flash storage to improve response time with input-output (IO) concentration
workloads. In Proc. of 5th International Workshop on Computer Systems and Architectures
(CSA’17), Aomori, Japan, November 2017.

[23] Kazuichi Oe, Mitsuru Sato, and Takeshi Nanri. ATSMF: Automated Tiered Storage with Fast
Memory and Slow Flash Storage to Improve Response Time with Concentrated Input-Output
(IO) Workloads. IEICE Transactions on Information and Systems (VOL.E101-D No.12), De-
cember 2018.

[24] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang, and Timothy Wood. Multi-Cache: Dy-
namic, Efficient Partitioning for Multi-Tier Caches in Consolidated VM Environments. In
Proc. of Cloud Engineering (IC2E), 2016 IEEE International Conference, Berlin, Germany,
April 2016.

143


