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Abstract

Recursive dual-net (RDN) is a newly proposed interconnection network for massive parallel
computers. The RDN is based on recursive dual-construction of a symmetric base-network B.

A k-level dual-construction for k > 0 creates a network RDNk(B) containing N = (2n0)
2k

/2
nodes with node-degree d0 + k, where n0 and d0 are the number of nodes and the node-degree
of the base network, respectively. The RDN is a symmetric graph and can contain huge number
of nodes with small node-degree and short diameter. Node-to-set disjoint-paths routing is fun-
damental and has many applications for fault-tolerant and secure communications in a network.
In this paper, we propose an efficient algorithm for node-to-set disjoint-paths routing in RDN.
We show that, given a node s and a set of d0 + k nodes T in RDNk(B), d0 + k disjoint paths,
each connecting s to a node in T , can be found in O(((d0 + k)D0/ lg n0) lg N) time, and the
length of the paths is at most 3(D0/2+1)(lg N +1)/(lg n0 +1), where N is the number of nodes
in RDNk(B), d0 , D0, and n0 are the node-degree, the diameter, and the number of nodes of
base-network B, respectively.

1 Introduction

The demand for more computing power has never stopped. The performance of processors has
doubled in every 18-month. Parallel computer systems with large number of processors achieved
petaflops computing performance and are opening the door to exaflops. In the last decade, because
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of the advance in computer technology, computer makers such as IBM and Cray have risen up
competition to build supercomputers with hundreds of thousands of processors. It has been predicted
that, in the near future, the number of processors will reach millions [3].

Interconnection networks play a critical role for those supercomputers to gain high-performance.
It is possible to combine cheap and efficient products to provide almost all components of a parallel
computer except for the interconnection network [7]. Therefore, many topologies have been proposed
for the interconnection networks and studied eagerly [2, 5, 14, 15].

The recursive dual-net (RDN), a newly proposed interconnection network, is based on recursive
dual-construction of a symmetric base-network [17]. The dual-construction extends a network with
n nodes and node-degree d to a network with 2n2 nodes and node-degree d + 1. The k-level RDN is
obtained by recursively applying dual-construction k times starting from the symmetric base network
B. The RDN has many merits as long as topological properties are concerned. For example, an
RDN can connect a huge number of nodes with just a small number of links per node. It is not
difficult to construct an RDN connecting 3-millions nodes with 6 links per node and its diameter
equals 22. Therefore, it is an interesting candidate as an interconnection network for massively
parallel computers of next generations.

In the research on interconnection networks, it is very important to design and develop efficient
routing algorithms. The algorithms include those for solving disjoint-paths problems in node-to-
node, node-to-set, and set-to-set routings. These problems are fundamental and essential for fault
tolerance and security in parallel computation and communication.

The problem of disjoint-paths routing has been investigated in many topologies. There are several
algorithms in star graphs for the node-to-node disjoint paths problem in O(n2) time [6, 11, 13]. Gu
and Peng gave algorithms for the node-to-set and the set-to-set disjoint-paths problems in hypercubes
in O(n2) and O(n2 log n) time, respectively [10]. Gu and Peng gave algorithms for the node-to-set
and the set-to-set disjoint-paths problems in star graphs in O(n2) time [8, 9]. In pancake graphs,
there are algorithms for the node-to-node and the node-to-set disjoint-paths problems in O(n2) time
[12, 18]. Bossard, Kaneko and Peng gave an algorithm for node-to-set disjoint-paths problem in
metacube [4]. Li, Peng and Chu gave algorithms for node-to-node disjoint-paths and fault-tolerant
routing problem in RDN [16].

In this paper, we propose an efficient algorithm that finds disjoint paths for node-to-set routing in
recursive dual-nets. For a k-level recursive dual-net with base-network B, RDNk(B), the algorithm
can find k + d0 disjoint paths in O(((d0 + k)D0/ lg n0) lg N) time and the length of the paths is at
most 3(D0/2 + 1)(lg N + 1)/(lg n0 + 1), where N is the number of nodes in RDNk(B), d0, D0 and
n0 are the node-degree, the diameter, and the number of nodes of the base-network, respectively.

The rest of the paper is organized as follows. Section 2 introduces some terminologies, definitions,
and basic properties of recursive dual-nets. Section 3 gives the proposed algorithms for node-to-set
disjoint-paths problem in RDN. Finally, Section 4 concludes this paper with some possible future
works.

2 Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted as |G|, is the number of vertices. A path from
node s to node t in G is denoted by s → t. The length of the path is the number of edges in the
path. For any two nodes s and t in G, we denote D(s, t) as the length of a shortest path connecting
s and t. The diameter of G is defined as D(G) = max{D(s, t)|s, t ∈ G}. For any two nodes s and t
in G, if there is a path connecting s and t, we say G is connected. If every node in G looks alike,
we say G is symmetric.

Given a symmetric connected graph B with n0 nodes and the node degree d0, a Recursive Dual-
Net of level k, denoted as RDNk(B) or RDNk(B(n0)), can be recursively defined as follows:

1. RDN0(B) = B is a symmetric connected graph with n0 nodes, called base network;

2. For k > 0, an RDNk(B) is constructed from RDNk−1(B) by a dual-construction as explained
below (also see Figure 1).
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RDNk−1(B) RDNk(B)
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0 1 nk−1 − 1

0 1 nk−1 − 1
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Figure 1: Build an RDNk(B) from RDNk−1(B)

Dual-construction: Let RDNk−1(B) be referred to as a cluster of level k and the number of
nodes nk−1 = |RDNk−1(B)|. An RDNk(B) is a graph that contains 2nk−1 clusters of level k as
subgraphs. These clusters are divided into two sets with each set containing nk−1 clusters. Each
cluster in one set is said to be of type 0, denoted as C0

i , where 0 ≤ i ≤ nk−1 − 1 is the cluster ID.
Each cluster in the other set is of type 1, denoted as C1

j , where 0 ≤ j ≤ nk−1 − 1 is the cluster ID.
In the dual-construction at level k, each node has a new link to a node in a distinct cluster of the
other type. We call this link cross-edge of level k. That is, for each pair of clusters C0

i and C1
j , there

is a unique edge connecting a node in C0
i and a node in C1

j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there
are nk−1 nodes within each cluster RDNk−1(B).

We give two simple examples of recursive dual-nets with k = 1 and 2, in which the base-network
is a ring with 3 nodes, in Figure 2 and Figure 3, respectively. Figure 2 depicts an RDN1(B(3))
network. There are 3 nodes in the base network. Therefore, the number of nodes in RDN1(B(3)) is
2× 32, or 18. Figure 3 shows the RDN2(B(3)) constructed from the RDN1(B(3)) in Figure 2. We
did not show all the nodes in the figure. The number of nodes in RDN2(B(3)) is 2 × 182, or 648.

Figure 2: A Recursive Dual-Net RDN1(B(3))

Similarly, we can construct an RDN3(B(3)) containing 2 × 6482, or 839,808 nodes with node-
degree 5 and the diameter equals to 22. In contrast, the 839808-node 3D torus machine (adopt
by IBM Blue Gene/L [1]) can be configured as 108 × 108 × 72 nodes with node-degree 6 and the
diameter of 54 + 54 + 36 = 144.

A node presentation for RDNk(B) that provides a unique ID to each node in RDNk(B) is
described as follows. Let the set of IDs of nodes in B, denoted as ID0, be i, 0 ≤ i ≤ n0 − 1. The
IDk of node u in RDNk(B) for k > 0 is a triple (u0, u1, u2), where u0 is a 0 or 1, u1 and u2 belong
to IDk−1. We call u0, u1, and u2 typeID, clusterID, and nodeID of u, respectively.

More specifically, IDi, 1 ≤ i ≤ k, can be defined recursively as follows: IDi = (b, IDi−1, IDi−1),
where b = 0 or 1, and ID0 is the set of IDs of nodes in B. With this ID presentation, (u, v) is
a cross-edge of level k in RDNk(B) iff u0 ̸= v0, u1 = v2, and u2 = v1. The ID of a node u in
RDNk(B) can also be presented by an unique integer i, 0 ≤ i ≤ (2n0)2

k

/2 − 1, where i is the
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Figure 3: A Recursive Dual-Net RDN2(B(3))

lexicographical order of the triple (u0, u1, u2). For example, the ID of node (1, 1, 2) in RDN1(B) is
1 ∗ 32 + 1 ∗ 3 + 2 = 14.

The basic topological properties has been explored in [17]. The following lemma is from [17].

Lemma 1. Assume that the base-network B is a symmetric graph with size n0, node-degree d0,
and diameter D0. Then, the size, the node-degree, the diameter, and the bisection bandwidth of
RDNk(B) are (2n0)2

k

/2, d0 + k, 2kD0 + 2k+1 − 2, and ⌈(2n0)2
k

/8⌉, respectively.

Table 1 shows the number of nodes an RDN can have when a hypercube or a 3D torus is used
as the base network. The number in parentheses is the node-degree. We can see that an RDN can
contain several hundreds to more than 1 billion nodes with less than or equal to 8 links per node.

Table 1: The number of nodes in RDN

Base network k = 0 k = 1 k = 2
3-cube 8 (3) 128 (4) 32,768 (5)
4-cube 16 (4) 512 (5) 524,288 (6)
5-cube 32 (5) 2,048 (6) 8,388,608 (7)
33-torus 27 (6) 1,458 (7) 4,251,528 (8)
43-torus 64 (6) 8,192 (7) 134,217,728 (8)
53-torus 125 (6) 31,250 (7) 1,953,125,000 (8)

The number of nodes increases rapidly as the k increases. Maybe we need to find a way to control
the increasing speed in the number of nodes that will result in a network rather than the pure RDN.

3 Node-to-Set Disjoint-Path Routing in RDN

In a graph G, given a source node s and a set of n destination nodes T = {t1, . . . , tn}, the node-to-set
disjoint-paths problem is to find n disjoint paths (sharing the common node s only), each connecting
node s to a node in T . In this section, we will propose an efficient algorithm for the node-to-set
disjoint-paths problem in RDN.

Given two nodes u and v in RDNk(B), there exists a simple routing algorithm that finds a
shortest path from u to v [17]. The routing algorithm is described formally as Algorithm 1.

Lemma 2. Assume that D0 is the diameter of the base network B. Then, in RDNk(B) with k > 0,
a path from source s to destination t can be found in O(((D0/ lg n0) lg N) time and the length of the
path is at most (D0 + 2) ∗ (lg N + 1)/(lg n0 + 1) − 2.
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Algorithm 1: RDN routing(RDNk(B), u, v)
begin

if k = 0 then RDN routing(B, u, v)
else

Case 1: u0 = v0 and u1 = v1

RDN routing(RDNk−1
u (B), u2, v2);

/* RDNk−1
u (B) is the cluster of level k, where nodeu belongs to. */

Case 2: u0 ̸= v0

RDN routing(RDNk−1
u (B), u2, v1);

u′ ← (u0, u1, v1);
RDN routing(RDNk−1

v (B), v2, u1);
v′ ← (v0, v1, u1);
connect u′ and v′ via a cross-edge of level k;

Case 3: u0 = v0 and u1 ̸= v1

route u to w via the cross-edge of level k;
route node w to node v as in Case 2;

endif
end

Proof. Assume that RDN routing(B, u, v) can find the shortest path connecting u and v in B in
O(D0) time with the length of the path at most D0. We show the correctness of Algorithm 1 by
induction on k. By induction hypothesis, RDN routing(RDNk−1(B), u, v) can find the shortest path
connecting u and v in RDNk−1(B) in O(Dk−1) time with the length of the path at most Dk−1.
From Algorithm 1, the worst-case occurs at Case 3, where u and v are in the distinct clusters of
the same type. Since there is no direct connection between the two clusters, we have to route one
of the two nodes to the cluster of the other type via a cross-edge of level k, and then follow the
routing in Case 2. The routing for Case 2 first finds the unique cross-edge that connects the two
clusters, and its two end-nodes u′ and v′. Then, the routing can be done by two recursive calls for
routing inside the two clusters (u → u′ and v → v′) and via the cross-edge of level k. Since the
paths u → u′ and v → v′ are the shortest paths in RDNk−1(B), it is clear that the routing in
Algorithm 1 is the shortest one. The length of the path is at most 2Dk−1 + 2 in the worst-case.
From Lemma 1, Dk−1 = 2k−1D0 + 2k − 2 and 2k = (lg N + 1)/(lg n0 + 1). Therefore, the path
can be found in O(D0 ∗ 2k) = O((D0/ lg n0) ∗ lg N) time, and the length of the path is at most
(2kD0 + 2k+1 − 4) + 2 = (D0 + 2)2k − 2 = (lg N + 1)/(lg n0 + 1) − 2.

Let the d0 +k neighbors of node u be u(i), 1 ≤ i ≤ d0 +k, where u(i), 1 ≤ i ≤ d0, are the neighbor
of s in B, and edge (u, u(i)), d0 +1 ≤ i ≤ d0 +k, is the cross-edge of level i−d0. Let u(i,j) = (u(i))(j)

for 1 ≤ i, j ≤ d0 + k, and so on. For simplicity, we denote N(s) = {s(i), 1 ≤ i ≤ d0 + k}. C denotes
a cluster (of level k). Cs denotes the cluster C with node s ∈ C. type(C) denotes the type of cluster
C.

We give the following lemma which will be used frequently in our algorithms.

Lemma 3. In RDNk(B), for any node u, there exist d0 + k disjoint paths u → ui, 1 ≤ i ≤ d0 + k,
of length at most 2 such that ui ̸∈ Cu and Cui ̸= Cuj if i ̸= j.

Proof. Let the d0 + k paths be u → u(i) → u(i,d0+k), 1 ≤ i ≤ d0 + k, and u → u(d0+k). It is easy to
see that these paths are disjoint and satisfy the conditions specified in the lemma.

The strategy of the proposed algorithm to find disjoint paths is to connect the nodes in T but
not in cluster Cs to node s via distinct clusters. In order to implement this strategy, we need to
handle the clusters that contain more than one node in T . We should allow only one of them to
be connected in the cluster and route all others out of the clusters by disjoint paths of length as
small as possible. Once the nodes in T are routed into distinct clusters, if they are in the cluster
of type(Cs), each of them can connect with one of nodes in N(s), by RDN routing. Otherwise, the
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connection should go through an intermediate cluster. In such case, there are some conditions for
selecting the intermediate cluster. The solutions for the problems described above are shown in the
next paragraph.

To describe the algorithm that we propose for the node-to-set disjoint-paths routing in RDN,
we need the following subroutines, namely, RDN N2S one path and RDN modified routing. The
subroutine RDN one path has three input parameters: node u and sets of nodes V and W in
RDNk(B) that are defined in the main algorithm (Algorithm 4). It will be called when |Cu∩V | > 1
to connect u to a node in Cu ∩ V , and distribute all other nodes in Cu ∩ V to other distinct clusters
not containing any node in W via disjoint paths of length at most 2 (see figure 4). In figure 4,
Cu ∩ V = {v1, v2, v3}, u is connected to v3 while v1 and v2 are routed out of cluster Cu via disjoint
paths of length 2 and 1, respectively. It is assumed that C

v
(d0+k)
1

∩ W ̸= ∅. Therefore, we need a
path of length 2 for distributing v1 to a node in another cluster.

v
(d0+k)
2

v
(i)
1

u

v3

v1

v2

v
(i,d0+k)
1

Figure 4: RDN N2S one path

The subroutine RDN modified routing has three input parameters in RDNk(B): nodes u and v,
and a cluster C with Cu ̸= Cv, type(Cu) = type(Cv), and type(C) ̸= type(Cu). It will be called to
connect nodes u and v such that the path passes through clusters Cu, C, and Cv only (see figure 5).
The two subroutines are described formally as Algorithms 2 and 3. The correctness of Algorithms
2 and 3, the upper bounds of time complexities and the maximum lengths of the paths are shown
in Lemmas 4 and 5.

u′(d0+k)

v′(d0+k)

v′

v

u

u′

C

Cu Cv

Figure 5: RDN modified routing

Lemma 4. Algorithm 2 is correct for the sets V and W defined in Algorithm 4. The time complexity
of Algorithm 2 is O((D0/ lg n0) lg N). The length of the path connects u to a node in V is at most
Dk−1 = (D0/2 + 1) ∗ (lg N + 1)/(lg n0 + 1) − 2.
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Algorithm 2: RDN one path(RDNk(B), u, V,W )
Input: Node u and two sets of nodes, V and W , in RDNk(B) such that Cu ∩ V = {v1, . . . , vr}

and r > 1.
Output: Path {u → va ∈ V } ⊂ Cs and r − 1 disjoint paths vi → v′

i ̸∈ Cui , 1 ≤ i ̸= a ≤ r, of length
at most 2 such that Cv′

i
∩ W = ∅ for all i, 1 ≤ i ̸= a ≤ r, and Cv′

i
̸= Cv′

j
if i ̸= j

begin
if u ∈ V or ∃i such that u(i) ∈ V
then va = u or u(i)

else pick up va randomly;
RDN routing(Cu, u, va);

endif
find r − 1 disjoint paths of length at most 2, vi → v′i, 1 ≤ i ̸= a ≤ r
such that Cv′

i
∩ W = ∅ for all i, 1 ≤ i ̸= a ≤ r, and Cv′

i
̸= Cv′

j
if i ̸= j;

if ∃j such that {vj → v′j} ∩ {u → va} ≠ ∅
then find vb such that {vb → v′

b} ∩ {u → va} closest to u;
remove path vb → v′

b;
replace path u → va by path u → vb;
find a path of length at most 2, va → v′a such that

Cv′
a
∩ W = ∅ and Cv′

a
̸= Cv′

j
for all j ̸= a;

endif
end

Algorithm 3: RDN modified routing(RDNk(B), u, v, C)
Input: a cluster C and two nodes u and v in RDNk(B) such that Cu ̸= Cv and

type(Cu) = type(Cv) ̸= type(C)
Output: a path u → v that passes through C
begin

RDN routing(Cu, u, u′), where (u′)(d0+k) ∈ C;
RDN routing(Cv, v, v′), where (u′)(d0+k) ∈ C;
RDN routing(C, (u′)(d0+k), (v′)(d0+k));
return path u → v = u → u′ → (u′)(d0+k) → (v′)(d0+k) → v′ → v;

end

Proof. In Algorithm 4, V = W = T , initially, and if a node v ∈ V is routed to v′ ∈ Cv′ ̸= Cv with
type(Cv ̸= type(Cv′) by a path of length at most 2 then V = V ∪ {v′} \ {v} and W = W ∪ {v′}.
Since the above routing and updating occurs at most once for every node in W , the number of
nodes in W that reside in the clusters of a single type will never exceed d0 + k. From Lemma
3, we know that, for each vi, 1 ≤ i ≤ r, there are d0 + k disjoint paths of length at most 2 that
route vi to nodes in other distinct clusters. Therefore, there must exist a path vi → v′

i such that
{vi → v′

i} ∩ {vj → v′
j , j ̸= i} = ∅ for j, 1 ≤ j ̸= i ≤ r and Cv′ ∩W = ∅. Since check the qualification

of a path of length at most 2 takes only O(1) time if we book-keep a boolean variable for each cluster
C indicating whether C∩W = ∅ or not. Therefore, the time complexity of Algorithm 2 is dominated
by the time to find a single path inside the cluster which is O(D0 ∗ 2k) = O((D0/ lg n0) lg N). The
path u → Va is of length at most Dk−1.

Lemma 5. Algorithm 3 is correct. The time complexity of Algorithm 3 is O((D0/ lg n0) lg N). The
length of the paths is at most 3(D0/2 + 1)(lg N + 1)/(lg n0 + 1) − 4.

Proof. It is easy to see that Algorithm 3 finds a path from u to v that passes through clusters Cu,
C, and Cv only. The time complexity of the algorithm is O(3(2k−1 × D0 + 2k) + 2) = O(2kD0) =
O((D0)/ lg n0) lg N , and the length of the path is at most 3Dk−1 + 2 = 3(2k−1 ×D0 + 2k − 2) + 2 =
3(2k−1 × D0 + 2k) − 4 = 3(D0/2 + 1)(lg N + 1)/(lg n0 + 1) − 4.
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Now, we are ready to describe the proposed algorithm. The algorithm is divided into four stages
to handle the routing in different situations. At the first stage, we handle the connection of those
nodes in T ∩ Cs recursively if 0 < |T ∩ Cs| < d0 + k. In case that |T ∩ Cs| = d0 + k, we pick up
any d0 + k − 1 nodes in T . Let the leftover node be ta. We call the algorithm recursively on Cs to
connect s with the d0 + k − 1 nodes in T by disjoint paths in Cs. If any of the d0 + k − 1 paths, say
s → tb meets ta, we replace path s → tb by path s → ta and let the leftover node be tb. Then, the
leftover node of T can be connected to s via a path that is completely outside the cluster Cs except
node s and the leftover node of T .

After the recursive call to connect the nodes in T ∩Cs, we route the node(s) in N(s)∩Cs that is
(are) not used yet out of Cs by cross-edge(s). Let these nodes s(i,d0+k), i ̸= d0 + k, and node s(d0+k)

be U = {u1, . . . , uq}, V = T \ Cs = {v1, . . . , vq}, and W = T . In Stages 2 - 4, the nodes in U and
nodes in V will be connected via distinct clusters. The set W is used while selecting the destination
cluster for the path vi → v′

i of length at most 2. That is, a destination cluster for v′
i should not

contain any node in W .
At the second stage, we handle only the clusters Cui , 1 ≤ i ≤ q, with Cui ∩T ̸= ∅ and the clusters

C with type(C) ̸= type(Cs) and |C ∩ V | > 1. We call N2S one path to connect ui to a node va in
V ∩ Cui and route nodes vj , j ̸= a, to v′j via disjoint paths of length at most 2 such that Cv′

j
are

all distinct and Cv′
j
∩ V = ∅. For the clusters C with type(C) ̸= type(Cs) and |C ∩ V | > 1, we

spread all nodes in C ∩ V out of C via disjoint paths of length 2 similarly. Then, we update U and
V by removing the pair nodes in Cui that are connected and those nodes vj in V that are routed to
v′

j ̸∈ Cvj from U and V , and adding v′
j to V and W .

At the third stage, we handle those clusters C with type(C) = type(Cs) and C ∩V ̸= ∅. For each
of these clusters, we route a node u ∈ U to a node w ∈ C, where path u → w(d0+k) ⊂ Cu. Notice
that Cu ∩ V = ∅ after the 2nd stage, the path u → w(d0+k) can be generated by RDN routing in
Cu. Then, we call RDN routing (if |C ∩ V | = 1) or RDN N2S one path (if |C ∩ V | > 1) to connect
w to a node va ∈ V ∩ C and route all other nodes vj , j ̸= a in V ∩ C to node v′j in distinct clusters
that does not contain any node in V by disjoint paths of length at most 2. Then, we update U and
V accordingly as in Stage 2 after the routing.

Finally, at the fourth stage, we handle clusters C with type(C) ̸= type(Cs) that contain nodes
in U ∪ V again. Notice that, after Stage 3, Cv will be distinct for every v ∈ V , and Cv ∩ U = ∅
or |Cv ∩ U | = 1. The case |Cv ∩ U | = 1 is trivial (just connect them in Cv by RDN routing).
If Cv ∩ U = ∅, we pick up any u with Cu ∩ V = ∅ and find an intermediate cluster C with
type(C) = type(Cs) and that does not contain s or any node in T or any v′

j generated in Stage 2.
Then, we call MRDN modified routing to connect u to v via cluster C.

The proposed algorithm is formally presented as Algorithm 4. The correctness of Algorithm 4
and the upper bound of the length of disjoint paths are given in the main theorem, Theorem 1, of
the paper.

Theorem 1. Assume that d0 and D0 are the node-degree and the diameter of the base network B,
respectively. Assume that d0 disjoint paths exist in B between a node and a set of d0 nodes in B.
Let s be a node and T a set of d0 + k nodes in RDNk(B), k > 0. Then d0 + k disjoint paths, each
connecting s to a node in T , can be found in O(((d0 + k)D0/ lg n0) lg N) time. The length of the
paths is at most 3(D0/2 + 1)(lg N + 1)/(lg n0 + 1).

Proof. In Stage 1, there are two cases: r < d0 + k and r = d0 + k. Case 1 is trivial following the
induction on k. In Case 2, d0 + k − 1 disjoint paths can be generated in Cs. Let the unconnected
node in T be ta. Then, it is easy to see that s(d0+k) and t

(d0+k)
a can be connected completely outside

Cs. In Stage 2, there are two types of routings: one for cluster Cu with Cu ∩ V ̸= ∅ and the other
for the cluster C with type(C) ̸= type(Cs) and |C ∩ V | > 1. The argument of the correctness of the
routing at Stage 2 is similar to that in the proof of Lemma 4. However, for the routing of second
type, although there exists a path of length at most 2, vj → v′j , for each vj ∈ V ∩ C such that it is
disjoint with other paths of length at most 2 and Cv′

j
∩ V = ∅ due to the fact |V \ {vj}| < d0 + k,

v′
j ∈ Cs might occur. If it occurs then we have Cs ∩ T = ∅. In such case, we can connect v′

j with s
in Cs and then remove the neighbor of s in the path from U .
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Algorithm 4: RDN N2S disjoint paths(RDNk(B), s, T )
Input: Node s and a set T of m ≤ d0 + k nodes in RDNk(B), k > 0
Output: m disjoint paths connecting node s and ti ∈ T, 1 ≤ i ≤ m
begin

U ← N(s); V = W ← T ;
if |Cs ∩ V | = r > 0 /* Stage 1 */
then if r < d0 + k

then if k = 1 then RDN N2S disjoint paths(B, u, v)
else RDN N2S disjoint paths(RDNk−1(B), s, V ∩ Cs);
for each i, 1 ≤ i < d0 + k, do

if s(i) in path s → vji for some vji ∈ C ∩ V
then U ← U \ {s(i)};

V ← V \ {vji};
else U ← U ∪ {s(i,d0+k)} \ {s(i)};

else pick up any node, say v0 ∈ V ;
RDN N2S disjoint paths(RDNk−1(B), s, V \ {v0});
if any of the d0 + k − 1 paths, say s → vj , j > 1, meets v0

then replace s → vj by s → vj ;
V ← {v(d0+k)

j ;

else V ← {v(d0+k)
0 };

U ← {s(d0+k)};
for each u ∈ U with Cu ∩ V ̸= ∅ do /* Stage 2 */

if |Cu ∩ V | = 1 then RDN routing(RDNk(B), u, v)
else RDN N2S one path(RDNk(B), u, V,W );
U ← U \ {u};
V ← V ∪ {v′

i, 1 ≤ i ̸= a ≤ r} \ {vi, 1 ≤ i ≤ r};
W ← W ∪ {v′i, 1 ≤ i ̸= a ≤ r};

for each C with type(C) ̸= type(Cs) and |C ∩ V | = m > 1 do /* Let C ∩ V = {v1 . . . , vm}. */
find m disjoint paths of length at most 2, vi → v′i, 1 ≤ i ≤ m,
such that Cv′

i
∩ (T ∪ V ) = ∅ and Cv′

i
̸= Cv′

j
if i ̸= j;

V ← V ∪ {v′
i, 1 ≤ i ≤ m} \ {vi, 1 ≤ i ≤ m};

W ← W ∪ {v′i, 1 ≤ i ≤ r};
while ∃ cluster C with type(C) = type(Cs) and |C ∩ V | > 0 do /* Stage 3 */

find a u ∈ U ;
route u to a w ∈ Cu such that w(d0+k) ∈ C;
if |Cu ∩ V | = 1 then RDN routing(RDNk(B), u, v)
else RDN N2S one path(RDNk(B), u, V,W );
U ← U \ {u};
V ← V ∪ {v′

i, 1 ≤ i ̸= a ≤ r} \ {vi, 1 ≤ i ≤ r};
W ← W ∪ {v′i, 1 ≤ i ̸= a ≤ r};

for each node u ∈ U do /* Stage 4 */ /* type(Cv) = type(Cu) */
if {Cu ∩ V } = v then RDN routing(Cu, u, v)
else pick up a v ∈ V ;

find a cluster C s.t. type(C) = type(Cs) and C ∩ W ̸= ∅;
RDN modified routing(RDNk(B), u, v, C);

U ← U \ {u};
V ← V \ {v};

end

In Stage 3, we connect u ∈ U with a v ∈ V , where |Cv ∩ V | > 0 and type(Cv) = type(Cs), one u
for each cluster Cv with Cv ∩V ̸= ∅. Since |V | ≤ d0 +k in any case, the argument for the correctness
of this stage is again similar to that in the proof of Lemma 4. However, when call RDN one path for
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Cv, the node v′
j that is generated by distributing vj via a path of length at most 2 might be in Cu

for a unconnected u ∈ U . If this occurs, we simply connect v′
j with u in Cu. Otherwise, connection

of v′j with an unconnected u will be handled by calling RDN modified routing (see Stage 4).
In Stage 4, it is easy to see from the way we updated V in Stages 1 - 3 that, for every v ∈ V , we

have V ∩Cv = {v} and type(Cv) ̸= type(Cs). If Cv∩U = {u}, it is trivial to connect them inside Cv.
Otherwise, we connect v with a node u pairwisely via a cluster C with type(C) = type(Cs), Cv ̸= Cs,
and that is not used for the connections in Stage 3. Let the number of the node pairs to be connected
be r > 0. We show that there are at least r clusters satisfying the conditions. Since the number of
clusters C ′ with type(C ′) ̸= type(Cs) is at least d0 +k + r since all Cv are distinct from all Cu. That
is, the number of clusters of type Cs is also at least d0 + k + r. The number of the clusters used in
Stage 3 is at most d0 + k− r. Therefore, we have at least (d0 + k + r)− (d0 + k− r)− 1 = 2r− 1 ≥ r
clusters of the same type of Cs and excluding Cs that can be used as intermediate clusters in Stage
4. Therefore, every pair of u and v that are in the distinct clusters can be connected by calling
RDN modified routing.

It is clear from the algorithm that the time complexity of the algorithm is dominated by routing
in stages 2 - 4. From Lemmas 3 - 5, the time complexities of Algorithms 1 - 3 are all O(2kD0).
These algorithms are called at most m ≤ d0 + k times in Algorithm 4. Since the operations in
Algorithm 4 for distributing nodes in N(s) and T from a cluster to another cluster take O(d0 + k)
time, the time complexity of Algorithm 4 is O((d0 + k)2kD0) = O(((d0 + k)D0/ lg n0) lg N). The
longest path among the m ≤ d0 + k disjoint paths is the one in Stage 4, which is of length at most
3Dk−1 + 6 = 3(2k−1D0 + 2k − 2) + 6 = 3(D0/2 + 1)2k) = 3(D0/2 + 1)(lg N + 1)/(lg n0 + 1).

We give an example of node-to-set disjoint-paths routing in RDN2(B) that follows the proposed
algorithm step-by-step.

Example 1: In RDN2(B), where B is a ring with 3 nodes, let s = (0, (0, 0, 0), (0, 0, 0)), and
t1 = (0, (1, 0, 0), (1, 1, 0)); t2 = (0, (1, 0, 0), (0, 1, 1));
t3 = (1, (1, 1, 1), (1, 0, 0)); and t4 = (1, (1, 1, 1), (0, 2, 2)).

For simplicity, we do not include the updating of set W . Basically, any nodes generated from
a distributing path of length at most 2 from a node in T should be added to W . The clusters
containing any node in W cannot be selected as destination clusters while distributing the nodes in
a cluster that contains more than one node in T .
• Stage 1: Since Cs ∩ V = ∅, s(1), s(2), and s(3) are routed out of Cs via cross-edges of level 2.

The nodes in U are updated and U = {(1, (0, 0, 1), (0, 0, 0)), (1, (0, 0, 2), (0, 0, 0)),
(1, (1, 0, 0), (0, 0, 0)), (1, (0, 0, 0), (0, 0, 0))} (see Figure 6).
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Figure 6: Routing at stage 1
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• Stage 2: Since t3 and t4 are in the same cluster of type 1, we route them out of the cluster by
disjoint paths of length at most 2.

The nodes in V are updated and
V = {t1, t2, (0, (1, 0, 1), (1, 1, 1)), (0, (0, 2, 2), (1, 1, 1))}.
Notice that since t

(4)
3 ∈ Ct1 , we need a path of length 2 to route t3 out of the cluster.

• Stage 3: Since there are 3 clusters of type 0 that contain nodes in V , we pick up any 3 nodes in U
and route each of them to one of the 3 clusters. Then, we call RDN routing or RDN N2S one path
for each of the 3 clusters. After Stage 3, three disjoint paths are generated and t2 is routed to
(1, (0, 1, 1), (1, 0, 0)) via a cross-edge of level 2 (see Figure 7).

Path #1: (1, (0, 0, 1), (0, 0, 0)) ⇒ (1, (0, 0, 1), (1, 0, 1)) → (0, (1, 0, 1), (0, 0, 1)) ⇒ (0, (1, 0, 1), (1, 1, 1));
Path #2: (1, (0, 0, 2), (0, 0, 0)) ⇒ (1, (0, 0, 2), (0, 2, 2)) → (0, (0, 2, 2), (0, 0, 2)) ⇒ (0, (0, 2, 2), (1, 1, 1));

and
Path #3: (1, (1, 0, 0), (0, 0, 0)) ⇒ (1, (1, 0, 0), (1, 0, 0)) → (0, (1, 0, 0), (1, 0, 0)) ⇒ (0, (1, 0, 0), (1, 1, 0)).
Finally, we update U , V . Both sets contain only single nodes. U = {(1, (0, 0, 0), (0, 0, 0)) = s(4)}

and V = {(1, (0, 1, 1), (1, 0, 0))}.
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Figure 7: Routing at stage 3

• Stage 4: We pick up the cluster C of type 0 whose cluster ID = (0,0,1) because C∩W = ∅. We call
RDN Modified Routing to connect the last pair of nodes in U and V via cluster C (see Figure 8).

Path #4: (1, (0, 0, 0), (0, 0, 0)) ⇒ (1, (0, 0, 0), (0, 0, 1)) → (0, (0, 0, 1), (0, 0, 0)) ⇒ (0, (0, 0, 1), (0, 1, 1)) →
(1, (0, 1, 1), (0, 0, 1)) ⇒ (1, (0, 1, 1), (1, 0, 0)).

4 Concluding Remarks

Recursive dual-net is a potential interconnection network for supercomputers of next generations
because of its low node degree and short diameter for the extremely large parallel computer systems.
Its symmetric and recursive structure, and simple routing algorithms are also attractive. In this
paper, we proposed an efficient algorithm for node-to-set disjoint-paths routing on recursive dual-net.
There are many other interesting and fundamental communication and computational problems on
recursive dual-net that are worth further research. For example, in parallel programming, collective
communication is generally implemented in a way that routing messages from a set of nodes to
another set of nodes so they don’t interfere with each other. Therefore, providing an efficient
algorithm for set-to-set disjoint-paths routing is an important and interesting future research work.
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Figure 8: Routing at stage 4
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