
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 10, Number 2, pages 227–241, July 2020

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly
Quadratic Extension Fields

Yuki Nanjo†, Masaaki Shirase‡, Takuya Kusaka† and Yasuyuki Nogami†

†Okayama University, Tsushima–naka 3–1–1, Kita–ku, Okayama 700–8530, Japan.
‡Future University Hakodate, Kamedanakano-cho 116–2, Hakodate, Hokkaido 041–8655, Japan.

Received: February 13, 2020
Revised: April 24, 2020
Accepted: June 2, 2020

Communicated by Toru Nakanishi

Abstract

It is well-known that quadratic extension fields (QEFs) based on optimal extension fields
(OEFs) are typically used for supersingular isogeny Diffie-Hellman (SIDH) key exchange pro-
tocol. On the other hand, there is a possibility of the performance improvement of SIDH by
employing other attractive choices of QEFs with efficient performing arithmetics which are
based on all-one polynomial extension fields (AOPFs) and extension fields with normal basis
representation (EFNs). Thus, the authors confirm that the applicability of the new candidates
of QEFs for SIDH and evaluate SIDH applied the possible choices of QEFs. As a result of
the experiment, the authors found that the performances of SIDH applied the QEFs based on
AOPF and EFN are comparable to that of the previous QEF. Moreover, one of the QEFs based
on EFN result in a new efficient implementation of the SIDH with SIDH-friendly prime given
as p = 2eA3eBf + 1 where eA, eB and f are positive integers.

Keywords: Post-quantum cryptography, SIDH, Quadratic extension fields

1 Introduction

Background and motivation. Since a quantum computer that is capable of executing Shor’s
algorithm is one of the major threats for the cryptosystems based on the classical algorithms, post-
quantum cryptography occupies a major place in the current research of security. In 2011, Jao
and De Feo proposed a Diffie-Hellman key exchange protocol based on the difficulty of computing
a kernel of isogenies between supersingular elliptic curves, which is called supersingular isogeny
Diffie-Hellman (SIDH) [1]. Since the best-known algorithms against the SIDH have an exponential
time complexity for both classical and quantum attackers at this time, SIDH is expected as one
of the candidates of the post-quantum cryptosystems. Therefore, researchers actively work on the
SIDH, however, there remain problems where high computational complexity and limitations of the
supersingular elliptic curves.

To overcome the problems, the authors focus on quadratic extension fields (QEFs) by the fol-
lowing reasons: 1) Since SIDH requires arithmetic operations in the QEFs, the performance of the
arithmetic operations in the QEFs might affect the performance of SIDH. 2) Moreover, since the
range of the supersingular elliptic curves depends on the QEFs which restrict conditions of field char-
acteristics, there is a possibility that the range can expand by changing the QEFs. In the context,
the authors focus on the QEFs with efficient performing arithmetics as shown in the below.

227

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

(i) The QEFs based on optimal extension fields (OEFs) proposed by Bailey et al. [2] in which
polynomial multiplication is implemented by using Karatsuba multiplication [3].

(ii) The QEFs based on all-one polynomial extension fields (AOPFs) proposed by Nogami et
al. with an efficient multiplication algorithm named as cyclic vector multiplication algorithm
(CVMA) in [4].

(iii) The QEFs based on extension fields with normal basis representation (EFNs) of which multi-
plication is efficiently implemented by the NTT method [5].

In the following, these implementation-friendly QEFs which are based on OEFs, AOPFs, and EFNs
are denoted as FOEF, FAOPF, and FEFN, respectively.

Since FOEF is the most well-known QEFs with efficient performing arithmetics, the previous
SIDH implementations such that [6, 7] employed FOEF of which modular polynomial is given by
an irreducible binomial f(x) = x2 + 1, which results in the best performing arithmetics among
FOEF. However, the number of prime field additions required for the multiplication in FAOPF and
FEFN is smaller than that of FOEF. Thus, there is a possibility of the performance improvement
of SIDH by exploiting FAOPF and FEFN instead of FOEF. From the above reason, the authors try
to investigate the computational complexity and execution time of SIDH applied these QEFs and
provide a performance evaluation.

However, it is not clear whether the implementation-friendly QEFs can be applied for SIDH or
not since the applicability of the QEFs typically depends on the condition of field characteristics
p. The characteristic used for SIDH has a specific form given as p = leAA leBB f ± 1, which is called
a SIDH-friendly prime, where lA and lB are typically chosen as lA = 2 and lB = 3. Indeed, the
previous choice of QEFs, i.e., FOEF with the modular polynomial f(x) = x2 + 1, restricts the field
characteristic as p ≡ 3 (mod 4) and is only available for p = 2eA3eBf − 1. In contrast, a practical
implementation of the SIDH with p = 2eA3eBf +1 which is comparable for that of p = 2eA3eBf − 1
are not found with the view of the choice of QEFs. Thus, the authors also try to find the QEFs
which enable the practical implementations for the SIDH with p = 2eA3eBf + 1.

Our contributions. The major contributions of this research are given as follows:

1. The authors find that not only FOEF and but also FAOPF and FEFN can be applied for the
SIDH with p = 2eA3eBf−1. As for FEFN, it is also available for the SIDH with p = 2eA3eBf+1.

2. The authors confirm the performance of the SIDH with p = 2eA3eBf ± 1 applied the QEFs
by an implementation. The results of the experiment show that the performance of the SIDH
with p = 2eA3eBf − 1 is competitive between FAOPF, FEFN, and FOEF. The authors also find
that the SIDH with p = 2eA3eBf + 1 applied FEFN are almost competitive to the SIDH with
p = 2eA3eBf − 1 applied FOEF.

3. As an additional contribution, the authors slightly improve the complexity to determine a curve
coefficient of 3-isogenies by modifying a form of the coefficient compared with the previous
result [6].

The differences from the original version. This work is extended from the authors’ previous
work [8] submitted in CANDAR’19. Although [8] present the experimental result of the SIDH
with p758− = 2378323717 − 1 and p759+ = 2378323689 + 1 which are not commonly used, this work
provide new results of the SIDH with p434− = 22163137 − 1 and p441+ = 22163137139+1 where p434−
is especially suggested for the specification of supersingular isogeny key encapsulation (SIKE) [9].
Moreover, this work analyzes the performance of SIDH not only form the performance of isogeny
computations but also that of point multiplications required for the subgroup generation for a kernel
of isogeny.

Organization. In the following, Sect. 2 overviews the necessary fundamentals of SIDH. Then,
Sect. 3 describes the implementation-friendly QEFs with the applicability for SIDH. The perfor-
mance analyses of SIDH are given in Sect. 4. Finally, Sect. 5 draws the conclusion.

228

International Journal of Networking and Computing

2 Preliminaries

This section describes the fundamentals of Montgomery curves and isogenies and the details of SIDH
protocol.

Notation. For a prime p > 3 and a positive integer m, let Fp and Fpm denote a finite field with
a characteristic p and its extension field of degree m, respectively. A polynomial ring in x defined
over Fp is denoted as Fp[x]. The calculation costs of a single multiplication, squaring, addition and
shift operation in Fpm are written as Mm, Sm, am and hm, respectively.

2.1 Montgomery curves

For a field K, a Montgomery curve E defined over K is an elliptic curve given as E/K : by2 =
x3 + ax2 +x where a and b are coefficients in K satisfying b 6= 0 and a2 6= 4. The j-invariant of E is
given as j(E) = 256(a2 − 3)3/(a2 − 4). A solution (x, y) ∈ K2 of E is called a rational point. A set
of the rational points including a point at infinity OE is called a group of K-rational points on E,
which is denoted as E(K). For an arbitrary non-negative integer s and rational point P ∈ E(K), a
point multiplication endomorphism can be defined as follows:

[s] : P 7→ P + P + · · ·+ P︸ ︷︷ ︸
s times

. (1)

All the rational points can be represented in projective coordinates, i.e., (X : Y : Z) assuming
x = X/Z, y = Y/Z with Z 6= 0, which a point at infinity becomes OE = (0 : 1 : 0). In [10],
Montgomery gave efficient formulas to compute the group low in projective coordinates without
Y -coordinate by using a 2-to-1 mapping as shown in the below.

x :E → E/〈−〉, (X : Y : Z) 7→
{

(X : Z) if Z 6= 0
(1 : 0) if Z = 0

, (2)

where − is a negation automorphism given as − : (x, y) 7→ (x,−y). A set of the projective rational
points of E/〈−〉 is denoted as P1. Since − is commutative with [s], a point multiplication x(P) 7→
x([s]P) can also be available in P1. The above operation only requires a coefficient a, which is
typically taking as (a± 2)/4 for efficient formulas.

2.2 Isogenies

Let E and Ẽ be elliptic curves over a finite field K. An isogeny ϕ : E → Ẽ defined over K is a
surjective morphism such that OE 7→ OẼ , which induces a group homomorphism E(K) → Ẽ(K).
For all (x, y) ∈ E(K), the image of (x, y) under ϕ is given as ϕ(x, y) = (r1(x), r2(x) · y), where
r1(x) and r2(x) are quotients of polynomials with coefficient in K. Note that every isogeny appears
in this paper is separable. If a cyclic subgroup G ⊂ E(K) is given, there is a unique isogeny
ϕ : E(K) → Ẽ(K) ∼= E(K)/G with ker(ϕ) = G, which is called a #G-isogeny. The isogeny ϕ and
Ẽ can be made explicit by using Vélu’s formulas [11] once E and G are known.

A large-degree isogeny can be computed efficiently as a composition of low degree isogenies in
Sect. 4.2.2 of [12]. Let R be a rational point on E with the order le, where l and e are positive
integer with small l. Assuming G = 〈R〉, there exists a le-isogeny ϕR : E → E/〈R〉. Then ϕR can
be computed efficiently as a composition of e isogenies of degree l. Set E0 = E and R0 = R initially,
iterate for 0 ≤ i < e with an integer i, the operations are given as follows:

Ei+1 = Ei/〈[le−i−1]Ri〉, ϕi : Ei → Ei+1, Ri+1 = ϕi(R), (3)

which results in ϕR = ϕe−1 ◦ · · · ◦ ϕ1 ◦ ϕ0. An isogeny ϕi and curve Ei+1 are computed by Vélu’s
formulas from the knowledge of Ei and 〈[le−i−1]Ri〉. The large-degree isogenies can be accelerated
by finding an optimal path of a directed acyclic graph as described in FIGURE 2 of [12]. The path
can be determined by the relative costs of point multiplication by l and l-isogeny evaluation.

229

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

2.3 Supersinglar isogeny Diffie-Hellman key exchange protocol

In the following, steps for SIDH between the two-person, Alice and Bob, are described.
Setup. Let p be a prime given as follows:

p = leAA leBB f ± 1, (4)

where lA and lB are two small distinct primes, eA and eB are two positive integers, and f is a
cofactor. A prime of the above form is called SIDH-friendly prime. Let E be a supersinglar elliptic
curve defined over a QEF Fp2 such that #E(Fp2) = (p∓ 1)2. And let PA, QA, PB , QB are rational
points in E(Fp2) such that 〈PA, QA〉 ∼= Z/leAA Z × Z/leAA Z and 〈PB , QB〉 ∼= Z/leBB Z × Z/leBB Z. A
public parameter set of SIDH is given as {p, lA, lB , eA, eB , E, PA, QA, PB , QB}.

Key generation. Alice chooses a secret key as sA ∈ Z/leAA Z and computes a secret subgroup
GA = 〈PA + [sA]QA〉. Alice also computes a leAA -isogeny ϕA : E → EA

∼= E/GA and images ϕA(PB)
and ϕA(QB), and sets her public key pkA = {EA, ϕA(PB), ϕA(QB)}. Similarly, Bob chooses a secret
key sB ∈ Z/leBB Z and obtains his public key pkB = {EB , ϕB(PA), ϕB(QA)} by computing a leBB -
isogeny ϕB : E → EB

∼= E/GB with GB = 〈PB+[sB]QB〉 and images ϕB(PA) and ϕB(QA). Finally,
they send their public key to each other. Note that the authors refers to the definition of the secret
subgroup from [6] for an efficient implementation.

Shared secret. Alice computes a subgroup G′
A = 〈ϕB(PA)+[sA]ϕB(QA)〉 from the received Bob’s

public key. Then Alice computes a leAA -isogeny ϕ′
A : EB → EBA

∼= EB/G
′
A and obtains a shared

key as a j-invariant j(EBA). Bob also computes a leBB -isogeny ϕ′
B : EA → EAB

∼= EA/G
′
B with

G′
B = 〈ϕA(PB) + [sB]ϕA(QB)〉 and obtains a shared key as j(EAB). They can share the same

j-invariant since EBA
∼= E/〈PA + [sA]QA, PB + [sB]QB〉 ∼= EAB , which means that EBA and EAB

are isomorphic.
In the following, operations to compute a le-isogeny with images of some points in the key gener-

ation phase and le-isogeny in the shared secret phase are denoted as keygen iso and keyshare iso,
respectively. An operation to compute a generator point of kernel subgroups of order le, i.e.,
R = P + [k]Q with P,Q ∈ E[le] and k ∈ Z/leZ is denoted as kernel gen. Note that these op-
erations occupy almost all computational complexity of SIDH.

2.4 Projective operations for SIDH

Following the previous works [6, 12], this paper also works in the projective coordinates of the
Montgomery curve. The projective point operations and isogeny formulas required for the typical
SIDH with p = leAA leBB f ± 1 where lA = 2, lB = 3, and 2 | eA are summarized in the below.

Projective point operations. This paper uses the projective coordinates not only the points
of the curve but also the curve coefficients since they are not fixed but moved in isogeny graphs.
Thus, the constant term (a− 2)/4 in the projective coordinates is denoted as (A24 : C24). Assuming
x(P) = (XP : ZP), x(Q) = (XQ : ZQ), and x(Q−P) = (XQ−P : ZQ−P), a point doubling operation
xDBL : (x(P), (a − 2)/4) 7→ x([2]P), a tripling operation xTPL : (x(P), (a − 2)/4) 7→ x([3]P), and a
point addition xADD : (x(P), x(Q), x(Q− P)) 7→ x(Q+ P) are given as follows:

• Doubling operation (xDBL)

[2](XP : ZP) = (C24(XP + ZP)
2(XP − ZP)

2 : 4XPZP (C24(XP + ZP)
2 + 4A24XPZP). (5)

• Tripling operation (xTPL)

[3](XP : ZP) = (XP (16A24XPZ
3
P − C24(XP − 3ZP)(XP + ZP)

3)2 :

ZP (16A24X
3
PZP + C24(3XP − ZP)(XP + ZP)

3)2). (6)

• Addition operation (xADD)

(XQ : ZQ) + (XP : ZP) = (ZQ−P ((XQ − ZQ)(XP + ZP) + (XQ + ZQ)(XP − ZP))
2 :

XQ−P ((XQ − ZQ)(XP + ZP)− (XQ + ZQ)(XP − ZP))
2). (7)

230

International Journal of Networking and Computing

Table 1: The calculation costs of the projective operations for SIDH.
Operation/ Input(s) Output(s) Operations

from type(s) type(s) M2 S2 a2 h2

xDBL x(P), A24, C24 x([2]P)
4 2 4 -

[10] P1 × Fp2 × Fp2 P1

xTPL x(P), A24,K24 x([3]P)
7 5 10 -

App. A in [13] P1 × Fp2 × Fp2 P1

xDBLADD x(P), x(Q), x(Q− P), a+2
4 x([2]P), x(Q− P)

7 4 8 -
[6] P1 × P1 × P1 × Fp2 P1

3 iso curve x(P3) c2, A
′
24, C

′
24 2 3 14 -

App. A in [13] P1 (Fp2)2 × Fp2 × Fp2

3 iso curve* x(P3) c2, A
′
24,K

′
24 2 3 13 -

This work P1 (Fp2)2 × Fp2 × Fp2

3 iso point (c2, x(P)) x(ϕ(P))
4 2 4 -

App. A in [13] (Fp2)2 × P1 P1

4 iso curve x(P4) c3, A
′
24, C

′
24 - 4 3 1

App. A in [13] P1 (Fp2)3 × Fp2 × Fp2

4 iso point (c3, x(P)) x(ϕ(P))
6 2 6 -

App. A in [13] (Fp2)3 × P1 P1

According to [13], xTPL can be computed efficiently by taking a coefficient as (A24,K24 = A24 +
C24). The operations xDBL and xTPL are used for the computations of the points of order 2 and 3
required for 2- or 4-isogeny and 3-isogeny computations, respectively. Although xADD is typically
does not exploited for SIDH, an operation to compute xDBL and xADD simultaneously, i.e., xDBLADD :
(x(P), x(Q), x(Q−P), (a+2)/4) 7→ (x([2]P), x(Q−P)) is used for the SIDH operation kernel gen

as described in [12,14].

Projective isogenies computation. An isogeny on Montgomery curves can be computed in P1,
i.e. x(P) 7→ x(ϕ(P)), since a x-coordinate of ϕ(P) is determined without y-coordinate of a point
P . As for the computation of the 2eA -isogeny with 2 | eA, the authors employ not 2-isogenies but
4-isogenies, since a performance using 4-isogenies to be significantly faster than that of 2-isogenies.
Let (X ′

P : Z ′
P) and (A′

24 : C ′
24) be an image of (XP : ZP) and coefficient of an elliptic curve given

by ϕ, respectively. Assuming (X3 : Z3) and (X4 : Z4) denote rational points of order 3 and 4, the
isogenies of degree 3 and 4 are computed as follows:

• 3-isogeny operations (3 iso curve, 3 iso point)

(A′
24 : C ′

24) = ((X3 + Z3)(Z3 − 3X3)
3 : 16X3Z

3
3), (8)

(X ′
P : Z ′

P) = (XP (X3XP − Z3ZP)
2 : ZP (Z3XP −X3ZP)

2). (9)

• 4-isogeny operations (4 iso curve, 4 iso point)

(A′
24 : C ′

24) = (X4
4 − Z4

4 : Z4
4), (10)

(X ′
P : Z ′

P) = (XP (2X4Z4ZP −XP (X
2
4 + Z2

4))(X4XP − Z4ZP)
2 :

ZP (2X4Z4XP − ZP (X
2
4 + Z2

4))(Z4XP −X4ZP)). (11)

The authors modify 3 iso curve as 3 iso curve* in App. A by using K24 = A24 + C24 which
results in a reduction of single Fp2-addition. However, the curve determination operations occupy
low computational complexity of the isogenies computation comparing with the other operations
such that point multiplications and image computations.

The calculation costs and I/O specifications of xDBL, xTPL, xDBLADD, 3 iso curve, 3 iso point,
3 iso curve*, 4 iso curve, and 4 iso point are summarized in Table 1. The notations c2 and c3
are common variables for the curve determination and point evaluation.

231

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

3 Implementation-Friendly QEFs Applicable for SIDH

In this section, the several attractive QEFs with efficient performing arithmetics are described. This
section also presents the applicability of these QEFs for the SIDH with SIDH-friendly primes given
as p = 2eA3eBf ± 1.

3.1 Implementation-friendly QEFs

A QEF applied for SIDH has to be particularly efficient since the efficiency of SIDH strongly depends
on the efficiency of arithmetics in the QEF. Thus, the authors construct implementation-friendly
QEFs by exploiting the existing construction methods of extension fields with efficient performing
arithmetics as follows:

(i) QEF based on OEFs. Bailey and Paar proposed OEFs [2] which are defined by using irre-
ducible binomials. An OEF of degree m of Fp is defined as KOEF = Fp[ω]/(gOEF(ω) = ωm − c0) ∼=
Fpm , where gOEF(x) is an irreducible binomial of degree m defined over Fp of which a root is ω. An
arbitrary element a ∈ KOEF is represented as a = a0 + a1ω + · · · + am−1ω

m−1 where ai ∈ Fp with
i ∈ {0, 1, . . . ,m− 1} and {1, ω, . . . , ωm−1} is a basis that is classified into a polynomial basis. For an
arithmetic operation in KOEF, several efficient multiplication algorithms such that Karatsuba mul-
tiplication [3] and Toom-Cook multiplication [15,16] are available. Although the field characteristics
of original OEF are pseudo-Mersenne primes, it is possible to extend for the general characteristics
including the SIDH-friendly primes. Thus, a QEF with p = leAA leBB f ± 1 can be defined as follows:

FOEF = Fp[α]/(fOEF(α) = α2 − c0) ∼= Fp2 , (12)

where fOEF(x) is an irreducible polynomial defined over Fp with a SIDH-friendly characteristic of
which a root is α. The small c0 typically results in an efficient performing arithmetics. Note that
the choice of c0 = −1 results in the best performing arithmetics among FOEF.

(ii) QEF based on AOPFs. Nogami et al. [4] proposed other attractive extension fields which is
AOPFs. An AOPF of degree m of Fp is defined as KAOPF = Fp[υ]/(gAOPF(υ) = (υr − 1)/(υ− 1)) ∼=
Fpm , where r = m + 1 is a prime and gAOPF(x) is an irreducible all-one polynomial of degree m
defined over Fp with a root υ. An arbitrary element a ∈ KAOPF is represented as a = a0υ + a1υ

2 +
· · ·+am−1υ

m where ai ∈ Fp with i ∈ {0, 1, . . . ,m−1} and {υ, υ2, . . . , υm} is a basis which is classified
into a optimal normal basis [17]. For the arithmetic operation in KAOPF, an efficient multiplication
algorithm named as CVMA [4] is available. Since AOPFs can also be extended for extension fields
with SIDH-friendly characteristics, the authors consider to construct QEFs with p = leAA leBB f ± 1 as
follows:

FAOPF = Fp[β]/(fAOPF(β) = β2 + β + 1) ∼= Fp2 , (13)

where fAOPF(x) is an irreducible polynomial defined over Fp with a SIDH-friendly characteristic of
which a root is β.

(iii) QEF based on EFNs. There exist extension fields of which arbitrary elements are represented
by using a basis classified into a normal basis, which are called as EFNs in this paper. An EFN of
degree m of Fp is defined as KEFN = Fp[ν]/(gEFN(ν) = νm + cm−1ν

m−1 + · · · + c0)) ∼= Fpm where
gEFN(x) is an irreducible polynomial with non-zero trace of which a root is ν. An arbitrary element
a ∈ KEFN is represented as a = a0ν + a1ν

2 + · · ·+ am−1ν
m where ai ∈ Fp with i ∈ {0, 1, . . . ,m− 1}

and {ν, νp, . . . , νpm−1} is a normal basis. The EFNs are efficiently implemented by using the NTT
method [5]. From the above, a QEF with p = leAA leBB f ± 1 can also be defined as

FEFN = Fp[γ]/(fEFN(γ) = γ2 + c1γ + c0) ∼= Fp2 , (14)

where fEFN(x) is an irreducible polynomial with c1 6= 0 defined over Fp with a SIDH-friendly
characteristic and γ is a root of fEFN(x).

232

International Journal of Networking and Computing

Table 2: The calculation costs of arithmetic operations in the implementation-friendly QEFs.

QEFs
Multiplication Squaring

M1 S1 a1 h1 M1 S1 a1 h1

OEF x2+1 3 - 5 - 2 - 3 -
OEF x2+2 3 - 6 - 2 - 5 -
OEF x2-2 3 - 5 - 2 - 5 -
OEF x2+3 3 - 5 1 2 - 3 2
OEF x2-3 3 - 6 - 2 - 5 -
OEF x2+4 3 - 5 1 2 - 5 1
OEF x2+5 3 - 6 1 2 - 4 2
OEF x2-5 3 - 5 1 2 - 4 2

AOPF x2+x+1 3 - 4 - 2 - 4 -
EFN x2-x+1 3 - 4 - 2 - 4 -
EFN x2-x-1 3 - 4 - - 3 3 -

3.2 The calculation costs of arithmetic operations in implementation-
friendly QEFs

In the context, the authors consider the following QEFs which are classified into the implementation-
friendly QEFs described in Sect 3.1.

OEF x2+1 : FOEF1 = Fp[α1]/(α
2
1 + 1), OEF x2+2 : FOEF2 = Fp[α2]/(α

2
2 + 2),

OEF x2-2 : FOEF3 = Fp[α3]/(α
2
3 − 2), OEF x2+3 : FOEF4 = Fp[α4]/(α

2
4 + 3),

OEF x2-3 : FOEF5 = Fp[α5]/(α
2
5 − 3), OEF x2+4 : FOEF6 = Fp[α6]/(α

2
6 + 4),

OEF x2+5 : FOEF7 = Fp[α7]/(α
2
7 + 5), OEF x2-5 : FOEF8 = Fp[α8]/(α

2
8 − 5),

AOPF x2+x+1 : FAOPF1 = Fp[β1]/(β
2
1 + β1 + 1),

EFN x2-x+1 : FEFN1 = Fp[γ1]/(γ
2
1 − γ1 + 1), EFN x2-x-1 : FEFN2 = Fp[γ2]/(γ

2
2 − γ2 − 1),

where αi, βj , and γk with i ∈ {1, 2, . . . , 8}, j ∈ {1}, and k ∈ {1, 2} are roots of modular polynomials.
In the following, the QEFs based on some extension fields are called as [field name] [polynomial],
e.g., a QEF based on OEFs given by a modular polynomial f(x) = x2 + 1 is denoted as OEF x2+1.
Note that OEF x2+1 is employed for the previous SIDH implementations. The details of the opera-
tion algorithms for OEF x2+1, OEF x2-5, AOPF x2+x+1, EFN x2-x+1, and EFN x2-x-1 are especially
presented in App. B.

The calculation costs of multiplication and squaring in the implementation-friendly QEFs are
given in Table 2. From the table, it is found that OEF x2+1 is the best performing arithmetic
among the QEFs based on OEFs. In contrast, one Fp-addition required for the multiplications in
AOPF x2+x+1, EFN x2-x+1, and EFN x2-x-1 is reduced compared with that of OEF x2+1. However,
one Fp-addition required for squarings in AOPF x2+x+1 and EFN x2-x+1 is increased than that of
OEF x2+1, which is a degradation. As for the squaring in EFN x2-x-1, two Fp-multiplications are
replaced with three Fp-squarings from that of OEF x2+1. According to Table 1, since the Fp2-
multiplication is more often required for the SIDH operations than Fp2-squarings, if it is possible
to apply AOPF x2+x+1, EFN x2-x+1, and EFN x2-x-1 for SIDH, the performance of SIDH might be
competitive to or rather better than that of OEF x2+1.

3.3 Applicability of implementation-friendly QEFs for SIDH

Since there exist restrictions of field characteristics from the irreducibility of modular polynomials
of the QEFs, not all SIDH-friendly characteristic results in the implementation-friendly QEFs. In
the following, the authors consider the applicability of these QEFs for the SIDH with the typical

233

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

Table 3: Applicability of QEFs for the typical SIDH.

QEFs
Applicability

p = 2eA3eBf − 1 p = 2eA3eBf + 1
OEF x2+1 ✓ X
OEF x2+2 ✓ X
OEF x2-2 X X
OEF x2+3 X X
OEF x2-3 ✓ X
OEF x2+4 ✓ X
OEF x2+5 ✓∗∗ ✓∗

OEF x2-5 ✓∗ ✓∗

AOPF x2+x+1 ✓ X
EFN x2-x+1 ✓ X
EFN x2-x-1 ✓∗ ✓∗

∗If only a SIDH-friendly prime satisfies p ≡ 2, 3 (mod 5)
∗∗If only a SIDH-friendly prime satisfies p ≡ 1, 4 (mod 5)

SIDH-friendly prime given as p = 2eA3eBf ± 1. Firstly the authors provide a lemma associated with
the conditions of the irreducibility of modular polynomials of QEFs.

Lemma 1. The field characteristic p has to satisfy the following conditions to exploit the certain
implementation-friendly QEFs.

OEF x2+1 : p ≡ 3 (mod 4), OEF x2+2 : p ≡ 5, 7 (mod 8),

OEF x2-2 : p ≡ 3, 5 (mod 8), OEF x2+3 : p ≡ 2 (mod 3),

OEF x2-3 : p ≡ 5, 7 (mod 12), OEF x2+4 : p ≡ 3 (mod 4),

OEF x2+5 : p ≡ 11, 13, 17, 19 (mod 20), OEF x2-5 : p ≡ 2, 3 (mod 5),

AOPF x2+x+1 : p ≡ 2 (mod 3),

EFN x2-x+1 : p ≡ 2 (mod 3), EFN x2-x-1 : p ≡ 2, 3 (mod 5).

Proof. According to [18], to construct the QEFs, a modular polynomial of QEFs, i.e., f(x) =
x2 + c1x + c0 with c0, c1 ∈ Fp, has to be irreducible over Fp. The irreducibility of f(x) depends
on the quadratic residue properties of the discriminant D = c21 − 4c0 since a root of f(x) is given
as (−c1 ±

√
D)/2. If D is a quadratic non-residue in Fp, the polynomial becomes irreducible. For

OEF x2+1, OEF x2+2, OEF x2-2, OEF x2+3, OEF x2-3, OEF x2+4, OEF x2+5, OEF x2-5, AOPF x2+x+1,
EFN x2-x+1, and EFN x2-x-1, the discriminants are given as D = −4, −8, 8, −12, 12, −16, −20,
20, −3, −3, and 5, respectively. Applying the properties of the Legendre symbol described in
[19], the restriction of the characteristic for the certain discriminant can be uniquely obtained as
follows: (−4

p) = (−16
p) = −1 ⇔ p ≡ 3 (mod 4), (−8

p) = −1 ⇔ p ≡ 5, 7 (mod 12), (8p) = −1 ⇔
p ≡ 3, 5 (mod 8), (−12

p) = (−3
p) = −1 ⇔ p ≡ 2 (mod 3), (12p) = −1 ⇔ p ≡ 5, 7 (mod 12),

(−20
p) = −1 ⇔ p ≡ 11, 13, 17, 19 (mod 20), and (20p) = (5p) = −1 ⇔ p ≡ 2, 3 (mod 5). Thus, the

restrictions to apply the QEFs are obtained as shown in the lemma. □
The SIDH-friendly prime given as p = 2eA3eBf±1 are clearly satisfy the condition p ≡ ±1 (mod

2eA) and p ≡ ±1 (mod 3eB), respectively. When comparing to these restrictions to exploit the
QEFs given in Lemma 1, the applicability of QEFs for the SIDH with p = 2eA3eBf ± 1 is obtained
as shown in Table 3 where ✓ and X denote applicable and inapplicable, respectively.

From Table 3, the new candidates of QEFs such that AOPF x2+x+1 and EFN x2-x+1 can be
available for the SIDH with p = 2eA3eBf − 1. Moreover, if the primes satisfy p ≡ 2, 3 (mod 5),
EFN x2-x-1 can also be applied not only for p = 2eA3eBf − 1 but also for p = 2eA3eBf + 1 which
have not so much choices of QEFs based on OEFs. Although the previous SIDH implementation does

234

International Journal of Networking and Computing

not focus on p = 2eA3eBf + 1, there is a possibility that the SIDH with such the prime also results
in an efficient implementation. Note that the authors consider that the sign of constant term of
the SIDH-friendly prime might be not affect to the performance of the modular reduction described
in Sect. 5 of [6] which is based on Montgomery reduction formula [20]: assuming p = 2eA3eBf ± 1
and R is slightly larger than the size of p given as R = 2m with an integer m, one can compute
the Montgomery residue c = aR−1(mod p) for an input a < pR as c = (a+ (aM ′(mod R))p)/R =
(a ± aM ′(modR))/R + ((p ∓ 1)(aM ′(modR))) = (a ± aM ′(modR))/R + (2eA3eBf(aM ′(modR)))
where M ′ = −p−1(modR).

4 Performance Comparison of SIDH between Implementation-
friendly QEFs

The authors pick up the four implementation-friendly QEFs, i.e., OEF x2+1, OEF x2-5, AOPF x2+x+1,
and EFN x2-x-1, and compare the performance of the operations keygen iso, keyshare iso and
ker gen which occupy almost all computational complexity of SIDH. The authors also confirm the
performance of the SIDH with the both SIDH-friendly prime p = 2eA3eBf − 1 and p = 2eA3eBf +1.

4.1 Assumptions

In the following, the authors provide the parameter setting and environment of the experiments.

Parameters setup. The authors choose the SIDH-friendly primes satisfying p ≡ 2, 3 (mod 5),
which can construct various implementation-friendly QEFs. The primes which can ensure the quan-
tum security at the 128-bit levels are given as follows:

p434− = 22163137 − 1, (16)

p441+ = 22163137139 + 1. (17)

where the size of the prime is one of 434-bit and 441-bit. The prime p434− is suggested in Chap. 1.6.1
of the specification of SIKE [9] and p441+ is found by this work. Note that the authors consider that
the proposed parameter p441+ can also ensure the 128-bit security level since eA and eB which are
parameterized the size of the kernel of isogenies are the same size as p434− ones.

The authors use supersingular elliptic curves of Montgomery form defined over Fp2 of which orders
are (p + 1)2 and (p − 1)2 for the prime p434− and p441+, respectively. For p434−, the supersingular
elliptic curve is given as E/Fp : y2 = x3 + 6x2 + x. For p441+, the curve can be found by using a
quadratic twist as described in App. C.

Experimental environment. To evaluate the performance of the SIDH applied the implementation-
friendly QEFs, the authors implemented the protocol by C language. In the implementation, the big
integer arithmetics are implemented by using mpz t data type of GMP library [21]. The software is
compiled with GCC 8.3.0 with the option -O2 -march=native, and is executed on 3.50GHz Intel(R)
Core(TM) i7-7567U CPU running macOS High Sierra version 10.13.6.

The four categories of arithmetic functions of GMP which are mpz mul, mpz add/ mpz sub,
mpz mul 2exp/ mpz tdiv q 2exp, mpz invert, mpz mod, and mpz set are employed in the software.
The categories are referred as mul, add, shift, mod, and set respectively. If mpz mul has the same
operands, it is denoted as the sixth category sqr. To minimize the number of function calls of mod
which has one of the highest computational complexity among the categories, the authors allow
the operands with twice size of characteristic for add. The size of the operand(s) is denoted as a
subscript of the category’s name, e.g., mpz mul with s-bit operands is denoted as muls.

The weight of these operation categories with the specific size of operand(s) used for the imple-
mentation is given in Table. 4. The weight are derived from one hundred million trials of execution
time excluding the overhead on this environment. Unlike mul, sqr, and mod, the differences of the
operation weight of add, shift, and set between p434− and p441+ are invisible since these operations
are low computational complexity.

235

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

Table 4: Weight of the operation categories employed in the implementation of SIDH.
log2bsc muls sqrs adds add2s shifts mod2s sets
434 5.12 3.46 1.00 1.14 1.04 16.4 0.63
441 5.13 3.47 1.00 1.14 1.04 16.8 0.63

Optimization. All arithmetics are performed on Montgomery curves and applied the optimization
proposed in [6,12] as described in Sect. 2. The authors refer Sect. 4.2.2 in [12] and find the optimal
paths of computing 4108- and 3137-isogenies from the ratio of a single point multiplication and
isogeny evaluation. The ratio is derived from the computational complexities of these operations
which are calculated by the sum of the number of operation categories multiplied by the weight
given in Table 4. From the optimal paths, the authors find that the numbers of operations xDBL

and 4 iso point for computing 4108-isogeny are specifically given as 666 and 405 for all the QEFs
with a certain characteristic used in this implementation, respectively. Similarly, the numbers of
operations xTPL and 3 iso point required for computing 4108-isogeny are also specifically given as
407 and 597, respectively. Note that this implementation does not adopt the Montgomery reduction
described in Sect. 3.3 since the performance of that of p434− and p441− are might be competitive
and the purpose of the experiment is not providing very efficient implementation but a performance
comparison of SIDH between the QEFs.

Evaluation. The authors measure the number of function calls required for the SIDH operations,
i.e., keygen iso, keyshare iso, and kernel gen, which occupy almost all portion of complexity of
SIDH. Since the number of function calls of kernel gen typically depends on the secret key, the
authors calculate the average of the result of 1,000 random secret keys. The authors also calculate
the computational complexity of the SIDH operations by the sum of the numbers of the function calls
multiplied by the weight of the operation categories. Besides, average execution times of 100,000
trials of the operations are measured. Note that the measurement is performed by repeating the
operations for 1,000 random secret keys 100 times.

4.2 Results and analyses

Tables 5 and 6 show that the numbers of the function calls of the operations (a) Alice’s keygen iso,
(b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s keyshare iso. (e) Alice’s kernel gen,
and (f) Bob’s kernel gen for the primes p434− and p441+, respectively. The tables also involve
computational complexity and average execution time. Figs. 1 and 2 also provide the results of the
computational complexity and execution time for p434− and p441+. The details of the results and
their analyses are described in the below.

From Table 5 and Fig. 1, the performance of the SIDH operations with p434− applied AOPF x2+x+1

and EFN x2-x-1 are competitive to that of OEF x2+1 which is exploited for the previous implemen-
tations. The results are caused by the complexities of the multiplication and squaring in the QEFs
as described in Sect. 3.2. Moreover, EFN x2-x-1 can achieve more 1% improvement than that
of OEF x2+1 since the computational complexity of three Fp-squarings is lower than that of two
Fp-multiplications which results in more efficient performing squaring in EFN x2-x-1 than that of
OEF x2+1. Therefore, the performance improvement for the entire SIDH can be expected by using
AOPF x2+x+1 or EFN x2-x-1 as a replacement for OEF x2+1. Since the calculation costs of arithmetic
operations in EFN x2+x-1 are exactly the same as AOPF x2+x+1, EFN x2+x-1 is yet another candidate
of the replacement. However, the results of the execution time with OEF x2+1 is slightly better than
that of AOPF x2+x+1 in spite of the reduction of the complexity. The authors confirm the software
by GNU profiler and find that the number of function calls of the operations applied OEF x2+1

and AOPF x2+x+1 is exactly correct, however, the execution time of single add434 of AOPF x2+1 is
strangely slower than that of OEF x2+1. At this time, the authors consider that it might come from
the effects of cache and parallel processing.

The results Table 5 and Fig. 1 also show that the performance of the SIDH operations applied
OEF x2-5 compares unfavorably to OEF x2+1. Thus, such the QEF should be kept away from the

236

International Journal of Networking and Computing

Table 5: The number of function calls, computational complexity and execution time of the SIDH
operations (a) Alice’s keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s
keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s kernel gen with p434−.

QEFs
Ope- Function calls

Complexity
Time

ration mul434 sqr434 add434 add868 shift434 mod868 set434 [ms]

OEF

(a) 27,557 0 35,759 23,820 216 20,520 1,284 541,567.20 5.04

x2+1

(b) 30,389 0 43,473 25,453 0 23,234 1,632 610,146.86 5.66
(c) 20,429 0 27,186 16,841 216 15,336 1,284 403,525.18 3.70
(d) 23,813 0 35,146 19,806 0 18,302 1,632 480,828.36 4.47
(e) 6,231 2 8,291 5,251 0 4,729 16 123,752.46 1.15
(f) 6,271 0 8,331 5,292 0 4,757 16 124,496.28 1.15

OEF

(a) 27,557 0 35,709 27,092 13,698 20,520 1,284 559,268.56 5.24

x2-5

(b) 30,389 0 43,403 29,985 16,079 23,234 1,632 631,965.50 5.88
(c) 20,429 0 27,145 19,456 10,458 15,336 1,284 417,116.96 3.86
(d) 23,813 0 35,091 23,501 12,791 18,302 1,632 498,288.30 4.64
(e) 6,231 2 8,278 6,124 3,224 4,729 16 128,087.64 1.19
(f) 6,271 0 8,318 6,170 3,243 4,757 16 128,856.92 1.20

AOPF

(a) 27,557 0 42,711 13,052 216 20,520 1,284 536,243.68 5.08

x2+x+1

(b) 30,389 0 53,085 13,148 0 23,234 1,632 605,731.16 5.73
(c) 20,429 0 32,462 9,045 216 15,336 1,284 399,913.74 3.78
(d) 23,813 0 42,925 10,156 0 18,302 1,632 477,606.36 4.52
(e) 6,231 2 10,142 2,755 0 4,729 16 122,758.02 1.16
(f) 6,271 0 10,199 2,776 0 4,757 16 123,496.04 1.17

EFN

(a) 21,113 9,666 33,771 18,770 216 20,520 1,284 534,273.28 4.97

x2-x-1

(b) 21,465 13,386 40,582 21,189 0 23,234 1,632 603,019.58 5.59
(c) 15,281 7,722 25,329 13,604 216 15,336 1,284 398,338.36 3.64
(d) 16,533 10,920 32,723 16,718 0 18,302 1,632 475,394.64 4.41
(e) 4,512 2,581 7,749 4,289 0 4,729 16 122,235.84 1.14
(f) 4,541 2,595 7,787 4,322 0 4,757 16 122,967.58 1.15

Table 6: The number of function calls, computational complexity and execution time of the SIDH
operations (a) Alice’s keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s
keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s kernel gen with p441+.

QEFs
Ope- Function calls

Complexity
Time

ration mul441 sqr441 add441 add882 shift441 mod882 set441 [ms]

OEF

(a) 27,557 0 35,244 27,557 13,698 20,520 1,284 567,817.23 5.23

x2-5

(b) 30,389 0 43,000 30,388 16,079 23,234 1,632 641,619.41 5.88
(c) 20,429 0 26,814 19,787 10,458 15,336 1,284 423,501.99 3.84
(d) 23,813 0 34,780 23,812 12,791 18,302 1,632 505,890.77 4.64
(e) 6,232 1 8,181 6,221 3,224 4,729 16 130,056.81 1.20
(f) 6,271 0 8,223 6,265 3,243 4,757 16 130,835.73 1.21

EFN

(a) 21,113 9,666 32,028 20,513 216 20,520 1,284 543,033.09 5.01

x2-x-1

(b) 21,465 13,386 38,544 23,227 0 23,234 1,632 612,947.01 5.66
(c) 15,281 7,722 24,030 14,903 216 15,336 1,284 404,884.65 3.68
(d) 16,533 10,920 31,145 18,296 0 18,302 1,632 483,210.89 4.46
(e) 4,512 2,581 7,321 4,716 0 4,729 16 124,257.15 1.16
(f) 4,541 2,595 7,357 4,752 0 4,757 16 125,001.94 1.16

237

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

(a) (b) (c) (d) (e) (f)
0

1

2

3

4

5

6

7

C
om

p
u
ta
ti
on

al
 c
o
m
p
le
x
it
y

E
x
ec
u
ti
o
n
 t
im

e
[m

s]

OEF
-
x2+1 (comp)

OEF
-
x2-5 (comp)

AOPF
-
x2+x+1 (comp)

EFN
-
x2-x-1 (comp)

OEF
-
x2+1 (time)

OEF
-
x2-5 (time)

AOPF
-
x2+x+1 (time)

EFN
-
x2-x-1 (time)

Figure 1: Computational complexity and execution time of the SIDH operations (a) Alice’s
keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s keyshare iso. (e) Alice’s
kernel gen, and (f) Bob’s kernel gen with p434−.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

(a) (b) (c) (d) (e) (f)
0

1

2

3

4

5

6

7

C
om

p
u
ta
ti
on

al
 c
o
m
p
le
x
it
y

E
x
ec
u
ti
o
n
 t
im

e
[m

s]

OEF
-
x2-5 (comp)

EFN
-
x2-x-1 (comp)

OEF
-
x2-5 (time)

EFN
-
x2-x-1 (time)

Figure 2: Computational complexity and execution time of the SIDH operations (a) Alice’s
keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s keyshare iso. (e) Alice’s
kernel gen, and (f) Bob’s kernel gen with p441+.

238

International Journal of Networking and Computing

practical implementations. However, as described in Sect. 3.3, there does not exist good choices
of QEFs based on OEFs for the SIDH with p = 2eA3eBf + 1. In contrast, the authors found the
new candidate of QEFs, i.e., EFN x2-x-1, for such the SIDH. According to Table 6 and Fig. 2,
EFN x2-x-1 contributes to improve the performance of the SIDH operations around 4% comparing
with the previous best choice of QEFs based on OEFs, i.e., OEF x2-5. Moreover, the performance
of the SIDH with p441+ applied EFN x2-x-1 is competitive to that of p434− applied OEF x2+1. Thus,
the authors conclude that the efficient implementation of the SIDH with p = 2eA3eBf +1 can exist.

5 Conclusion

The authors apply the implementation-friendly QEFs which are based on OEFs, AOPFs, and EFNs
such that OEF x2+1, AOPF x2+x+1, and EFN x2-x-1, for SIDH and compare the performance of
SIDH between these QEFs. As a result of the experiment, the performance of the SIDH with
p = 2eA3eBf −1 applied AOPF x2+x+1 and EFN x2-x-1 are competitive to that of OEF x2+1 which is
employed for the previous implementation as one of the best performing arithmetics. The authors
also confirmed that EFN x2-x-1 can be applied not only the SIDH with p = 2eA3eBf − 1 but also
p = 2eA3eBf + 1 and the performance of the later SIDH has competitive to that of the previous
implementation. As one of the future works, the authors would like to investigate the reason why the
execution time of the SIDH operations applied AOPF x2+x+1 is slightly worse than that of OEF x2+1.
The authors also try to find the SIDH-friendly prime given as p = 2eA3eBf + 1 with f = 1.

Acknowledgment

This research was supported by JSPS KAKENHI Grant Numbers 19J2108612 and 19K11966.

References

[1] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies,” International Workshop on Post-Quantum Cryptography, pp.19–34, Springer,
2011.

[2] D.V. Bailey and C. Paar, “Efficient arithmetic in finite field extensions with application in
elliptic curve cryptography,” Journal of cryptology, vol.14, no.3, pp.153–176, 2001.

[3] A.A. Karatsuba and Y.P. Ofman, “Multiplication of many-digital numbers by automatic com-
puters,” Doklady Akademii Nauk, pp.293–294, Russian Academy of Sciences, 1962.

[4] Y. Nogami, A. Saito, and Y. Morikawa, “Finite extension field with modulus of all-one polyno-
mial and representation of its elements for fast arithmetic operations,” IEICE transactions on
fundamentals of electronics, communications and computer sciences, vol.86, no.9, pp.2376–2387,
2003.

[5] T. Kobayashi, K. Aoki, and F. Hoshino, “Oef using a successive extension,” The 2000 Sympo-
sium on Cryptography and Information Security, no. B02, 2000.

[6] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for supersingular isogeny diffie-
hellman,” Annual International Cryptology Conference, pp.572–601, Springer, 2016.

[7] R. Azarderakhsh, B. Koziel, A. Jalali, M.M. Kermani, and D. Jao, “Neon-sidh: Efficient im-
plementation of supersingular isogeny diffi e-hellman key-exchange protocol on arm.,” IACR
Cryptology ePrint Archive, vol.2016, p.669, 2016.

[8] Y. Nanjo, M. Shirase, T. Kusaka, and Y. Nogami, “A performance analysis and evaluation of
sidh with implementation-friendly classes of quadratic extension fields,” 2019 Seventh Interna-
tional Symposium on Computing and Networking (CANDAR), pp.178–184, IEEE, 2019.

239

A Performance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly QEFs

[9] M. Campagna, C. Costello, B. Hess, A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig,
J. Renes, D. Urbanik, et al., “Supersingular isogeny key encapsulation,” 2019.

[10] P.L. Montgomery, “Speeding the pollard and elliptic curve methods of factorization,” Mathe-
matics of computation, vol.48, no.177, pp.243–264, 1987.

[11] J. Vélu, “Isogénies entre courbes elliptiques,” CR Acad. Sci. Paris, Séries A, vol.273, pp.305–
347, 1971.

[12] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies,” Journal of Mathematical Cryptology, vol.8, no.3, pp.209–247, 2014.

[13] C. Costello and H. Hisil, “A simple and compact algorithm for sidh with arbitrary degree isoge-
nies,” International Conference on the Theory and Application of Cryptology and Information
Security, pp.303–329, Springer, 2017.

[14] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodŕıguez-Henŕıquez, “A faster soft-
ware implementation of the supersingular isogeny diffie-hellman key exchange protocol,” IEEE
Transactions on Computers, vol.67, no.11, pp.1622–1636, 2017.

[15] A.L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of
integers,” Soviet Mathematics Doklady, pp.714–716, 1963.

[16] S.A. Cook and S.O. Aanderaa, “On the minimum computation time of functions,” Transactions
of the American Mathematical Society, vol.142, pp.291–314, 1969.

[17] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson, “Optimal normal bases in gf
(pn),” Discrete Applied Mathematics, vol.22, no.2, pp.149–161, 1988.

[18] R. Lidl and H. Niederreiter, Finite fields, Cambridge university press, 1997.

[19] N. Koblitz, A course in number theory and cryptography, Springer Science & Business Media,
1994.

[20] P.L. Montgomery, “Modular multiplication without trial division,” Mathematics of computa-
tion, vol.44, no.170, pp.519–521, 1985.

[21] T. Granlund and the GMP development team, “Gnu mp: the gnu multiple precision arithmetic
library, 6.1.2,” 2015. https://gmplib.org.

[22] W.C. Waterhouse, “Abelian varieties over finite fields,” Annales scientifiques de l’École Normale
Supérieure, pp.521–560, 1969.

[23] J. Jančár, “Ecgen: tool for generating elliptic curve domain parameters,” 2018. https://

github.com/J08nY/ecgen.

A Improvement of Curve Determination of 3-Isogeny

According to App. A in [13], the operation 3 iso curve is computed in 2M2 + 3S2 + 14a2.

K1 = X3 − Z3, R1 = K2
1 ,K2 = X3 − Z3, R2 = K2

2 , R3 = R2 +R1, R4 = K1 −K2, R4 = R2
4,

R4 = R4 −R3, R3 = R4 +R2, R4 = R4 +R1, R5 = R1 +R4, R5 = R5 +R5, R5 = R5 +R2,

A24 = R5 ·R3, R5 = R2 +R3, R5 = R5 +R5, R5 = R5 +R1,

R5 = R5 ·R4, C24 = R5 −A24. (18)

The authors propose to compute not (A24, C24) but (A24,K24 = A24+C24) by replacing Eq. (18) as
K24 = R5 ·R4. The proposed operation is named as 3 iso curve*. The complexity of 3 iso curve*

is 2M2 + 3S2 + 13a2. This optimization can contribute to reduce e-times a2 for 3e-isogeny.

240

International Journal of Networking and Computing

B Arithmetic Operations in QEFs

Let A = (a0, a1) and B = (b0, b1) be arbitrary elements in Fp2 , where a0, a1, b0, b1 ∈ Fp. Then
multiply of A and B and square of A, i.e., A ·B = (u0, u1) and A2 = (v0, v1) with u0, u1, v0, v1 ∈ Fp,
can be computed by using variable elements t1, t2, t3, t4 ∈ Fp as follows:

• OEF x2+1

Mul.; t1 = a0b0, t2 = a1b1, t3 = a0 + a1, t4 = b0 + b1, u0 = t1 − t2, u1 = t3t4, u1 = u1 − t1, u1 =
u1 − t2.

Sqr.; t1 = a0 + a1, t2 = a0 − a1, v1 = a0a1, v1 = v1 + v1, v0 = t1t2.

• OEF x2-5

Mul.: t1 = a0 + a1, t2 = b0 + b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, t2 = t2 + t3, u1 = t1 − t2, t3 =
4t3, u0 = t2 + t3.

Sqr.: t1 = a0 + a1, t2 = 4a1, t2 = t2 + a1, t2 = a0 + t2, t1 = t1t2, t2 = a0a1, v1 = t2 + t2, t3 =
4v1, t3 = t3 − v1, v0 = t1 − t3.

• AOPF x2+x+1:

Mul.: t1 = a0 − a1, t2 = b0 − b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, u0 = t1 − t2, u1 = t1 − t3.

Sqr.: t1 = a0 + a0, t1 = a1 − t1, t2 = a1 + a1, t2 = a0 − t2, v0 = t1a1, v1 = t2a0.

• EFN x2-x+1

Mul.: t1 = a0 − a1, t2 = b0 − b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, u0 = t2 − t1, u1 = t3 − t1.

Sqr.: t1 = a0 + a0, t1 = t1 − a1, t2 = a1 + a1, t2 = t2 − a0, v0 = t1a1, v1 = t2a0,

• EFN x2-x-1

Mul.: t1 = a0 − a1, t2 = b0 − b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, u0 = t1 + t2, u1 = t1 + t3.

Sqr.: t1 = a0 − a1, t1 = t21, t2 = a20, t3 = a21, v0 = t1 + t2, v1 = t1 + t3, v1 = t1 + t3.

C Supersingular Elliptic Curves of Order (p− 1)2

Let E be a supersingular elliptic curve of which order is #E(Fp2) = (p − 1)2. According to [22], a
twist of E, which is denoted as E′/Fp : y2 = x3 + ax + b, has an order #E′(Fp2) = (p + 1)2. For
p = p441+, the coefficients of E′ are easily found by using ecgen library [23].

a = 00627426 b720ddfa 4e7970c2 25f07717 f583111e 9cba318c 9bba7fcd

d4e49249 24924924 92492492 49249249 24924924 92492492 49249245,

b = 00cfd8c3 829ab82c de8e98b6 501817dd 3f312424 2e6ca17e 2c50d4eb

6c1b6db6 db6db6db 6db6db6d b6db6db6 db6db6db 6db6db6d b6db6dbc.

Since E is a quadratic twist of E′ defined over Fp2 , the curve E is obtained as E/Fp2 : y2 =

x3 + δ2/3ax + δb where δ is quadratic non-residue and cubic residue in Fp2 . Note that the elliptic
curve of the Weierstrass form can be easily converted to that of the Montgomery form.

241

