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Abstract

A cellular automaton (CA) is a well-studied non-linear computational model of complex
systems in which an infinite one-dimensional array of finite state machines (cells) updates itself
in a synchronous manner according to a uniform local rule. A sequence generation problem on
the CA model has been studied for a long time and a lot of generation algorithms has been
proposed for a variety of non-regular sequences such as {2n |n = 1, 2, 3, . . .}, primes, Fibonacci
sequences etc. In this paper, we study a real-time sequence generation algorithm for k−th
powers of natural numbers on a CA. In the previous studies, Kamikawa and Umeo (2012, 2019)
showed that sequences {n2 |n = 1, 2, 3, . . .}, {n3 |n = 1, 2, 3, . . .} and {n4 |n = 1, 2, 3, . . .} can
be generated in real-time by one-dimensional CAs. We extend the generation algorithm for
{n4 |n = 1, 2, 3, . . .} shown by Kamikawa and Umeo, and present a generation algorithm for the
sequence {nk |n = 1, 2, 3, . . .} implemented.

Keywords: Cellular automata, Real-time sequence generation problem, Parallel algorithm, Com-
putational complexity

1 Introduction

A model of cellular automaton (CA) was originally devised for studying self-reproduction in biological
systems by J. von Neumann [11]. Thereafter, the cellular automaton has been studied in many fields
such as complex systems, computability theory, mathematics, and theoretical biology.

A sequence generation problem is one of the major topics in the application of CAs. Arisawa [1],
Fischer [2], Korec [10], and Kamikawa and Umeo [3, 4, 5, 6, 7, 8, 9] studied the sequence generation
problem, where the leftmost cell of the array generates an infinite non-regular sequence indicated
by an internal state set. In those studies, much attention has been paid to the developments of real-
time generation algorithms and their small-state implementations on CAs for specific non-regular
sequences.
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Here we study a real-time sequence generation algorithm for k−th powers of natural numbers
that is {nk |n = 1, 2, 3, ...}, k ≥ 2. In the previous studies, Kamikawa and Umeo [6], [8], [9]
showed that sequences {n2 |n = 1, 2, 3, . . .} , {n3 |n = 1, 2, 3, . . .} and {n4 |n = 1, 2, 3, . . .} can be
generated in real-time by one-dimensional CAs. In this paper, we extend the generation algorithm for
{n4 |n = 1, 2, 3, . . .} shown by Kamikawa and Umeo [9], and present a generation algorithm for the
sequence {nk |n = 1, 2, 3, . . .} implemented. The sequence {nk |n = 1, 2, 3, . . .} generation algorithm
when k=2, 3 requires more internal state than generation algorithms shown by Kamikawa and Umeo
[6], [8]. Nevertheless, we consider that the algorithm is worth in that sequence {nk |n = 1, 2, 3, . . .}
can be generated in real-time for any k, k ≥ 2.

Our motivation to study the sequence generation problem on CAs is to want to show computing
power of CAs. Also, it is known that primes, Fibonacci sequences, and so on appear in various
natural phenomena. For example, the Fibonacci sequence appears in biological modelings such as
the number of petals in a flower, branching in trees, and the family tree of honeybees. Our sequence
generation algorithms would be useful in the simulation and modeling biological pattern formations
using CAs.

2 Sequence Generation Problem

A cellular automaton consists of a semi-infinite array of identical finite state automaton, each located
at a positive integer point (See Figure 1).

C1 C2 C3 Cn-1C4 CnC5 C6 C7 Cn+1

Figure 1: One-dimensional cellular automaton.

Each automaton is referred to as a cell. A cell at point i is denoted by Ci, where i ≥ 1. Each Ci,
except for C1, is connected to its left- and right-neighbor cells via a communication link. Each cell
can know a state of its left- and right-neighbor cells via the communication link. One distinguished
leftmost cell C1, the communication cell, is connected to outside and C2.

Formally, a cellular automaton (abbreviated by CA) consists of a semi-infinite array of finite
state automaton M = (Q, δ, b, a), where

1. Q is a finite set of internal states.

2. δ is a transition function defining the next state of a cell such that δ: Q× Q×Q→ Q, where
δ(w, x, y) = z (w, x, y, z ∈ Q) has the following meaning: Let t be an integer such that t ≥ 0.
We assume that at step t the cell Ci (i ≥ 2) is in state x, the left cell Ci−1 is in state w and
the right cell Ci+1 is in state y. Then, at the next step t + 1, Ci takes state z. The leftmost
cell C1 always gets a special state $ from its outside as the state of its left cell. A quiescent
state q ∈ Q has a property such that δ(q, q, q) = q and δ($, q, q) = q.

3. A state b is a special state in Q which C1 takes at the initial configuration.

4. A state a is a special state in Q to specify a designated state of C1 in the definition of sequence
generation.

Here we introduce some notations. A transition rule δ(w, x, y) = z is simply expressed as w x

y → z. To denote a configuration on a cellular array of length n at time t, we use the following
convention: t : St1 ... Stn, where Sti denotes the state of the ith cell Ci at time t, 1 ≤ i ≤ n, t ≥ 0.

For convenience, a notation t :

[i,j]︷︸︸︷
S...S is also used to denote a partial configuration on neighboring

j − i+ 1 cells, starting from the ith cell Ci to Cj , all in state S at time t.
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We define a new symbol ⇒ that shows a synchronous updating of one configuration to the next
one with simultaneous applications of the transition rule to each cell. For example, a one-step state
transition of M is shown as follows:

t :

[1,n]︷ ︸︸ ︷
St1...S

t
n ⇒ t+ 1 :

[1,n]︷ ︸︸ ︷
St+1
1 ...St+1

n .

We now define the sequence generation problem on CA. Let M be a CA, j be a natural number
such that j ≥ 1, and {tn | n = 1, 2, 3, . . .} be an infinite monotonically increasing positive integer
sequence defined on natural numbers such that tn ≥ n for any n ≥ 1. We have a semi-infinite
array of cells, shown in Figure 1, and all cells, except for C1, are in a quiescent state q at time
t = 0. The communication cell C1 takes a special state b in Q at time t = 0 for initiation of the
sequence generator. We say that M generates a sequence {tn |n = 1, 2, 3, . . .} in j· linear-time if
and only if the leftmost end cell of M falls into a special state a in Q at time t = j · tn. Note that
M generates the nth term of tn at time t = j · tn. In particular, when j = 1, we call M a real-time
sequence generator. In this case, M generates a sequence {tn |n = 1, 2, 3, . . .} without any time
delay. Therefore, when j = 1, M is optimal in generation steps.

3 Real-time sequence generation algorithm for k−th powers
of natural numbers

Let k be a natural number such that k ≥ 2. In this section, we show a implementation of real-time se-
quence generation algorithm for {nk |n = 1, 2, 3, . . .}. This algorithm consists of {n2 |n = 1, 2, 3, . . .},
{n3 |n = 1, 2, 3, . . .}, . . . , {nk−2 |n = 1, 2, 3, . . .} and {nk−1 |n = 1, 2, 3, . . .} generation algorithms.
At first, we indicate a design of real-time generation algorithm using generation algorithm for
{n2 |n = 1, 2, 3, . . .} as an example.

3.1 Real-time sequence generation algorithm for {n2 |n = 1, 2, 3, ...}

Let i be a natural number such that i ≥ 1, ai be an infinite monotonically increasing positive integer
sequence defined on natural numbers such that a1 = 1, a2 = 4, a3 = 9, . . . , ai = i2, bi be a difference
sequence of ai such that bi = 2i+ 1. Thus, when the communication cell C1 takes a special state a

at time t = ai, C1 falls into a special state a at time t = ai + bi = ai+1.

3.1.1 Space-Time Diagram

We give a sketch of the real-time sequence generation algorithm for {n2 |n = 1, 2, 3, . . .}. This
algorithm is described in terms of three signals which propagate at various speeds in the cellular
space. We call them waves. They are a-wave, b-wave and c-wave, respectively. See Figure 2 that
illustrates a space-time diagram for the real-time generation of the sequence. The propagation speed
and direction of each wave in a space-time domain is as follows:

• a-wave: 1/1-speed, right,

• b-wave: 1/1-speed, left, and

• c-wave: 0-speed, stationary (marker).

A rough sketch of the sequence {n2 |n = 1, 2, 3, . . .} generation algorithm is as follows:

1. At the time t = 1, the leftmost cell C1 falls into a special state a, the a-wave is generated, the
c-wave is generated by the cell C2, and the c-wave keeps a marker
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C1

t = 0

1/1

t = 1

a-wave

t = 4

t = 3

t = 8

t = 9

t = 15

t = 16

・・・・・

1/1

b-wave

C2 C3

c-wave

t = 24

t = 25

t = 35

t = 36

Figure 2: Space-time diagram for real-
time generation of sequence {n2 |n =
1, 2, 3, . . .}.

1 2 3 4 5 6 7 8 910

0 b q q q q q q q q q

1 a c q q q q q q q q

2 q b q q q q q q q q

3 b b c q q q q q q q

4 a b c q q q q q q q

5 q a c q q q q q q q

6 q q b q q q q q q q

7 q b b c q q q q q q

8 b b b c q q q q q q

9 a b b c q q q q q q

10 q a b c q q q q q q

11 q q a c q q q q q q

12 q q q b q q q q q q

13 q q b b c q q q q q

14 q b b b c q q q q q

15 b b b b c q q q q q

16 a b b b c q q q q q

17 q a b b c q q q q q

18 q q a b c q q q q q

19 q q q a c q q q q q

20 q q q q b q q q q q

21 q q q b b c q q q q

22 q q b b b c q q q q

23 q b b b b c q q q q

24 b b b b b c q q q q

25 a b b b b c q q q q

26 q a b b b c q q q q

27 q q a b b c q q q q

28 q q q a b c q q q q

29 q q q q a c q q q q

30 q q q q q b q q q q

31 q q q q b b c q q q

32 q q q b b b c q q q

33 q q b b b b c q q q

34 q b b b b b c q q q

35 b b b b b b c q q q

36 a b b b b b c q q q

37 q a b b b b c q q q

38 q q a b b b c q q q

Figure 3: A configuration of real-time gen-
eration of sequence {n2 |n = 1, 2, 3, . . .}.
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2. The a-wave propagates in the right direction towards the c-wave at 1/1 speed, and collides
with the c-wave at time t = 2. Then the a-wave is eliminated, the c-wave moves to the right
cell, and the b-wave propagated in left direction at 1/1 speed is generated. The c-wave keeps
a marker. At the arrival of the b-wave at the leftmost cell C1, the b-wave is deleted. At time
t = 4 one step later, the leftmost cell C1 falls into a special state a, and the a-wave is generated.

3. Let j be any natural number such that j ≥ 2. At time t = aj , the c-wave exists on the
cell Cj+1, the cell C1 falls into the special state a, and the a-wave is generated. The a-wave
propagates in right direction at 1/1 speed, so the a-wave hits the c-wave at time t = aj + j.
Then the c-wave moves to the right cell Cj+2, and the b-wave propagated in left direction at
1/1 speed is generated. The b-wave reaches the leftmost cell C1 at time at time t = aj + j+ j,
and the b-wave is deleted. At time t = aj + 2j + 1 = aj + bj = aj+1 one step later, the a-wave
is generated, and the cell C1 falls into the special state a.

Propagations of a-, b-, and c-waves on the space-time diagram shown in Figure 2 is the same as
those of the generation algorithm shown by Kamikawa and Umeo [6], but waves implementation is
different.

3.1.2 Implementation

A four-state real-time sequence generator for {n2 |n = 1, 2, 3, . . .} consists of a semi-infinite array of
finite state automaton M = (Q, δ, b, a), where Q = {q, a, b, c}. The state c is increasing from the
sequence {n2 |n = 1, 2, 3, . . .} generation algorithm show by Kamikawa and Umeo [6]. Table 1 is the
transition function Rn2 for the real-time sequence {n2 |n = 1, 2, 3, . . .} generator.

Table 1: A four-state transition function Rn2 for real-time generation of sequence {n2 |n =
1, 2, 3, . . .}.

q Right State

q a b c

L
eft S

ta
te

q q q b

a

b c

c q

$ q q b

a Right State

q a b c

L
eft S

ta
te

q q q

a

b

c

$ q q

b Right State

q a b c

L
eft S

ta
te

q b b

a a a

b b b

c

$ a a

c Right State

q a b c

L
eft S

ta
te

q

a b

b c

c

$

The initial configuration of M at time t = 0 is:

t = 0 :

[1]︷︸︸︷
b

[2,...]︷ ︸︸ ︷
q, ..., q.

At time t = 1, all cells, except for C1 and C2, keep the quiescent state q with the rule q q q

→ q. C1 and C2 fall into the states a and c with the rules $ b q → a and b q q → c in Rn2 ,
respectively. The configuration at time t = 1 is:

t = 1 :

[1]︷︸︸︷
a

[2]︷︸︸︷
c

[3,...]︷ ︸︸ ︷
q, ..., q.

At time t = 2, all cells, except for C1, C2 and C3, keep the quiescent state q with the rule q q q →
q. C1, C2 and C3 fall into the state q, b and q with the rules $ a c → q, a c q → b and c q q

→ q in Rn2 , respectively. The configuration at time t = 2 is:

t = 2 :

[1]︷︸︸︷
q

[2]︷︸︸︷
b

[3,...]︷ ︸︸ ︷
q, ..., q.

246



International Journal of Networking and Computing

In this way, M takes the following configurations at time t = 0 ∼ 9.

t = 0 :

[1]︷︸︸︷
b

[2,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 1 :

[1]︷︸︸︷
a

[2]︷︸︸︷
c

[3,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 2 :

[1]︷︸︸︷
q

[2]︷︸︸︷
b

[3,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 3 :

[1,2]︷︸︸︷
bb

[3]︷︸︸︷
c

[4,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 4 :

[1]︷︸︸︷
a

[2]︷︸︸︷
b

[3]︷︸︸︷
c

[4,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 5 :

[1]︷︸︸︷
q

[2]︷︸︸︷
a

[3]︷︸︸︷
c

[4,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 6 :

[1,2]︷︸︸︷
qq

[3]︷︸︸︷
b

[4,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 7 :

[1]︷︸︸︷
q

[2,3]︷︸︸︷
bb

[4]︷︸︸︷
c

[5,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 8 :

[1,...,3]︷ ︸︸ ︷
b, . . . , b

[4]︷︸︸︷
c

[5,...]︷ ︸︸ ︷
q, . . . , q ⇒

t = 9 :

[1]︷︸︸︷
a

[2,3]︷︸︸︷
bb

[4]︷︸︸︷
c

[5,...]︷ ︸︸ ︷
q, . . . , q

The overview of the wave generation and its implementation in terms of four states is as follows:

• a-wave: The a-wave is depicted by the state a. It is generated on C1. The a-wave propagates
in the right direction at 1/1-speed and meets the c-wave which is a stationary state staying
on a cell. When the a-wave hits the c-wave, the b-wave which return to the left direction are
generated. See Figure 2.

• b-wave: The b-wave is depicted by the state b. The b-wave propagates in the left direction at
1/1-speed and hits the cell C1. When the b-wave collides with the cell C1, the a-wave which
returns to the right direction is generated.

• c-wave: The c-wave is represented by the state c. The c-wave acts as a marker. When the
a-wave hits the c-wave, the b-wave which returns to the left direction is generated, the c-wave
moves to the right cell. In the sequence {n2 |n = 1, 2, 3, . . .} generation algorithm shown
by Kamikawa and Umeo [6], a- and c-waves are represented by the state a. Because of the
generation when k ≥ 3, this algorithm expresses a- and c-waves by state a and c, respectively.

We have implemented the rule set in Table 1 on a computer. In Figure 3, we show a number of
configurations in the space-time domain such that C`, 1 ≤ ` ≤ 10, 0 ≤ t ≤ 38.

3.2 A implementation of real-time sequence generation algorithm for
{n3 |n = 1, 2, 3, ...}

In this section, we show a real-time generation algorithm for {n3 |n = 1, 2, 3, . . .} designed using
sequence {n2 |n = 1, 2, 3, . . .} generation process. The space-time diagram of this algorithm is
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different from that of two algorithms shown by Kamikawa and Umeo [8]. This algorithm is made by
extending the method of sequence {n4 |n = 1, 2, 3, . . .} generation algorithm shown by Kamikawa and
Umeo [9], and contains the real-time sequence generation algorithm for {n2 |n = 1, 2, 3, . . .} shown
in 3.1 inside. Let i be a natural number such that i ≥ 1, ci be an infinite monotonically increasing
positive integer sequence defined on natural numbers such that c1 = 1, c2 = 8, c3 = 27, . . . , ci = i3,
di be a difference sequence of ci such that di = 3i2 + 3i+ 1.

3.2.1 Space-Time Diagram

A real-time sequence generator for {n3 |n = 1, 2, 3, . . .} consists of a semi-infinite array of finite state
automaton M . Table 2 is the transition function Rn3 for the real-time sequence {n3 |n = 1, 2, 3, . . .}
generator.

The initial configuration of M at time t = 0 is:

t = 0 :

[1]︷︸︸︷
u0

[2,...]︷ ︸︸ ︷
q, ..., q.

In Figure 4, we show a space-diagram for real-time generation of sequence {n3 |n = 1, 2, 3, . . .}.

This algorithm uses six waves in addition to generation algorithm for {n2 |n = 1, 2, 3, . . .} . They
are u-wave, x-wave, y-wave, z-wave, e-wave and f-wave, respectively. Figure 5 shows snapshots of
the generation processes from time t = 0 to t = 8. These configurations can be obtained by applying
the rule set Rn3

1
given in Table 3 to the initial configuration.

Next we consider the generation processes at time t ≥ 8. Let j be a natural number such that
j ≥ 2. At time t = j3, M takes as follows:

t = j3 :

[1]︷︸︸︷
a

[2,...j−1]︷ ︸︸ ︷
q, . . . , q

[j]︷︸︸︷
x3

[j+1,...]︷ ︸︸ ︷
q, ..., q.

The communication cell C1 takes the special state a at time t = cj = j3. At the time t =
cj + dj = j3 + 3j2 + 3j + 1 = (j + 1)3, the communication cell C1 falls into the special state a by
waves propagation according to the each term in the difference sequence of dj = 3j2 + 3j + 1. We
consider the generation process when j3 ≤ t ≤ j3 +3j2, j3 +3j2 ≤ t ≤ j3 +3j2 +3j+1, respectively.

Case (I) j3 ≤ t ≤ j3 + 3j2: At first, we show the generation process at j3 ≤ t ≤ j3 + 3j2. In
this process, M transitions 3j2 steps internally using the sequence generation algorithm for {n2 |n =
1, 2, 3, . . .}. In Figure. 6, we show a space-time diagram at j3 ≤ t ≤ j3 + 3j2.

The sequence generation algorithm for {n2 |n = 1, 2, 3, . . .} works between the leftmost cell C1

and the x-wave. When the a-wave hits the x-wave, the y-wave is generated instead of the b-wave.
Since the x-wave exists on the cell Cj , the y-wave reaches the leftmost cell C1 at time t = j3 +j2−1.
At the next step t = j3 + j2, the sequence generation algorithm for {n2 |n = 1, 2, 3, . . .} is restarted.
This algorithm works three times between the leftmost cell C1 and the x-wave. When the a-wave hits
the x-wave for the third times, the x-wave moves to the cell Cj+1, the z-wave is generated instead
of the y-wave. The z-wave propagates in left direction at 1/1 speed and hits the leftmost cell C1 at
time t = j3 + 3j2 − 1. At the next step t = j3 + 3j2, the next generation process is started.

Case (II) j3 + 3j2 ≤ t ≤ j3 + 3j2 + 3j + 1: In this case, the e-, f- and z-waves propagate for
space-time diagram shown in Figure 7.

At time t = j3 + 3j2, the e-wave is generated, and propagates in right direction at 1/1 speed.
The e-wave collides with the x-wave on the cell Cj+1 at time t = j3 + 3j2 + j. Then the e-wave
is deleted and the f-wave is generated. The f-wave propagates in left direction at 1/2 speed and
hits the leftmost cell C1 at time t = j3 + 3j2 + 3j. So, the f-wave is eliminated. At the next step
t = j3 + 3j2 + 3j + 1 = (j + 1)3, the communication cell C1 falls into the special state a. Then M
takes as follows:
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Table 2: A transition function Rn3 for real-time generation of sequence {n3 |n = 1, 2, 3, . . .}.

 q State 

1: q q q q

2: q q a2 q

3: q q b b

4: q q e e

5: q q f1 q

6: q q f2 f1

7: q q x1 q

8: q q x2 f1

9: q q x3 q

10: q q x4 e

11: q q x5 q

12: q q x6 e

13: q q x7 q

14: q q x8 b

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

58:

a q q c

a q x3 c

b q q c

b q x3 c

b q x5 c

b q x7 c

c q q q

c q x3 q

c q x5 q

c q x7 q

e q q q

e q x5 q

e q x7 q

f1 q q q

f1 q x3 q

f2 q q q

f2 q x3 q

u0 q q u1

u1 q q q

u2 q q q

u3 q q q

u4 q q q

u5 q q q

u6 q q q

u7 q q q

x1 q q q

x2 q q q

x3 q q q

x4 q q q

x5 q q q

x6 q q q

x7 q q q

x8 q q x1

$ q q q

$ q a2 q

$ q b b

$ q e e

$ q f1 q

$ q f2 f1

$ q u2 q

$ q u3 q

$ q u4 q

$ q u5 q

59:

$ q u6 q

60:

61:

62:

$ q u7 a

$ q x4 e

$ q x6 e

$ q x8 b

 a State 

63:

64:

65:

$ a q a2

$ a u1 q

$ a x3 a2

 a2 State 

66:

67:

68:

69:

70:

71:

72:

73:

74:

75:

76:

q a2 b q

q a2 c q

q a2 x1 q

q a2 x3 q

q a2 x5 q

q a2 x7 q

$ a2 b q

$ a2 c q

$ a2 x3 q

$ a2 x5 q

$ a2 x7 q

 b State 

77:

78:

79:

80:

81:

82:

83:

84:

85:

86:

87:

88:

89:

90:

91:

92:

93:

94:

95:

96:

97:

q b q b

q b b b

q b x3 b

q b x5 b

q b x7 b

a2 b b a2

a2 b c a2

a2 b x1 a2

a2 b x3 a2

a2 b x5 a2

a2 b x7 a2

b b b b

b b c b

b b x1 b

b b x3 b

b b x5 b

b b x7 b

$ b q a2

$ b b a2

$ b x5 a2

$ b x7 a2

 c State 

98:

99:

100:

101:

102:

103:

104:

105:

a2 c q b

a2 c x3 b

a2 c x5 b

a2 c x7 b

b c q c

b c x3 c

b c x5 c

b c x7 c

 e State 

q e q q

q e x5 q

q e x7 q

$ e q b

$ e x5 b

106:

107:

108:

109:

110:

111: $ e x7 b

 f1 State 

q f1 q f2

q f1 x3 f2

112:

113:

114: $ f1 q a

 f2 State 

q f2 q q115:

116:

117:

q f2 x3 q

 u0 State 

$ u0 q a

 u1 State 

a u1 q u2

 u2 State 

q u2 q u3

 u3 State 

q u3 q u4

 u4 State 

q u4 q u5

 u5 State 

q u5 q u6

 u6 State 

q u6 q u7

 u7 State 

q u7 q x3

 x1 State 

q x1 q x2

a2 x1 q x1

118:

119:

120:

121:

122:

123:

124:

125:

126:

127: b x1 q x1

 x2 State 

128:

129:

q x2 q x3

 x3 State 

q x3 q x3

a x3 q x3

a2 x3 q x4

b x3 q x3

c x3 q x3

f1 x3 q x3

f2 x3 q x3

 x4 State 

q x4 q x5

 x5 State 

q x5 q x5

a2 x5 q x6

b x5 q x5

c x5 q x5

e x5 q x5

 x6 State 

q x6 q x7

 x7 State 

q x7 q x7

a2 x7 q x8

b x7 q x7

c x7 q x7

130:

131:

132:

133:

134:

135:

136:

137:

138:

139:

140:

141:

142:

143:

144:

145:

146:

147:

148:

e x7 q x7

 x8 State 

q x8 q b

Table 3: A transition rule set Rn3
1
.

q q q → q; u1 q q → q; u2 q q → q;
u3 q q → q; u4 q q → q; u5 q q → q;
u6 q q → q; u7 q q → q; $ u0 q → a;
$ a u1 → q; $ q u2 → q; $ q u3 → q;
$ q u4 → q; $ q u5 → q; $ q u6 → q;
$ q u7 → a; u0 q q → u1; a u1 q → u2;
q u2 q → u3; q u3 q → u4; q u4 q → u5;
q u5 q → u6; q u6 q → u7; q u7 q → x3;
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C1

t = 0

t = 1

t = 8

・・・C2 C3 C4

t = 20

t = 26

x-wave

u-wave

e-wave

f-wave

t = 18

t = 22

t = 24

C1 C2

t = 27

t = 36

t = 45

t = 28

t = 54

t = 64

・・・C3 C4

Alg. 1
Space-Time Diagram for

sequence {n
2 | n=1, 2, 3, ... }

Alg. 1

Alg. 1

t = 27

t = 65

t = 63

Alg. 1

Alg. 1

Alg. 1

Alg. 1

y-wave

z-wave

Figure 4: Space-time diagram for real-time generation of sequence {n3 |n = 1, 2, 3, . . .}.
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1 2 3 4 5 6 7 8 9101112131415

0 u0 q q q q q q q q q q q q q q

1 a u1 q q q q q q q q q q q q q

2 q u2 q q q q q q q q q q q q q

3 q u3 q q q q q q q q q q q q q

4 q u4 q q q q q q q q q q q q q

5 q u5 q q q q q q q q q q q q q

6 q u6 q q q q q q q q q q q q q

7 q u7 q q q q q q q q q q q q q

8 a x3 q q q q q q q q q q q q q

Figure 5: Configurations of sequence generator for {n3 |n = 1, 2, 3, . . .} in the space-time domain
such that C`, 1 ≤ ` ≤ 15, 0 ≤ t ≤ 8.

C1

a-wave

・・・・・

1/1

y-wave

C2 C3

c-wave

t = j3

t = j3 +1

t = j3 +4

t = j3 +9

t = j3 + j2

Cj C1

1/1

a-wave

・・・・・C2 C3

c-wave

t = j3 + j2

t = j3 + j2+1

t = j3 + j2+4

t = j3 + j2+9

t = j3 + 2j2

Cj

b-wave b-wave

1/1

1/1

y-wave

x-wave x-wave

C1

1/1

a-wave

・・・・・C2 C3

c-wave

t = j3 + 2j2

t = j3 + 2j2+4

t = j3 + 2j2+9

t = j3 + 3j2

Cj

b-wave

1/1

z-wave

x-wave

Cj+1 Cj+1 Cj+1

Figure 6: Space-time diagram for real-time generation of sequence {n3 |n = 1, 2, 3, . . .} when time
j3 ≤ t ≤ j3 + 3j2.

251



A Realization of Real-time Sequence Generator for k−th Powers of Natural Numbers

C1

t = j3 +3j2

・・・ Cj Cj+1

1/1

e-wave

f-wave

x-wave

t = j3 +3j2- 1

t = j3 +3j2+j

t = j3 +3j2+3j

t = j3 +3j2+3j+1

1/2

= ( j+1)3 

Figure 7: Space-time diagram for real-time generation of sequence {n3 |n = 1, 2, 3, . . .} when time
j3 + 3j2 ≤ t ≤ j3 + 3j2 + 3j + 1.

t = (j + 1)
3

:

[1]︷︸︸︷
a

[2,...j]︷ ︸︸ ︷
q, . . . , q

[j+1]︷︸︸︷
x3

[j+2,...]︷ ︸︸ ︷
q, ..., q.

We have implemented the sequence generation algorithm for {n3 |n = 1, 2, 3, . . .} on a computer
and examined the validity of the table from t = 0 to t = 20000 steps. In Figure 8, we show a number
of configurations in the space-time domain such that Ci, 1 ≤ i ≤ 8, 0 ≤ t ≤ 283.

3.3 A implementation of real-time sequence generation algorithm for
{n4 |n = 1, 2, 3, ...}

In this section, we extend the generation algorithm for {n3 |n = 1, 2, 3, . . .} shown in the previous sec-
tion, present a real-time sequence generation algorithm for {n4 |n = 1, 2, 3, . . .}. This algorithm con-
tains the real-time sequence generation algorithms for {n2 |n = 1, 2, 3, . . .} and {n3 |n = 1, 2, 3, . . .}
inside. Let i be a natural number such that i ≥ 1, gi be an infinite monotonically increasing positive
integer sequence defined on natural numbers such that g1 = 1, g2 = 16, g3 = 81, . . . , gi = i4, hi be
a difference sequence of gi such that hi = 4i3 + 6i2 + 4i+ 1.

3.3.1 Space-Time Diagram

Let M be a CA. In Figure 9, we show a space-diagram for real-time generation of sequence {n4 |n =
1, 2, 3, . . .}.

Let j be a natural number such that j ≥ 2. At time t = j4, M takes as follows:

t = j4 :

[1]︷︸︸︷
a

[2,...j−1]︷ ︸︸ ︷
q, . . . , q

[j]︷︸︸︷
X3

[j+1,...]︷ ︸︸ ︷
q, ..., q.

The communication cell C1 takes the special state a at time t = gj = j4. At the time t = gj+hj =
j4 + 4j3 + 6j2 + 4j + 1 = (j + 1)4, the communication cell C1 falls into the special state a by waves
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q f1 q q q x3 q q

q f2 q q q x3 q q

f1 q q q q x3 q q

a q q q q x3 q q

a2 c q q q x3 q q

q b q q q x3 q q

b b c q q x3 q q

a2 b c q q x3 q q

q a2 c q q x3 q q

q q b q q x3 q q

q b b c q x3 q q

b b b c q x3 q q

a2 b b c q x3 q q

q a2 b c q x3 q q

q q a2 c q x3 q q

q q q b q x3 q q

q q b b c x3 q q

q b b b c x3 q q

b b b b c x3 q q

a2 b b b c x3 q q

q a2 b b c x3 q q

q q a2 b c x3 q q

q q q a2 c x3 q q

q q q q b x3 q q

q q q b b x3 q q

q q b b b x3 q q

q b b b b x3 q q

b b b b b x3 q q

a2 b b b b x3 q q

q a2 b b b x3 q q

q q a2 b b x3 q q

q q q a2 b x3 q q

q q q q a2x3 q q

q q q q q x4 q q

q q q q e x5 q q

q q q e q x5 q q

q q e q q x5 q q

q e q q q x5 q q

e q q q q x5 q q

b q q q q x5 q q

a2 c q q q x5 q q

q b q q q x5 q q

b b c q q x5 q q

a2 b c q q x5 q q

q a2 c q q x5 q q

q q b q q x5 q q

q b b c q x5 q q

b b b c q x5 q q

a2 b b c q x5 q q

q a2 b c q x5 q q

q q a2 c q x5 q q

q q q b q x5 q q

q q b b c x5 q q

q b b b c x5 q q

b b b b c x5 q q

a2 b b b c x5 q q

q a2 b b c x5 q q

q q a2 b c x5 q q

q q q a2 c x5 q q

q q q q b x5 q q

q q q b b x5 q q

q q b b b x5 q q

q b b b b x5 q q

b b b b b x5 q q

a2 b b b b x5 q q

q a2 b b b x5 q q

q q a2 b b x5 q q

q q q a2 b x5 q q

q q q q a2x5 q q

q q q q q x6 q q

q q q q e x7 q q

q a2 b b x3 q q q

q q a2 b x3 q q q

q q q a2x3 q q q

q q q q x4 q q q

q q q e x5 q q q

q q e q x5 q q q

q e q q x5 q q q

e q q q x5 q q q

b q q q x5 q q q

a2 c q q x5 q q q

q b q q x5 q q q

b b c q x5 q q q

a2 b c q x5 q q q

q a2 c q x5 q q q

q q b q x5 q q q

q b b c x5 q q q

b b b c x5 q q q

a2 b b c x5 q q q

q a2 b c x5 q q q

q q a2 c x5 q q q

q q q b x5 q q q

q q b b x5 q q q

q b b b x5 q q q

b b b b x5 q q q

a2 b b b x5 q q q

q a2 b b x5 q q q

q q a2 b x5 q q q

q q q a2x5 q q q

q q q q x6 q q q

q q q e x7 q q q

q q e q x7 q q q

q e q q x7 q q q

e q q q x7 q q q

b q q q x7 q q q

a2 c q q x7 q q q

q b q q x7 q q q

b b c q x7 q q q

a2 b c q x7 q q q

q a2 c q x7 q q q

q q b q x7 q q q

q b b c x7 q q q

b b b c x7 q q q

a2 b b c x7 q q q

q a2 b c x7 q q q

q q a2 c x7 q q q

q q q b x7 q q q

q q b b x7 q q q

q b b b x7 q q q

b b b b x7 q q q

a2 b b b x7 q q q

q a2 b b x7 q q q

q q a2 b x7 q q q

q q q a2x7 q q q

q q q q x8 q q q

q q q b b x1 q q

q q b b b x1 q q

q b b b b x1 q q

b b b b b x1 q q

a2 b b b b x1 q q

q a2 b b b x1 q q

q q a2 b b x1 q q

q q q a2 b x1 q q

q q q q a2x1 q q

q q q q q x1 q q

q q q q q x2 q q

q q q q f1x3 q q

q q q q f2x3 q q

q q q f1 q x3 q q

q q q f2 q x3 q q

q q f1 q q x3 q q

q q f2 q q x3 q q

q b b x3 q q q q

b b b x3 q q q q

a2 b b x3 q q q q

q a2 b x3 q q q q

q q a2x3 q q q q

q q q x4 q q q q

q q e x5 q q q q

q e q x5 q q q q

e q q x5 q q q q

b q q x5 q q q q

a2 c q x5 q q q q

q b q x5 q q q q

b b c x5 q q q q

a2 b c x5 q q q q

q a2 c x5 q q q q

q q b x5 q q q q

q b b x5 q q q q

b b b x5 q q q q

a2 b b x5 q q q q

q a2 b x5 q q q q

q q a2x5 q q q q

q q q x6 q q q q

q q e x7 q q q q

q e q x7 q q q q

e q q x7 q q q q

b q q x7 q q q q

a2 c q x7 q q q q

q b q x7 q q q q

b b c x7 q q q q

a2 b c x7 q q q q

q a2 c x7 q q q q

q q b x7 q q q q

q b b x7 q q q q

b b b x7 q q q q

a2 b b x7 q q q q

q a2 b x7 q q q q

q q a2x7 q q q q

q q q x8 q q q q

q q b b x1 q q q

q b b b x1 q q q

b b b b x1 q q q

a2 b b b x1 q q q

q a2 b b x1 q q q

q q a2 b x1 q q q

q q q a2x1 q q q

q q q q x1 q q q

q q q q x2 q q q

q q q f1x3 q q q

q q q f2x3 q q q

q q f1 q x3 q q q

q q f2 q x3 q q q

q f1 q q x3 q q q

q f2 q q x3 q q q

f1 q q q x3 q q q

a q q q x3 q q q

a2 c q q x3 q q q

q b q q x3 q q q

b b c q x3 q q q

a2 b c q x3 q q q

q a2 c q x3 q q q

q q b q x3 q q q

q b b c x3 q q q

b b b c x3 q q q

a2 b b c x3 q q q

q a2 b c x3 q q q

q q a2 c x3 q q q

q q q b x3 q q q

q q b b x3 q q q

q b b b x3 q q q

b b b b x3 q q q

a2 b b b x3 q q q

u0 q q q q q q q

a u1 q q q q q q

q u2 q q q q q q

q u3 q q q q q q

q u4 q q q q q q

q u5 q q q q q q

q u6 q q q q q q

q u7 q q q q q q

a x3 q q q q q q

a2x3 q q q q q q

q x4 q q q q q q

e x5 q q q q q q

b x5 q q q q q q

a2x5 q q q q q q

q x6 q q q q q q

e x7 q q q q q q

b x7 q q q q q q

a2x7 q q q q q q

q x8 q q q q q q

b b x1 q q q q q

a2 b x1 q q q q q

q a2x1 q q q q q

q q x1 q q q q q

q q x2 q q q q q

q f1x3 q q q q q

q f2x3 q q q q q

f1 q x3 q q q q q

a q x3 q q q q q

a2 c x3 q q q q q

q b x3 q q q q q

b b x3 q q q q q

a2 b x3 q q q q q

q a2x3 q q q q q

q q x4 q q q q q

q e x5 q q q q q

e q x5 q q q q q

b q x5 q q q q q

a2 c x5 q q q q q

q b x5 q q q q q

b b x5 q q q q q

a2 b x5 q q q q q

q a2x5 q q q q q

q q x6 q q q q q

q e x7 q q q q q

e q x7 q q q q q

b q x7 q q q q q

a2 c x7 q q q q q

q b x7 q q q q q

b b x7 q q q q q

a2 b x7 q q q q q

q a2x7 q q q q q

q q x8 q q q q q

q b b x1 q q q q

b b b x1 q q q q

a2 b b x1 q q q q

q a2 b x1 q q q q

q q a2x1 q q q q

q q q x1 q q q q

q q q x2 q q q q

q q f1x3 q q q q

q q f2x3 q q q q

q f1 q x3 q q q q

q f2 q x3 q q q q

f1 q q x3 q q q q

a q q x3 q q q q

a2 c q x3 q q q q

q b q x3 q q q q

b b c x3 q q q q

a2 b c x3 q q q q

q a2 c x3 q q q q

q q b x3 q q q q
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Figure 8: Some configurations of real-time generation of sequence {n3 |n = 1, 2, 3, . . .}.
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C1

t = 0

t = 1

t = 16

・・・C2 C3 C4

t = 60

t = 32

t = 40

t = 64
t = 24

Alg. 1

C1 C2

t = 40

t = 48

t = 56

Alg. 2

t = 68

t = 72

t = 80

t = 81

・・・C3 C4

Alg. 1

Alg. 2

Space-Time Diagram for

sequence {n
2 | n=1, 2, 3, ... }

Space-Time Diagram for

sequence {n
3 | n=1, 2, 3, ... }

Alg. 2

Alg. 2

Alg. 2

Alg. 1

Alg. 1

Alg. 1

Alg. 1

Alg. 1

t = 52

Figure 9: Space-time diagram for real-time generation of sequence {n4 |n = 1, 2, 3, . . .}.
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propagation according to the each term in the difference sequence of hj = 4j3 + 6j2 + 4j + 1. We
consider the generation process when j4 ≤ t ≤ j4 + 4j3, j4 + 4j3 ≤ t ≤ j4 + 4j3 + 6j2 and
j4 + 4j3 + 6j2 ≤ t ≤ j4 + 4j3 + 6j2 + 4j + 1, respectively.

Case (I) j4 ≤ t ≤ j4 + 4j3: At first, the sequence generation algorithm for {n3 |n = 1, 2, 3, . . .}
works four times between the leftmost cell C1 and the x-wave. After the generation algorithm for
{n3 |n = 1, 2, 3, . . .} finishes four times, the next generation process is started at time t = j4 + 4j3.

Case (II) j4 + 4j3 ≤ t ≤ j4 + 4j3 + 6j2: Next, the sequence generation algorithm for {n2 |n =
1, 2, 3, . . .} works six times between the leftmost cell C1 and the x-wave. After the generation
algorithm for {n2 |n = 1, 2, 3, . . .} finishes six times, the next generation process is started at time
t = j4 + 4j3 + 6j2.

Case (III) j4 +4j3 +6j2 ≤ t ≤ j4 +4j3 +6j2 +4j+1: In this case, the e-, f- and z-waves propagate
for space-time diagram shown in Figure 10.

C1

t = j4+4j3 +6j2

・・・ Cj Cj+1

1/1

e-wave

f-wave

x-wave

t = j4+4j3 +6j2- 1

t = j4+4j3 +6j2+ j

t = j4+4j3 +6j2+4j

t =  j4+4j3 +6j2+4j+1

1/3

= ( j+1)4 

Figure 10: Space-time diagram for real-
time generation of sequence {n4 |n =
1, 2, 3, . . .} when time j4 + 4j3 + 6j2 ≤ t ≤
j4 + 4j3 + 6j2 + 4j + 1.

C1 ・・・ Cj Cj+1

1/1

e-wave

f-wave

x-wave

1/(k-1)

= ( j+1)k 

f-wave

1/(k-1)

k-2

r = 1
t = jk+ k C r ・ jk-r + j

k-2

r = 1
t = jk+ k C r ・ jk-r 

k-2

r = 1
t = jk+ k C r ・ jk-r + k・j

k-2

r = 1
t = jk+ k C r ・ jk-r + k・j +1

Figure 11: Space-time diagram for real-
time generation of sequence {nk |n =
1, 2, 3, . . .} when time jk ≤ t ≤ jk +∑k−2

r=1 kCr · jk−r.

In the case of the generation algorithm for {n4 |n = 1, 2, 3, . . .}, the f-wave propagate to the
left direction at 1/3 speed. At time t = j4 + 4j3 + 6j2, the e-wave is generated, and propagates
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in right direction at 1/1 speed. The e-wave collides with the x-wave on the cell Cj+1 at time
t = j4 + 4j3 + 6j2 + j. Then the e-wave is deleted and the f-wave is generated. The f-wave
propagates in left direction at 1/3 speed and hits the leftmost cell C1 at time t = j4 +4j3 +6j2 +4j.
So, the f-wave is eliminated. At the next step t = j4+4j3+6j2+4j+1 = (j+1)4, the communication
cell C1 falls into the special state a. Then M takes as follows:

t = (j + 1)
4

:

[1]︷︸︸︷
a

[2,...j]︷ ︸︸ ︷
q, . . . , q

[j+1]︷︸︸︷
x3

[j+2,...]︷ ︸︸ ︷
q, ..., q.

We have implemented the sequence generation algorithm for {n4 |n = 1, 2, 3, . . .} on a computer
and examined the validity of the table from t = 0 to t = 20000 steps.

3.4 A realization of real-time sequence generation algorithm for {nk |n =
1, 2, 3, ...}

In this section, we extend and generalize generation algorithms for {n2 |n = 1, 2, 3, . . .}, {n3 |n =
1, 2, 3, . . .} and {n4 |n = 1, 2, 3, . . .}, show that sequence {nk |n = 1, 2, 3, . . .} can be generated in
real-time. Let i be a natural number such that i ≥ 1, pi be an infinite monotonically increasing
positive integer sequence defined on natural numbers such that pi = ik, si be a difference sequence
of pi such that si = (i+ 1)k − ik =

∑k
r=0 kCr · ik−r − ik =

∑k−2
r=1 kCr · ik−r + k · i+ 1. Let M be a

CA, j be a natural number such that j ≥ 2. At time t = jk, M takes as follows:

t = jk :

[1]︷︸︸︷
a

[2,...j−1]︷ ︸︸ ︷
q, . . . , q

[j]︷︸︸︷
x3

[j+1,...]︷ ︸︸ ︷
q, ..., q.

The communication cell C1 takes the special state a at time t = pj = jk. At the time t =

pj + sj = jk +
∑k−2

r=1 kCr · jk−r + k · j + 1 = (j + 1)k, the communication cell C1 falls into the
special state a by waves propagation according to the each term in the difference sequence of sj =∑k−2

r=1 kCr · jk−r + k · j+ 1. We consider the generation process when jk ≤ t ≤ jk +
∑k−2

r=1 kCr · jk−r

and jk +
∑k−2

r=1 kCr · jk−r ≤ t ≤ jk +
∑k−2

r=1 kCr · jk−r + k · j + 1, respectively.

Case (I) jk ≤ t ≤ jk +
∑k−2

r=1 kCr · jk−r: Let ` be natural number such that 1 ≤ ` ≤ k − 2.
In this case, generation algorithms for {n2 |n = 1, 2, 3, . . .}, {n3 |n = 1, 2, 3, . . .}, . . . , {n` |n =

1, 2, 3, . . .} and {n`+1 |n = 1, 2, 3, . . .} work kCk−1−` times between the leftmost cell C1 and the
x-wave, respectively. After the generation algorithms for {n2 |n = 1, 2, 3, . . .}, {n3 |n = 1, 2, 3, . . .},
. . . , {nk−2 |n = 1, 2, 3, . . .} and {nk−1 |n = 1, 2, 3, . . .} finish, the next generation process is started

at time t = jk +
∑k−2

r=1 kCr · jk−r.

Case (II) jk +
∑k−2

r=1 kCr · jk−r ≤ t ≤ jk +
∑k−2

r=1 kCr · jk−r + k · j + 1: In this case, the e-, f- and
z-waves propagate for space-time diagram shown in Figure 11.

In this case, the f-wave propagate to the left direction at 1/(k − 1) speed. At time t = jk +∑k−2
r=1 kCr ·jk−r, the e-wave is generated, and propagates in right direction at 1/1 speed. The e-wave

collides with the x-wave on the cell Cj+1 at time t = jk +
∑k−2

r=1 kCr · jk−r + j. Then the e-wave is
deleted and the f-wave is generated. The f-wave propagates in left direction at 1/(k − 1) speed and

hits the leftmost cell C1 at time t = jk +
∑k−2

r=1 kCr · jk−r + k · j. So, the f-wave is eliminated. At

the next step t = jk +
∑k−2

r=1 kCr · jk−r + k · j + 1 = (j + 1)k, the communication cell C1 falls into
the special state a. Then M takes as follows:

t = (j + 1)
k

:

[1]︷︸︸︷
a

[2,...j]︷ ︸︸ ︷
q, . . . , q

[j+1]︷︸︸︷
x3

[j+2,...]︷ ︸︸ ︷
q, ..., q.

Thus, sequence {nk |n = 1, 2, 3, ...} can be generated in real-time for any k by one-dimensional
CA.
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Next, we consider about the number of internal states to realize generation of sequence {nk |n =
1, 2, 3, ...} in real-time on the CA. A real-time sequence generator for {nk |n = 1, 2, 3, . . .} consists
of a semi-infinite array of finite state automaton M = (Qk, δ, n0, a). Let P1,k, P2,k, P3,k be a
finite set of internal states which are subset of Qk. From Section 3.1, |Q2| = 4. When k ≥ 3,
Qk \Qk−1 = P1,k ∪ P2,k ∪ P3,k. Internal state sets P1,k, P2,k and P3,k are as follows:

• P1,k : Internal state set used for the generation process at time 0 ≤ t ≤ 2k

A internal state set {u0, u1, u2, . . . , u2k − 1} is used for the generation processes at time 0 ≤
t ≤ 2k. Thus, |P1,k| = 2k.

• P2,k : Internal state set representing e- and f-waves

The e-wave is represented by the state e, and the f-wave is represented by state f1, f2, f3,
. . ., fk − 1. Therefore, P2,k = {e, f1, f2, f3, . . . , fk − 1}, and |P2,k| = k.

• P3,k : Internal state set representing the x-wave

The x-wave exists in the rightmost cell whose state is not a quiescent state q. P3,k is determined
by P3,k−1, P3,k−2, P3,k−3, ..., P3,2 and number of repetitions of generation algorithm for
{nk−1 |n = 1, 2, 3, ...}, {nk−2 |n = 1, 2, 3, ...}, . . . {n2 |n = 1, 2, 3, ...}. However, the c-wave

operates as the x-wave, when k = 2. Therefore, |P3,k| = 2 +
∑k−2

r=1 kCr · |P3,k−r + 1|, |P3,2| = 1.

From the above, the number of internal states |Qk| of sequence generator for {nk |n = 1, 2, 3, . . .}
is expressed as follows:

|Qk| =

{
4 k = 2

|Qk−1|+ 2k + k + |P3,k| k ≥ 3,

|P3,k| =

{
1 k = 2

2 +
∑k−2

r=1 kCr · |P3,k−r + 1| k ≥ 3.

4 Conclusion

A sequence generation problem on CAs has been studied. It has been shown that sequence {nk |n =
1, 2, 3, . . .} can be generated in real-time by a one-dimensional CA. Our sequence generation algo-
rithms would be useful in the simulation and modeling biological pattern formations using CAs. A
further improvement on the proof of the correctness of the algorithm, the number of states and its
lower bound would be interesting.
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