
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 10, Number 2, pages 159–173, July 2020

P systems with branch and bound for solving two hard graph problems

Kotaro Umetsu and Akihiro Fujiwara

Graduate School of Computer Science and Systems Engineering,
Kyushu Institute of Technology

Iizuka, Fukuoka, 820-8502, Japan

Received: February 12, 2020
Revised: April 10, 2020
Accepted: May 30, 2020

Communicated by Susumu Matsumae

Abstract

Membrane computing is a computational model based on activity of cells. Using the mem-
brane computing, a number of computationally hard problems have been solved in a polynomial
number of steps using an exponential number of membranes. However, the number of mem-
branes denotes the number of cells from practical point of view, and the reduction of the number
of membranes must be considered for using the membrane computing in real world.

In this paper, we propose asynchronous P systems with branch and bound for reducing
the number of membranes for two computationally hard graph problems. We first propose
an asynchronous P system that solves Hamiltonian cycle problem for a graph with n vertices,
and show that the proposed P system works in O(n2) parallel steps. We next propose an
asynchronous P system that solves the minimum graph coloring for a graph with n vertices, and
also show that the P system works in O(n2) parallel steps.

In addition, we evaluate validity of the proposed P systems using computational simulations.
The experimental results show the validity and efficiency of the proposed P systems with branch
and bound.

Keywords: membrane computing, Hamiltonian cycle, graph coloring, branch and bound

1 Introduction

Natural computing is one of the next-generation computing paradigms. The membrane computing,
which has been initially introduced in [7] as a P system, is a representative computational model in
the natural computing. Definition of the P system is based on a feature of cells, and a membrane and
an object in the P system denote a computing cell and a storage of data, respectively. In addition,
each object evolves according to evolution rules, which is associated with the membrane.

Since the exponential number of membranes can be created in the polynomial number of steps by
a division rule, which is one of evolution rules on the P system, the computationally hard problem
can be solved in a polynomial number of steps. Therefore, there are a number of P systems that
solve computationally hard problems [1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14].

In addition, asynchronous parallelism, which assumes asynchronous application of evolution rules,
has been considered for the P system. The asynchronous parallelism means that all objects may
react to rules with different speeds on the P system. The asynchronous parallelism makes a P

159

P systems with branch and bound for solving two hard graph problems

system a more realistic computational model because livings cells work independently according to
environment.

A number of asynchronous P systems have also been proposed for NP problems [1, 3, 12, 13]. For
example, an asynchronous P system for Hamiltonian cycle has been proposed in [12]. The P system
for the Hamiltonian cycle works in O(n!) sequential steps or O(n2) parallel steps, for a graph with
n vertices. For another example, an asynchronous P system for finding the minimum graph coloring
has been proposed in [13] . The P system for a graph with n vertices works in O(nn) sequential
steps or O(n2) parallel steps.

All of the above P systems solves the computationally hard problems in polynomial numbers of
steps using exponential numbers of membranes. The number of membranes means the number of
cells, and reduction of the number of membranes must be considered in case that the P system is
implemented using living cells because the cells cannot be created exponentially.

Recently, an asynchronous P system for SAT using branch and bound [4] has been proposed for
reducing the number of membranes. Branch and bound is a well-known optimization technique, and
the number of membranes is reduced in the P system using branch and bound by omitting partial
value assignments that cannot satisfy a given Boolean formula.

In the present paper, we propose two asynchronous P systems with branch and bound for reducing
the number of membranes for computationally hard graph problems, which are Hamiltonian cycle
and the minimum graph coloring.

We first propose an asynchronous P system with branch and bound for Hamiltonian cycle.
We show that the proposed P system solves the Hamiltonian cycle problem for a graph with n
vertices with the same complexity in [12], that is, the P system works in O(n!) sequential steps
or O(n2) parallel steps. In the proposed P system, a partial permutation of vertices is created,
and then, existence of edges between vertices is checked for the partial permutation. If there is no
edge between the vertices, the partial permutation is discarded as a bounding operation. Since the
number of membranes increases according to the number of created permutations of vertices, the
number can be reduced by omitting permutations that must not be a Hamiltonian cycle.

We next propose an asynchronous P system with branch and bound for solving the minimum
graph coloring problem. In the proposed P system, vertices are colored one by one, and the adjacent
vertices are checked for the partial color assignment. If the adjacent vertices have the same color,
the partial color assignment of vertices is discarded as a bounding operation. Since the number of
membranes increases according to the number of color assignments of vertices, the number can be
reduced by omitting partial assignments that are not possible for the graph coloring. We show that
the proposed P system computes the minimum graph coloring with the same complexity in [13], that
is, the P system solves the minimum graph coloring problem for a graph with n vertices in O(nn)
sequential steps or O(n2) parallel steps.

Finally, we show the validity of the proposed systems through experimental simulations. In the
simulation, various instances are executed on the previous P systems [12, 13] and the proposed P
systems, and the numbers of membranes are compared for the same instances. The results show
validity and efficiency of the proposed P systems.

The remainder of the paper is organized as follows. In Section 2, we describe the computational
model for the membrane computing. In Section 3 and Section 4, we propose two P systems with
branch and bound for Hamiltonian cycle and the minimum graph coloring, respectively. In Section
5, we show experimental results for the previous P systems and the proposed P systems. Finally,
Section 6 concludes the paper.

2 Preliminaries

In this paper, we assume an asynchronous P system proposed in [12]. We briefly explain definition
of the P system in the following.

The P system mainly consists of membranes and objects. A membrane, which is a computing
cell in the P system, may contain objects and other membranes, and each membrane is labeled with
an integer. An object stores data as a memory storage in the P system. We assume that each

160

International Journal of Networking and Computing

1

2 3

a b c

Figure 1: An example of membranes and objects

object is a finite strings over a given set of alphabet. Objects may be evolved into another objects
or pass through membranes according to the evolution rules, which are defined later. In addition,
dissolution and division of a membrane may be triggered by contained objects.

For example of the membrane and the object, the following expression and Fig. 1 denote the
same membrane structure that consists of three membranes and three objects.

[[a]2 [b c]3]1

In the example, the membrane labeled 1 contains two membranes labeled 2 and 3, and the membrane
labeled 2 and 3 contain sets of objects {a} and {b, c}, respectively.

Computation of P systems is defined as evolution rules. Each evolution rule is a rewriting rule
for membranes and objects. According to the applicable evolution rules, objects and membranes are
transformed in parallel in each step of computation. The system stops computation if there is no
applicable evolution rule for membranes and objects.

A number of types of evolution rules are assumed in the membrane computing. In this paper,
we assume the following five rules in [12].

(1) Object evolution rule: [α]h → [β]h

A set of objects α is transformed into another set of objects β. In the above rule, h is a label
of the membrane, and α and β are multi-subsets of O. (We omit the brackets in each evolution
rule such as α→ β for cases that a corresponding membrane is obvious.)

(2) Send-in communication rule: α []h → [β]h

A set of objects α is moved into the inner membrane labeled by h, and transformed into
another set of objects β. In the above rule, h is a label of the membrane, and α and β are
multi-subsets of O.

(3) Send-out communication rule: [α]h → []h β

A set of objects α is sent out from the membrane labeled by h, and transformed into another
set of objects β. In the above rule, h is a label of the membrane, and α and β are multi-subsets
of O.

(4) Dissolution rule: [α]h → β

The membrane that contains a set of objects α is dissolved, and α is transformed into another
set of objects β. (Note that the outermost membrane cannot be dissolved.) In the above rule,
h is a label of the membrane, and α and β are multi-subsets of O. Using the rule, all objects
in the dissolved membrane are moved to the outer membrane.

(5) Division rule: [α]h → [β]h[γ]h

The membrane that contains a set of objects α is divided into two membranes with the same
label, and α is transformed into another two set of objects, β and γ, in each of the divided
membranes. In the above rule, h is a label of the membrane, and α, β and γ are multi-subsets
of O. Using the rule, all other objects in the membrane, which contains α, are copied into two
divided membranes that contain objects β and γ.

161

P systems with branch and bound for solving two hard graph problems

In the above five rules, send-in, send-out, dissolution and division rules are blocking rules for the
same membrane. In other words, only one of the four rules can be applied for a membrane in each
step of computation on the P system.

We now summarize definition of the P system. The P system consists of the following four
components.

O: The set of objects used in the system.

µ: A structure of membrane.

ωi: A set of objects initially contained in the membrane labeled i.

Ri: A set of evolution rules for a membrane labeled i.

Using the above components, the P system with m membranes is defined as follows.

Π = (O,µ, ω1, ω2, · · · , ωm.R1, R2, · · · , Rm)

We now consider complexity of the P system. We assume that each of evolution rules can be
executed in one step on the computational model, and the complexity of the P system is defined as
the number of steps executed on the P system.

On the standard P system, all objects, for which there are applicable evolution rules, are trans-
formed with maximally parallel manner. (In case that there are a number of applicable evolution
rules for an object, one of the rules is applied non-deterministically.) Using the maximally parallel
manner, we can consider an execution on the P system easily because the execution with the max-
imally parallel manner is unique. The complexity of the P system with maximally parallel manner
is the best case complexity, and we call the number of steps executed with maximal parallel manner
as the number of parallel steps.

In this paper, we also consider asynchronous parallelism [12] in the P system. Under the assump-
tion of the asynchronous parallelism, any number of applicable evolution rules are applied in parallel.
In other words, all objects, for which there are applicable evolution rules, can be transformed in
parallel, or only one of the applicable evolution rules is applied in each step of computation. We call
the number of of steps in the latter case as the number of sequential steps. The number of sequential
steps denotes the complexity of the P system in the worst case.

3 An asynchronous P system with branch and bound for
Hamiltonian cycle

In this section, we propose an asynchronous P system with branch and bound for Hamiltonian cycle.
We first explain input and output for the Hamiltonian cycle, and next show an algorithm on the P
system. We finally consider complexity of the proposed P system.

3.1 Input and output for the Hamiltonian cycle problem

Hamiltonian cycle is a well known computationally hard problem. An input of the problem is
a directed graph G = (V,E), and an output is “true” or “false”. In case that there exists a
Hamiltonian cycle, which is a simple cycle such that the cycle visits each vertex exactly once, the
output is “true”, otherwise, the output is “false”. In case that a directed graph in Fig. 2 is an input,
there is a Hamiltonian cycle (v1, v2, v3, v4, v1).

For the proposed P system, the following two sets of objects, OV and OE , are given as an input
graph.

OV = {〈vi〉 | 1 ≤ i ≤ n}
OE = {〈ei,j ,W 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

162

International Journal of Networking and Computing

v
1 v

2

v
3 v

4

Figure 2: A directed graph containing a Hamiltonian cycle (v1, v3, v2, v4, v1).

Bounding

v2 v3 v4

v1

v3 v4
v2

v4 v2 v3

v4 v3 v4 v3 v2v2

v1 v1 v1 v1v1v1

Figure 3: An example of decision tree with branch and bound for Hamiltonian cycle

In the input objects, a vertex vi and an edge (vi, vj) are denoted by objects 〈vi〉 and 〈ei,j ,W 〉,
respectively. A value W is set to T if an edge (vi, vj) is in the graph, otherwise, W is set to F .

For example, the following OV and OE are given as an input of the P system for a directed graph
in Fig. 2.

OV = {〈v1〉, 〈v2〉, 〈v3〉, 〈v4〉}
OE = {〈e1,1, F 〉, 〈e1,2, F 〉, 〈e1,3, T 〉, 〈e1,4, F 〉,

〈e2,1, F 〉, 〈e2,2, F 〉, 〈e2,3, F 〉, 〈e2,4, T 〉,
〈e3,1, F 〉, 〈e3,2, T 〉, 〈e3,3, F 〉, 〈e3,4, T 〉,
〈e4,1, T 〉, 〈e4,2, F 〉, 〈e4,3, F 〉, 〈e4,4, F 〉}

We assume that a computation on the P system starts if the above OV and OE are given from
the outside region into the skin membrane.

The output of the P system is one of two objects, 〈TRUE〉 and 〈FALSE〉, which denote “true”
and “false”, respectively.

3.2 Branch and bound for Hamiltonian cycle

The branch and bound is an well known technique for optimization. On the P system for solving
Hamiltonian cycle [12], all permutation of vertices are created for an input graph with n vertices, and
(n−1)! permutations are checked whether the cycle is Hamiltonian. However, a partial permutation
of vertices can be discarded if the output is determined to be “false”.

Fig. 3 shows a decision tree for illustration of the above idea. Let a directed graph in Fig. 2 be
an input graph. In the decision tree, a permutation of vertices is denoted by a path from root to a
leaf node. In this case, a path starting with an edge from v1 to v2 can be bounded because there is
no edge between v1 and v2, and the permutation must not be cycle. In another case, a path starting
with an edge from v1 to v4 is bounded similarly.

The following is an outline of the proposed P system for Hamiltonian cycle using branch and
bound. The P system consists of two membrane such that [[]2]1. The membranes labeled 1 and 2

163

P systems with branch and bound for solving two hard graph problems

are called outer and inner membranes, respectively.
An outline of the proposed P system for Hamiltonian cycle

Step 1: In the outer membrane, move input objects into the inner membrane using send-in
communication rules.

Step 2: In each inner membrane, repeat the following (2-1) and (2-2) until “true” or “false” is
outputted.

(2-1) Select a vertex, which is not visited, as a next vertex. In case that there is an edge from
the last vertex in the permutation to the next vertex, the next vertex is added to the partial
permutation of vertices. (The partial permutation denotes a path from a start vertex.) The
partial permutation with the next vertex is created by dividing the inner membrane.

In case that there is no edge from the last vertex to the next vertex, the partial permutation
is discarded, and an object that denotes “false” is outputted. (The divided membrane stops
the computation.)

(2-2) In case that length of the permutation is equal to the number of vertices, check the created
permutation of vertices whether the permutation denotes a Hamiltonian cycle. If there exists
an edge from the last vertex in the permutation to the start vertex, output an object that
denotes “true”, otherwise, output an object that denotes “false”.

Step 3: Send out a final result, “true” or “false”, from the outer membrane using send-out
communication rules.

3.3 Details of the proposed P system

We now explain details of each step of the computation for Hamiltonian cycle. In Step 1, all input
objects in the outer membrane are moved into the inner membrane. The input objects are moved
sequentially in the step because the proposed P system is asynchronous. The Step 1 is executed
using the following ROUT,1 and RIN,1. (In the following, ROUT,i and RIN,i denote sets of evolution
rules for outer and inner membranes in Step i, respectively.)

ROUT,1 = {〈e1,1, F 〉[]2 → [〈M2,1〉〈e1,1, F 〉]2}
∪ {〈Mi,j〉〈ei,j , V 〉[]2 → [〈Mi+1,j〉〈ei,j , V 〉]2 | 1 ≤ i ≤ n, 1 ≤ j ≤ n, V ∈ {T, F}}}
∪ {〈Mi,n+1〉〈vi〉[]2 → [〈Mi+1,n+1〉〈vi〉]2 | 1 ≤ i ≤ n}
∪ {〈Mn+1,j〉 → 〈M1,j+1〉 | 1 ≤ j ≤ n+ 1}
∪ {〈M1,n+2〉 → 〈OUT 〉〈C〉, 〈C〉[]2 → [〈C1,1〉]2}

RIN,1 = {[〈Mi,j〉]2 → []2〈Mi,j〉 | 2 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

In the above evolution rules, object 〈e1,1, F 〉 starts the computation, and two kinds of input
objects are moved into the inner membrane using object 〈Mi,j〉. At the end of Step 1, two objects,
〈OUT 〉 and 〈C〉, are created in the outer membrane. The created object 〈OUT 〉 is used for outputting
an object that denotes “true” or “false” at the end of the final step. The other created object 〈C〉
is sent into the inner membrane as 〈C1,1〉, and the object triggers computation of Step 2.

Step 2 consists of sub-steps (2-1) and (2-2). At the beginning of Step 2, the following evolution
rule is executed for setting status of the start vertex v1 to visited.

RIN,(2-0) = {〈C1,1〉〈v1〉 → 〈C2,1〉〈λ1〉〈z1,1〉}

In the evolution rules, object 〈λj〉 denotes that vertex vj is visited, and object 〈zi,j〉 denotes that
the i-th vertex in the permutation is vj .

In (2-1), an unvisited vertex is selected as a next vertex, and the next vertex is added to the
partial permutation of vertices in case that there is an edge from the last vertex in the permutation

164

International Journal of Networking and Computing

to the next vertex. (The partial permutation denotes a path from a start vertex.) The (2-1) is
executed using the following RIN,(2-1-1). The partial permutation with the next vertex is created by
dividing the inner membrane with the first set of evolution rules, and the next unvisited vertex is
selected using the second set of evolution rules.

RIN,(2-1-1) = {[〈zk−1,i〉〈Ck,j〉〈vj〉〈ei,j , T 〉]2 → [〈zk−1,i〉〈Ck,j+1〉〈vj〉〈ei,j , T 〉]2
[〈zk−1,i〉〈Ck+1,1〉〈zk,j〉〈λj〉]2 | 2 ≤ k ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{〈Ck,j〉〈λj〉 → 〈Ck,j+1〉〈λj〉 | 2 ≤ k ≤ n, 1 ≤ j ≤ n}

On the other hand, in (2-1), the partial permutation is discarded in case that there is no edge
from the last vertex to the next vertex. In this case, membrane division is executed to select the
next vertex, and an object that denotes “false” is outputted by applying the following RIN,(2-1-2).

RIN,(2-1-2) = {[〈zk−1,i〉〈Ck,j〉〈vj〉〈ei,j , F 〉]2 → [〈zk−1,i〉〈Ck,j+1〉〈vj〉〈ei,j , F 〉]2[〈FALSE, n− k〉]2
| 2 ≤ k ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ n}

∪{[〈FALSE, n− k〉]2 → []2〈FALSE, n− k〉 | 2 ≤ k ≤ n}

In the above evolution rules, object 〈FALSE, n − k〉 is created to count the number of “false”
in Step 3.

In (2-2), the created permutation of vertices is checked whether the permutation denotes a
Hamiltonian cycle. In the following RIN,(2-2), the first set of evolution rules is applied for outputting
an object that denotes “true” in case that there exists an edge from the last vertex in the permutation
to the start vertex. Otherwise, the second set of evolution rules is applied for outputting an object
that denotes “false”.

RIN,(2-2) = {[〈Cn+1,1〉〈zn,i〉〈ei,1, T 〉]2 → []2 〈TRUE〉 | 1 ≤ i ≤ n}
∪{[〈Cn+1,1〉〈zn,i〉〈ei,1, F 〉]2 → []2 〈FALSE, 0〉 | 1 ≤ i ≤ n}

We now summarize the set of evolution rules for Step 2 as follows.

RIN,2 = RIN,(2-0) ∪RIN,(2-1-1) ∪RIN,(2-1-2) ∪RIN,(2-2)
In Step 3, a final result is sent out from the outer membrane. The Step 3 is executed applying

the following ROUT,3.

ROUT,3 = {{[〈TRUE〉〈OUT 〉]1 → []1〈TRUE〉}
∪{〈FALSE, k〉k+1 → 〈FALSE, k + 1〉 | 0 ≤ k ≤ n− 2}
∪{{[〈FALSE, n− 1〉〈OUT 〉]1 → []1〈FALSE〉}

If object 〈TRUE〉 is in the outer membrane, there is a Hamiltonian cycle in the input graph,
and the object is sent out from the outer membrane immediately applying the first evolution rules.
On the other hand, objects that denotes “false” is outputted from all inner membranes in case that
the final result is “false”. Therefore, the sum of “false” is counted asynchronously using the second
set of evolution rules, and final object 〈FALSE〉 is outputted if and only if all outputs of inner
membranes are “false”.

We now summarize the asynchronous P system ΠBB−HC for solving Hamiltonian cycle as follows.

ΠBB−HC = (O,µ, ω1, ω2, ROUT , RIN)

• O = OV ∪OE ∪OTRUE ∪OFALSE ∪OM ∪OC ∪Oλ ∪Oz

• OTRUE = {〈TRUE〉}

• OFALSE = {〈FALSE〉} ∪ {〈FALSE, k〉 | 1 ≤ k ≤ n}

165

P systems with branch and bound for solving two hard graph problems

• OM = {〈Mi,j〉 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

• OC = {〈Ci,j〉 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

• Oλ = {〈λj〉 | 1 ≤ j ≤ n}

• Oz = {〈zi,j〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n}

• µ = [[]2]1

• ω1 = ω2 = φ

• ROUT = ROUT,1 ∪ROUT,3, RIN = RIN,1 ∪RIN,2

3.4 Complexity of the P system

We now consider the complexity of asynchronous P system ΠBB−HC . Since O(n2) objects are moved
from the outer membrane into the inner membrane sequentially, Step 1 can be executed in O(n2)
parallel or sequential steps using O(n2) kinds of objects and O(n2) kinds of evolution rules.

In Step 2, O((n− 1)!) membranes are created in the worst case, and evolution rules are applied
sequentially at most O(n) times in each membrane. Therefore, Step 2 can be executed in O(n2)
parallel steps and O(n!) sequential steps using O(n2) kinds of objects and O(n3) kinds of evolution
rules.

In the final step, O(n) evolution rules are applied sequentially in cast that the output is “false”,
and Step 3 can be executed in O(n) parallel step or O(n) sequential step using O(n) kinds of objects
and O(n) kinds of evolution rules.

We obtain the following theorem for the above asynchronous P system ΠBB−HC .

Theorem 1 The asynchronous P system ΠBB−HC , which computes Hamiltonian cycle for a directed
graph with n vertices, works in O(n!) sequential steps or O(n2) parallel steps by using O(n2) kinds
of objects and evolution rules of size O(n3). �

4 An asynchronous P system with branch and bound for
minimum graph coloring

In this section, we explain our proposed asynchronous P system for the minimum graph coloring.
An input and an output of the problem on the P system is shown, and then, an outline and details
of the P system are presented. Finally, the complexity of the proposed P system is discussed.

4.1 Input and output for minimum graph coloring

The minimum graph coloring is a well known computationally hard problem. An input of the
problem is an undirected graph G = (V,E). An output of the problem is a coloring of vertices,
which is an assignment of colors to all vertices such that no pair of adjacent vertices with the same
color. For example, let the graph in Fig. 4 be an input graph. Then, both of two assignments
of colors, ca = {v1}, cb = {v2}, cc = {v3, v4} and ca = {v1}, cb = {v2}, cc = {v3}, cd = {v4}, are
assignments of colors for the graph. In case of the graph, the former assignment is the minimum
graph coloring.

For the proposed P system, the following set of objects, OE , are given as an input graph.

OE = {〈ei,j ,W 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {T, F}}

In the above set of input objects, an edge (vi, vj) is denoted by an objects 〈ei,j ,W 〉. A value W
is set to T if an edge (vi, vj) is in the graph, otherwise, W is set to F .

166

International Journal of Networking and Computing

!"

!#

!$

!%

Figure 4: Example of an input undirected graph

For example, the following OE is given as an input of the P system for a graph in Fig. 4.

OE = {〈e1,1, F 〉, 〈e1,2, T 〉, 〈e1,3, T 〉, 〈e1,4, T 〉,
〈e2,1, T 〉, 〈e2,2, F 〉, 〈e2,3, T 〉, 〈e2,4, F 〉,
〈e3,1, T 〉, 〈e3,2, T 〉, 〈e3,3, F 〉, 〈e3,4, F 〉,
〈e4,1, T 〉, 〈e4,2, F 〉, 〈e4,3, F 〉, 〈e4,4, F 〉}

We assume that a computation on the P system starts if the above OE are given from the outside
region into the skin membrane.

The output of the P system is the following set of objects, OC , which denotes color assignments
of all vertices.

OC = {〈Vi, h〉 | 1 ≤ i ≤ n, 1 ≤ h ≤ n}

In an object 〈Vi, h〉, h denotes a color of vertex vi.
For example, the following OC is an output of the P system, which denotes minimum color

assignment for the graph in Fig. 4.

OC = {〈V1, 1〉, 〈V2, 2〉, 〈V3, 3〉, 〈V4, 3〉}

4.2 Branch and bound for minimum graph coloring

Branch and bound is a well-known computing paradigm for the optimization problem. On the
existing P system for solving minimum graph coloring [13], all assignments of colors for vertices
are created for an input graph with n vertices, and nn assignments are checked as to whether each
assignment of colors is valid. However, a partial assignment of vertices can be discarded if the valid
assignment of vertices is determined.

Fig. 5 shows an example of a search tree for the above concept. Let the graph in Fig. 4 be an
input graph, and we consider a 3-coloring for the graph. In the search tree, a color assignment of
vertices is denoted by a path from a root node to a leaf node. In this case, a path starting from v1,
which is colored with C1, to v2, which is also colored with C1, can be bounded because there is an
edge between v1 and v2 in the input graph.

We now explain an overview of the asynchronous P system with branch and bound for finding the
minimum graph coloring. An initial membrane structure for the computation is [[]1 []2 · · · []n]0.
We refer to the membrane labeled 0 as the outer membrane and refer to the membranes labeled 1
through n as inner membranes.

The computation of the P system mainly consists of the following four steps.

Step 1: Move modified copies of input objects into all inner membranes.

Step 2: In each inner membrane labeled h, create an assignment of colors with h colors by dividing
the inner membranes. Then, check whether adjacent vertices are colored with different colors
with branch and bound. If adjacent vertices are colored with the same color in the assignment,
stop assignment for vertices.

167

P systems with branch and bound for solving two hard graph problems

!"

!#

!$

!%

bounding→

Figure 5: Example of branch and bound for minimum graph coloring

Step 3: Check whether an assignment of colors is completed for all vertices in each divided inner
membrane, and then, output an object that denotes successful assignment of colors to the outer
membrane without dissolving the inner membrane. Otherwise, dissolve the inner membrane
and output an object that denotes failure of the coloring assignment. Then, determine the
minimum number of colors in successful assignments in the outer membrane.

Step 4: Send out the minimum number of colors from the outer membrane.

4.3 Details of the proposed P system

We explain details of each step of the computation for minimum graph coloring. In Step 1, modified
copies of the input objects are moved into all inner membranes. Each input object is modified so as
to contain the label of a stored membrane.

Since the P system considered in the present paper is asynchronous, we cannot move the input
objects in parallel, and input objects are moved one by one applying the following sets of evolution
rules. (In the following description, a set of evolution rules Ri,j indicates that the set of rules is used
for membrane i in Step j.)

R0,1 = {〈ei,j ,W 〉 → 〈ei,j ,W, 1〉〈fi,j ,W, 1〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {F, T}}
∪{〈fi,j ,W, h〉 → 〈ei,j ,W, h+ 1〉〈fi,j ,W, h+ 1〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n− 2,

W ∈ {F, T}}
∪{〈fi,j ,W, n− 1〉 → 〈ei,j ,W, n〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {F, T}}
∪{〈e1,1, F, h〉[]h → [〈M2,1, h〉〈e1,1, F, h〉]h | 1 ≤ h ≤ n}
∪{〈Mi,j , h〉〈ei,j ,W, h〉[]h → [〈Mi+1,j , h〉〈ei,j ,W, h〉]h | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n,

W ∈ {F, T}}
∪{〈Mn+1,j , h〉 → 〈M1,j+1, h〉 | 1 ≤ j ≤ n, 1 ≤ h ≤ n}
∪{〈M1,n+1, h〉[]h → [〈S1, h〉]h | 1 ≤ h ≤ n}

Rh,1 = {[〈Mi,j , h〉]h → []h〈Mi,j , h〉 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n+ 1}

In the above evolution rules, two kinds of objects, 〈ei,j ,W, h〉 and 〈fi,j ,W, h〉, are created from
input object 〈ei,j ,W 〉. The first objects, 〈ei,j ,W, h〉, are moved into a membrane labeled h using
objects 〈Mi,j , h〉. At the end of Step 1, object 〈S1, h〉 is created in the membrane labeled h, and the
object triggers the computation of Step 2.

In Step 2, in each inner membrane labeled h, assignments of colors are created with h colors
by dividing the inner membranes. Then, the partial assignment is checked as to whether adjacent
vertices are colored with different colors using the bounding condition. If the adjacent vertices are

168

International Journal of Networking and Computing

colored with the same color, the membrane stops the partial assignment. The above step is executed
by applying the following set of evolution rules.

Rh,2 = {〈S1, h〉 → 〈S2, h〉〈V1, h〉}
∪{[〈Si, k〉]h → [〈Li,1〉〈Vi, k〉]h[〈Si, k − 1〉]h | 2 ≤ i ≤ n, 2 ≤ k ≤ h}
∪{〈Si, 1〉 → 〈Li,1〉〈Vi, 1〉 | 2 ≤ i ≤ n}
∪{〈Li,j〉〈Vi, a〉〈Vj , b〉〈ei,j , F, h〉〈ej,i, F, h〉 → 〈Li,j+1〉〈Vi, a〉〈Vj , b〉 | 2 ≤ i ≤ n, 1 ≤ j ≤ i,

1 ≤ a, b ≤ h}
∪{〈Li,j〉〈Vi, a〉〈Vj , b〉〈ei,j , T, h〉〈ej,i, T, h〉 → 〈Li,j+1〉〈Vi, a〉〈Vj , b〉 | 2 ≤ i ≤ n, 1 ≤ j ≤ i,

1 ≤ a, b ≤ h, a 6= b}
∪{〈Li,j〉〈Vi, a〉〈Vj , a〉〈ei,j , T, h〉〈ej,i, T, h〉 → 〈Zh, n− i〉〈Gi−1〉〈Vj , a〉 | 2 ≤ i ≤ n,

1 ≤ j ≤ i, 1 ≤ a ≤ h}
∪{〈Li,i〉 → 〈Si+1, h〉 | 2 ≤ i ≤ n}

In the above evolution rules, vertex vi is colored with color k in the second set of rules, and
object 〈Vi, k〉 denotes the color. Then, the vertices of vj (1 ≤ j ≤ i) are checked for vi using object
〈Li,j〉. If vi and vj are not adjacent or their colors are different, then object 〈Li,j+1〉 is created.
After all checked vertices are passed for vi, object 〈Li,i〉 is created, and object 〈Si+1, h〉, which is an
object for checking the next vertex vi+1, is created.

On the other hand, for the case in which vi and vj are adjacent and are colored with the same
color, objects 〈Zh, n − i〉 and 〈Gi−1〉, which denote a failure of coloring, are created. The object
〈Zh, n − i〉 denotes that n − i colors remain in the case of coloring failure, and 〈Gi−1〉 is an object
used in Step 3 for deleting partial assignment of colors in the membrane. In addition, the two objects
trigger the computation of Step 3.

In Step 3, the assignment in each membrane is checked as to whether colors are assigned for all
vertices. For the case in which an assignment of colors is completed for all vertices, an object that
denotes the success of the assignment of colors is sent to the outer membrane without dissolving the
inner membrane. Otherwise, the inner membrane is dissolved, and an object that denotes a failure
of coloring assignment is output to the outer membrane. Then, the minimum number of colors in
successful assignments is determined in the outer membrane. Step 3 is executed by applying the
following sets of evolution rules.

R0,3 = {〈Sn+1, h〉 → 〈Sn+1, h, 0〉 | 1 ≤ h ≤ n}
∪{〈Sn+1, h, k〉h → 〈Sn+1, h, k + 1〉 | 1 ≤ h ≤ n, 0 ≤ k ≤ n− 2}
∪{〈Zh, k〉h → 〈Zh, k + 1〉 | 1 ≤ h ≤ n, 0 ≤ k ≤ n− 2}
∪{〈Sn+1, h, k〉h−d〈Zh, k〉d → 〈Sn+1, h, k + 1〉 | 1 ≤ h ≤ n, 0 ≤ k ≤ n− 2, 1 ≤ d ≤ h− 1}
∪{〈Sn+1, h, n− 1〉〈Zh−1, n− 1〉 → 〈Ah〉 | 1 ≤ h ≤ n}

Rh,3 = {[〈Sn+1, h〉]h → []h〈Sn+1, h〉}
∪{〈Vi, k〉〈Gi〉 → 〈Gi−1〉 | 2 ≤ i ≤ n, 1 ≤ k ≤ h}
∪{[〈V1, h〉〈G1〉]h → 〈G0〉}

In Step 3, Rh,3 is applied in each divided membrane. For the case in which the object that
denotes success of the assignment of colors, 〈Sn+1, h〉, is in the membrane, the object is sent to the
outer membrane without dissolving the membrane. On the other hand, for the case in which the
object that denotes failure of the assignment of colors, 〈Gi〉, is in the membrane, the membrane is
dissolved using 〈Gi〉, and objects 〈Sn+1, h, k〉 and 〈Zh, k〉 are in the outer membrane.

The object 〈Sn+1, h, k〉 denotes that there are hk successful assignments of colors with h colors,
and the object 〈Zh, k〉 denotes that there are hk failure assignments of colors with h colors. Then, if
objects 〈Sn+1, h, n−1〉 and 〈Zh−1, n−1〉 exist simultaneously in the outer membrane, coloring with

169

P systems with branch and bound for solving two hard graph problems

h colors is successful, and coloring with h − 1 colors has failed. Therefore, the object 〈Ah〉, which
indicates that the minimum number for assignment of colors is h, is created in the outer membrane,
and the object triggers the computation of Step 4.

In Step 4, one of the assignments that denote the minimum coloring is sent from the outer
membrane. Step 4 is executed by applying the following sets of evolution rules.

R0,4 = {〈Bi〉 → 〈Ci〉〈Bi+1〉 | 1 ≤ i ≤ n− 1}
∪{〈Bn〉 → 〈Cn〉}
∪{[〈Ci〉〈Vi, h〉]0 → []0〈Vi, h〉 | 1 ≤ i ≤ n, 1 ≤ h ≤ n}

Rh,4 = {〈Ah〉[]h → [〈Ah〉]h} ∪ {[〈Ah〉]h → []h〈B1〉}

The objects 〈Vi, h〉 are sent out from the outer membrane, and the computation is then finished.
We now summarize the asynchronous P system ΠMIN COL for finding the minimum graph coloring

as follows:
ΠMIN COL = (O,µ, ω1, ω2, R0, R1, · · · , Rn)

O = {〈ei,j ,W 〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n,W ∈ {F, T}}
∪{〈ei,j ,W, h〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n,W ∈ {F, T}}
∪{〈fi,j ,W, h〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n,W ∈ {F, T}}
∪{〈Mi,j , h〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ h ≤ n}
∪{〈Si, h〉 | 1 ≤ i ≤ n+ 1, 1 ≤ h ≤ n}
∪{〈Vi, h〉 | 1 ≤ i ≤ n, 1 ≤ h ≤ n}
∪{〈Li,j〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ n}
∪{〈Zh, k〉 | 1 ≤ h ≤ n, 0 ≤ k ≤ n− 2}
∪{〈Gi〉 | 0 ≤ i ≤ n− 1}
∪{〈Sn+1, h, k〉 | 1 ≤ h ≤ n, 0 ≤ k ≤ n− 1}
∪{〈Ah〉 | 1 ≤ h ≤ n}
∪{〈Bi〉 | 1 ≤ i ≤ n}
∪{〈Ci〉 | 1 ≤ i ≤ n}

µ = [[]1 []2 · · · []n]0

ω1 = ω2 = · · · = ωn = φ

R0 = R0,1 ∪R0,3 ∪R0,4

Rh = Rh,1 ∪Rh,2 ∪Rh,3 (1 ≤ h ≤ n)

4.4 Complexity

The complexity of the proposed P system ΠMIN COL is considered as follows. In Step 1, a set of
O(n2) objects are copied into n sets, and each set is moved from the outer membrane into one of
inner membranes. Then, Step 1 works in O(n2) parallel steps or O(n3) sequential steps. The size of
the evolution rules and the number of objects are both O(n3).

In Step 2, O(nn) membranes are created and evolution rules are applied O(n) times in the worst
case. Therefore, Step 2 works in O(n2) parallel steps and O(nn) sequential steps. The size of the
evolution rules and the number of objects are O(n4) and O(n3), respectively.

Step 3 is executed in each divided membrane. Therefore, Step 3 works in O(n) parallel steps and
O(nn) sequential steps. The size of the evolution rules and the number of objects are both O(n3).

In the final step, the computation is executed in the outer membrane, and Step 4 works in O(n)
parallel or sequential steps. The number of objects is O(n), and the size of the evolution rules is
O(n2).

From the above discussion, the following theorem is obtained for the proposed asynchronous P
system ΠMIN COL.

170

International Journal of Networking and Computing

!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

&$!!

&%!!

"!!!

' $ (

!
"
#
$
%
&
'(
)'
#
%
#
$
&*
!
%
+

!"#$%&'()',%&-./%+

)*+,-+./012/34+-56 74373,)8012/34+-56

Figure 6: Experimental results for Hamiltonian cycle

Theorem 2 The asynchronous P system ΠMIN COL, which solves the minimum graph coloring for
a graph with n vertices, works in O(nn) sequential steps or O(n2) parallel steps by using O(n3) kinds
of objects and evolution rules of size O(n4). �

5 Experimental simulations

Although asymptotic complexities of the proposed two P systems are the same as the complexity of
the existing P systems [12, 13], the number of membranes can be reduced by the branch and bound.
We discuss concrete reduction rate of the number of membranes in this section using experimental
simulations.

Existing P systems [12, 13] and our proposed P system for two graph problems are implemented
on our original simulator of P systems programmed in Python.

Since the simulator executes P systems with asynchronous parallelism, all of the evolution rules
are applied in fully asynchronous manner, in other words, any number of applicable evolution rules
are applied in each step of executions on the simulator. Therefore, applied evolution rules are
different among executions on the simulator, and output of the simulation may be different for the
same input. We first implement the existing P systems and the proposed P systems for the two
graph problems on the simulator, and execute simulations for various inputs. In the simulation,
valid results are obtained for all inputs, that is, all outputs are the same for the same input on all
executions.

Next, we compare the numbers of membranes used on the existing P systems and the proposed P
systems for the two graph problems. For each number of vertices, five random graphs are created so
that each edge is connected with probability 1

2 , and the same input graphs are given to the existing
P systems and the proposed P systems.

Fig. 6 and Fig. 7 show average values of the number of membranes for Hamiltonian cycle
and the minimum graph coloring. The numbers of membranes of the existing P systems increase
exponentially with respect to the number of vertices n. Although the numbers of membranes in
the proposed P systems also increases according to n, the numbers of membranes on the proposed
P systems are more than 92 percent and 72 percent less than the numbers of membranes on the
existing P systems for Hamiltonian cycle and the graph coloring, respectively.

171

P systems with branch and bound for solving two hard graph problems

!

"!!!

#!!!

$!!!

%!!!

&!!!

'!!!

(!!!

)!!!

*!!!

"!!!!

""!!!

$ % & '

!
"
#
$
%
&
'(
)'
#
%
#
$
&*
!
%
+

!"#$%&'()',%&-./%+

+,-./-01234156-/78 96595.+:234156-/78

Figure 7: Experimental results for minimum graph coloring

6 Conclusions

In this paper, we proposed two asynchronous P systems with branch and bound for two compu-
tationally hard graph problems. The first P system with branch and bound for Hamiltonian cycle
reduces the number of membranes by discarding partial permutations that cannot be Hamiltonian
cycle. The second P system with branch and bound for the minimum graph coloring reduces the
number of membranes by discarding partial assignments of colors in which the colors of neighboring
vertices are the same.

The proposed P systems are fully asynchronous and works in a polynomial number of steps in a
maximally parallel manner and also works sequentially. Although the number of sequential steps is
exponential, the result indicates that the proposed P systems work for any combination of sequential
and asynchronous applications of evolution rules and guarantee that correct solutions are output for
any case in which any number of evolution rules are synchronized.

We showed that the proposed P systems outputs valid results, and also showed that the number
of membranes in the proposed P systems are effectively less than the number of membranes in the
existing P systems for Hamiltonian cycle and the minimum graph coloring.

In our future research, we intend to consider a reduction in the number of objects and the size of
evolution rules used in the proposed P systems. We also intend to consider asynchronous P systems
with branch and bound for other computationally hard problems.

Acknowledgments

The work was supported by JSPS KAKENHI Grant Number 16K00021. The authors would also like
to thank the anonymous reviewers for giving us detailed comments that helped us improve quality
of the paper.

References

[1] R. Freund. Asynchronous P systems and P systems working in the sequential mode. In Inter-
national workshop on Membrane Computing, pages 36–62, 2005.

[2] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J. Romero-Campero. A uniform solution
to SAT using membrane creation. Theoretical Computer Science, 371(1-2):54–61, 2007.

172

International Journal of Networking and Computing

[3] J. Imatomi and A. Fujiwara. An asynchronous P system for MAX-SAT. In 8th International
Workshop on Parallel and Distributed Algorithms and Applications, pages 572–578, 2016.

[4] Y. Jimen and A. Fujiwara. Asynchronous P systems for solving the satisfiability problem.
International Journal of Networking and Computing, 8(2):141–152, 2018.

[5] A. Riscos-Núnez M. J. Pérez-Jiménez. A linear-time solution to the knapsack problem using
P systems with active membranes. Proc. International Workshop on Membrane Computing,
pages 250–268, 2003.

[6] L. Q. Pan and A. Alhazov. Solving HPP and SAT by P systems with active membranes and
separation rules. Acta Informatica, 43(2):131–145, 2006.

[7] G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61(1):108–
143, 2000.

[8] G. Păun. P systems with active membranes: Attacking NP-complete problems. Journal of
Automata, Languages and Combinatorics, 6(1):75–90, 2001.

[9] M. J. Pérez-Jiménez and A. Riscos-Núñez. Solving the subset-sum problem by P systems with
active membranes. New Generation Computing, 23(4):339–356, 2005.

[10] M. J. Pérez-Jiménez and F.J. Romero-Campero. Solving the BIN PACKING problem by rec-
ognizer P systems with active membranes. In The Second Brainstorming Week on Membrane
Computing, pages 414–430, 2004.

[11] M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini. A polynomial complexity
class in P systems using membrane division. Journal of Automata, Languages and Combina-
torics, 11(4):423–434, 2003.

[12] H. Tagawa and A. Fujiwara. Solving SAT and Hamiltonian cycle problem using asynchronous
p systems. IEICE Transactions on Information and Systems (Special section on Foundations
of Computer Science), E95-D(3), 2012.

[13] K. Tanaka and A. Fujiwara. Asynchronous P systems for hard graph problems. International
Journal of Networking and Computing, 4(1):2–22, 2014.

[14] C. Zandron, C. Ferretti, and G. Mauri. Solving NP-complete problems using P systems with
active membranes. In Unconventional Models of Computation, pages 289–301, 2000.

173

