
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 11, Number 1, pages 50–77, January 2021

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

Gokarna Sharma

Kent State University
Kent, OH 44242, USA

Email: sharma@cs.kent.edu

Ramachandran Vaidyanathan

Louisiana State University
Baton Rouge, LA 70803, USA

Email: vaidy@lsu.edu

Jerry L. Trahan

Louisiana State University
Baton Rouge, LA 70803, USA

Email: jtrahan@lsu.edu

Received: July 30, 2020
Revised: October 17, 2020

Accepted: November 15, 2020
Communicated by Masahiro Shibata

Abstract

We consider the distributed setting of N autonomous mobile robots that operate in Look-
Compute-Move (LCM) cycles and communicate with other robots using colored lights (the robots
with lights model). This model assumes obstructed visibility where a robot cannot see another
robot if a third robot is positioned between them on the straight line connecting them. In this
paper, we consider robot movements to be on a grid (integer plane) of unbounded size. In
any given step a robot positioned at a grid point can move only to an adjacent grid point to
its north, south, east or west. The grid setting naturally discretizes the 2-dimensional plane
and finds applications in many real-life robotic systems. The Complete Visibility problem
is to reposition N autonomous robots (starting at arbitrary, but distinct, initial positions) so
that, on termination, each robot is visible to all others. The objective in this problem is to
simultaneously minimize (or provide trade-off between) two fundamental performance metrics:
(i) time to solve Complete Visibility and (ii) area occupied by the solution. We also consider
the number of distinct colors used by each robot light. We provide the first O(max{D,N})-time
algorithm for Complete Visibility in the asynchronous setting, where D is the diameter of the
initial configuration. The area occupied by the final configuration is O(N2); both the time and
area are optimal. The time is randomized if no symmetry breaking mechanism is available for
the robots. The number of colors used in our algorithm depends on whether leader election is
required or not: (i) 17 colors if leader election is not required and (ii) 32 colors if leader election
is required.

50

International Journal of Networking and Computing

1 Introduction

The Classical Model. The classical model of distributed computing by mobile robots models
each robot as a point in the plane [7]. The local coordinate system of a robot may not be consis-
tent with that of other robots. A robot can determine the positions of other (visible) robots in its
own coordinate system. The robots are autonomous (no external control), anonymous (no unique
identifiers), indistinguishable (no external identifiers), and disoriented (no agreement on local coor-
dinate systems). They execute the same algorithm. In the classical model, robots have unobstructed
visibility, that is, robots are transparent such that all robots can see each other regardless of their
position. Each robot proceeds in Look-Compute-Move (LCM) cycles: When a robot becomes active,
it first gets a snapshot of its surroundings (Look), then computes a destination based on the snap-
shot (Compute), and finally moves to the destination (Move). Moreover, the robots are oblivious and
silent – each robot has no memory of its past LCM cycles and they do not communicate directly [7].

Robots with Lights. The robots with lights model [3, 7, 13] incorporates direct communication
– each robot has a visible light that can assume colors from a constant-sized set; robots explicitly
communicate with each other using these colors. The colors are persistent; i.e., the color is not
erased at the end of a cycle. Except for the lights, the robots are oblivious as in the classical model.
Also, robots have obstructed visibility – robot b placed between robots a, c on the line connecting
them blocks a (resp., c) from seeing c (resp., a).

Complete Visibility. The fundamental Complete Visibility problem is defined as follows:
Given an arbitrary initial configuration of N autonomous mobile robots located at distinct points,
they reach a configuration in which each robot is at a distinct point from which it can see all others
(i.e., no three robots are collinear). Initially, some robots may be obstructed from the view of
others (obstructed visibility). The robots do not know the total number of robots, N , and they
do not have any agreement on a global coordinate system. Solving Complete Visibility enables
solutions to many other robot coordination problems under obstructed visibility, e.g., gathering,
pattern formation, and leader election. Indeed, after solving Complete Visibility, each robot is
able to see all the robots, a scenario similar to having unobstructed visibility. Complete Visibility
has been receiving much attention recently. The objective in this paper is to simultaneously minimize
two fundamental performance metrics: (i) time to solve Complete Visibility and (ii) area occupied
by the robots in the final configuration. Typically, the number of colors used is also an important
consideration. The area occupied has been less studied. A series of papers resulted in a deterministic
O(1)-time, 47-color algorithm in the 2-dimensional real plane in the asynchronous setting [17,19–21].
Hector and Vaidyanathan [10] established the area (or spatial complexity) of these algorithms to be
optimal.

Grid. In this paper, we consider solving Complete Visibility in the robots with lights model on
a grid of unbounded size embedded in the 2-dimensional plane that restricts a single movement of
a robot to one of the four neighboring grid points. Further, the set of grid points is known to all
robots. Informally, one could think of the robots being given the grid lines on the plane. From this
information, each robot can readily determine unit distance and the collective directions of the two
grid axes. Each robot has a local sense of the individual axes’ directions and their orientations, but
this is not globally common to all robots.

The grid setting naturally discretizes the 2-dimensional plane and finds applications in real-life
robot navigation systems, such as industrial Automated Guided Vehicles [12] and Coverage Path
Planning [16]. The movement of robots along grid lines from one grid point to its adjacent point
can be easier to implement for robots with weak capabilities as they may not be able to execute
accurate movements in arbitrary directions or by arbitrarily small amounts [1]. Even with advanced
robot navigation capabilities, the resolution of its plane of movement is finite, and consequently,
a countable plane (rather than a real plane) better models the robots’ movements; indeed, many
algorithms for the real plane assume infinite resolution by, for example, relying on sufficient room to
accommodate any number of robots between two given robots (regardless of how close they are to
each other). Further, the asynchronous setting, which we assume, also admits differences between
individual robots, whether that is in the form of minor variations (in a homogeneous swarm) or

51

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

Algorithm Time Area Number Remarks
(in epochs) of colors

Adhikary et al. [1] Ω(max{DN,N2}) (Th. 2.4) Ω(N2) (Th. 2.5) 11 leader election not
needed, deterministic

Lower bound (this paper) Ω(N) (Th. 2.6) Ω(N2) (Th. 2.5) any any
Upper bound (this paper) O(max{D,N}) O(N2) (Th. 1.1) 17 if leader election not

needed, deterministic
Upper bound (this paper) O(max{D,N}) O(N2) (Th. 1.1) 32 if leader election

needed, randomized

Table 1: Complete Visibility of N ≥ 1 robots on a grid of unbounded size in the asynchronous
setting; D is the diameter of the initial configuration. The randomized algorithm terminates in the
stated time with probability at least 1− 2−max{D,N}.

large-scale differences (in a heterogeneous swarm).

Contributions. We consider the same robot model as Di Luna et al. [5], namely, robots are oblivious
except for a persistent light that can pick a color at a time from a constant-sized set. Robots can
have their visibility obstructed by other robots in the line of sight, robots do not know the total
number of robots, N , and the robots are disoriented (no agreement on global coordinate system).
Moreover, the robot setting is asynchronous – they have no common notion of time and robots
perform their LCM cycles at arbitrary times (this idea is further elaborated upon in Section 2).
The robots operate on an infinite grid, where each grid point connects to four other (neighboring)
grid points, each at unit distance away (to its “North,” “South,” “East,” and “West” in its local
coordinate system). A single robot movement is restricted to be to one of its neighbors at unit
distance. Two robots should not occupy the same grid point simultaneously (this would constitute
a collision). Runtime is measured in epochs – the interval where every robot completes at least one
LCM cycle. We prove the following main result which, to our knowledge, is the first algorithm with
optimal runtime and area for Complete Visibility on a grid (of unbounded size).

Theorem 1.1 (main result) For any initial configuration of N ≥ 1 robots with lights on distinct
points on a grid of unbounded size, Complete Visibility can be solved optimally in O(max{D,N})
time (where D is the diameter of the initial configuration), and with a final optimal area of O(N2).
Further, the algorithm runs in the asynchronous setting without collisions using:

• 17 colors through a deterministic algorithm if leader election is not required; and

• 32 colors through a randomized algorithm which terminates in the given time bounds with
probability at least 1− 1

2max(D,N) if leader election is required.

The following two results further emphasize the significance of Theorem 1.1.

a. A runtime of Ω(max{DN,N2}) for the deterministic algorithm of Adhikary et al. [1] for Com-
plete Visibility on a grid of unbounded size (Theorem 2.4).

b. A time lower bound of Ω(N) and an area lower bound of Ω(N2) for Complete Visibility on
a grid of unbounded size (Theorems 2.5 & 2.6), which hold even if an unlimited number of
colors is available and leader election is not required (i.e., a unique leader is already provided or
identified). In other words, this time lower bounds holds for both deterministic and randomized
algorithms.

Note that the randomized algorithm in the context of this paper is the algorithm that uses random-
ized leader election procedure. Therefore, except leader election, the rest is deterministic even for
our randomized algorithm.

All the above results are summarized and compared with the closest previous work in Table 1.
In summary, Theorem 1.1 improves runtime significantly compared to Adhikary et al. [1]. In fact,
our algorithm is asymptotically time-optimal for D = O(N) (Theorem 2.6). Moreover, Theorem 1.1

52

International Journal of Networking and Computing

bounds for the first time the area of the final configuration of the solution. In fact the area occupied
by the robots in our algorithm is optimal for any D (Theorem 2.5). Additionally, our time lower
bound shows that irrespective of (i) whether leader election is needed and (ii) whether there is a
limit on the number of colors, the time bound cannot be better than O(N) and the area bound
cannot be better than O(N2). Therefore, our result provides trade-off on the number of colors and
nature of the algorithm based on whether leader election is required.

Note: This is an extended, full version of a preliminary version appeared in APDCM’20 [18].
This version includes proofs as well as many details that were omitted in the preliminary version.
Additionally, the number of colors in our algorithm with leader election is improved from 50 (reported
in the preliminary version) to 32 in this version, through a detailed analysis on the number of colors.

Techniques. The area lower bound proof uses an argument based on the well-known pigeonhole
principle. For the time upper bound, our proposed algorithm has three stages, Stages 1–3, that
execute one after another. Stage 1 is needed only when a leader needs to be identified (i.e., a leader
is not provided already). Stage 1 (if executed) elects two robots as the first and second leaders
satisfying some properties. Stage 2 moves all the robots to position them on consecutive grid points
on an axis-aligned line connecting the leaders. Stage 3 moves all robots except the first leader to
position themselves on grid points in a manner that solves Complete Visibility. Keys to Stage 1
are corner moving and leader election procedures that allow electing two robots as leaders with
certain desired properties. Key to Stage 2 is a line formation procedure that positions all N robots
on consecutive positions on an axis-aligned line connecting the leaders. Key to Stage 3 is a placement
procedure that positions the robots in grid points guaranteeing Complete Visibility.

We will show that each stage finishes in O(max{D,N}) time, giving overall O(max{D,N})
runtime. Stage 1 for leader election finishes in this time with probability at least 1 − 1

2max{D,N}

(and makes the overall algorithm randomized). Stages 2 and 3 are deterministic. If leader election
is unnecessary, Stage 1 is not needed, and hence the overall algorithm is deterministic. The total
number of colors used throughout the stages with leader election is 32 and without leader election
is 17.

Remark on Leader Election Requirement. Since robots are indistinguishable, deterministic
leader election is not possible without some other mechanism to break symmetry. For instance,
suppose robots have a compass, i.e., robots agree on North (top), South (bottom), East (right), and
West (left) directions. This immediately provides the leader (for example, pick the southernmost
robot; break a tie by picking the westernmost among all southernmost ones).

Closely Related Work. Adhikary et al. [1] gave the only Complete Visibility algorithm for
robots with lights operating on a grid of unbounded size. All other Complete Visibility algorithms
are for the real plane (as noted earlier). The algorithm of Adhikary et al. is deterministic and uses
11 colors in the asynchronous setting. While their work proves algorithm correctness, it does not
provide a runtime and area analysis, except for a proof of finite time termination. Our analysis of
their algorithm gives Ω(max{DN,N2}) runtime, where D is the diameter of the initial configuration.
We do not have analysis on the area occupied by the final configuration of the robots in Adhikary
et al. but what is known is that the area is at least Ω(N2). In contrast, our algorithm runs in
O(max{D,N}) time with very high probability and the final configuration has an area of O(N2).
Both the time and area are asymptotically optimal. Some of the results (particularly line formation
in Stage 2) are recently used by Hector et al. [11] for the convex hull formation problem on the grid
of unbounded size and provided (asymptotically optimal) time and perimeter bounds.

Many papers focus on solving Complete Visibility on the 2-dimensional real plane. Di Luna
et al. [5] gave the first algorithm for robots with lights. Subsequent papers [4, 15] minimized the
number of colors. Vaidyanathan et al. [21] presented an algorithm with runtime O(logN) using 12
colors in the fully synchronous setting. After that, Sharma et al. [19] presented an algorithm with
runtime O(1) using 12 colors in the semi-synchronous setting. Finally, Sharma et al. [17, 20] then
presented an algorithm with runtime O(1) using 47 colors in the asynchronous setting.

Furthermore, Complete Visibility on a grid has been considered in the literature as the No-
Three-In-Line problem [6,8,9], where the goal is to select grid points from an N ×N grid so that

53

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

no three selected points are collinear. The maximum number of such grid points is 2N for N ≤ 46,
and for N >> 46, the best solution known is (3

2−ε)N , for any ε > 0 [9]. However, these works do not
deal with relocating robots to place themselves on the grid points to satisfy a No-Three-In-Line
configuration. This becomes further challenging when (i) robots do not know N , (ii) robots and grid
both are anonymous, and (iii) robots are disoriented.

Roadmap. The rest of the paper is organized as follows. Section 2 provides details on the model,
the runtime of the previous algorithm, and the runtime and area lower bounds of Ω(N) and Ω(N2),
respectively, for any Complete Visibility algorithm on a grid. We present our O(max{D,N})-
time, O(N2)-area algorithm and its analysis in Section 3 proving Theorem 1.1. The algorithm is
deterministic or randomized depending on whether leader election is required or not. Section 4
concludes the paper with a short discussion.

2 Model and Preliminaries

Robots. We consider a system of N robots (agents) Q = {r0, r1, · · · , rN−1}. Each robot is a
(dimensionless) point that can move in a 2-dimensional grid Z2 of unbounded size embedded in the
plane (here Z is the set of integers). All the robots are initially positioned on grid points. The
robots do not have access to any global coordinate system (except as noted in the description of the
“Grid” in Section 1) and they do not know the value of N . Robots agree on the location of grid
points, but each robot’s orientation of up/down, left/right in the grid is local and is independent of
the orientation of other robots. A robot ri can see, and be visible to, another robot rj iff there is
no third robot rk in the line segment joining ri and rj (note that this line segment does not have to
be axis-aligned). Each robot has a light that can assume one color at a time from a constant-sized
set. We will often use ri to denote a robot as well as its position.

Look-Compute-Move. At any time, each robot ri is either active or inactive. When a robot ri
becomes active, it performs the “Look-Compute-Move” cycle described as follows. (i) Look: For
each robot rj that is visible to it, ri can observe the position of rj on the grid and the color of the
light of rj . Robot ri can also observe its own color and position. Each robot observes position in its
own frame of reference. That is, two different robots observing the position of the same point may
produce different coordinates. A robot observes the positions of points accurately within its own
reference frame. (ii) Compute: Robot ri may perform an arbitrary computation using only the
colors and positions observed during the “look” portion of that cycle. This includes determination
of a (possibly) new position (at a neighboring grid point) and light color for ri. (iii) Move: Robot ri
changes its light to the new color (if computed) and moves to its new position.

Robot Movement. A robot’s movement is restricted to grid lines. In other words, from a robot’s
current grid point, it can move only to one of the four neighboring grid points in one move. For
simplicity in analysis, we assume that the moves are instantaneous, i.e., the robots are always seen
at grid points (not on grid edges). Numerous grid and graph algorithms make this assumption (for
instance, [1, 7]).

Robot Activation and Synchronization. In the fully synchronous setting (FSYNC), every
robot is active in every synchronized LCM cycle. In the semi-synchronous setting (SSYNC), at
least one robot is active in each synchronized LCM cycle, and over an infinite number of LCM
cycles, every robot is active infinitely often. In the asynchronous setting (ASYNC), robots have no
common notion of time. No limit exists on the number and frequency of LCM cycles in which a robot
can be active except that every robot is active infinitely often. Complying with the ASYNC setting,
we assume that a robot “wakes up” and performs its Look phase instantaneously. An arbitrary
amount of time may elapse between Look/Compute and Compute/Move phases.

Runtime and Area. For the FSYNC setting, time is measured in rounds. Since a robot in the
SSYNC and ASYNC settings could stay inactive for an indeterminate time, we use the idea of an
epoch to measure time. An epoch is the smallest time interval within which each robot is active at
least once [2]. Let t0 denote the start time. Epoch i (i ≥ 1) is the time interval from ti−1 to ti where

54

International Journal of Networking and Computing

c1 c4

c2 c3

Figure 1: Examples: (a) Smallest Enclosing Rectangle (SER), (b) Four-Corners Configuration (FCC)

ti is the first time instant after ti−1 when each robot has finished at least one complete LCM cycle.
Therefore, for the FSYNC setting, a round is an epoch. We will use “time” generically to mean
rounds for the FSYNC and epochs for the SSYNC and ASYNC settings.

For area, we measure the size of the axis-aligned rectangle that encloses all the robots in their
final configuration solving Complete Visibility.

Smallest Enclosing Rectangle (SER) and Four-Corners Configuration (FCC). A smallest
enclosing rectangle (SER) of a configuration is an axis-aligned rectangle with minimum area such
that all robots are on its perimeter or in its interior. A four-corners configuration (FCC) is a
configuration in which one robot is at each of the four corners and the remaining N − 4 robots are
in the interior. For N = 10, Fig. 1 shows an SER (left) and an FCC (right).

Line and Line Segment. For any pair of points a, b, we denote the line segment connecting them
by ab and its length by length(ab). We denote a line with one endpoint a and passing through b by
−→
ab. When we refer to grid points on

−→
ab, we always refer to points on

−→
ab starting from a towards b

(and possibly beyond b).

Configuration. A configuration Ct specifies the robots’ positions and colors at time t ≥ 0. For-
mally, Ct =

{(
posti, col ti

)
: 0 ≤ i < N

}
for robot positions posti and colors col ti at time t. A

configuration, Ct(ri), for a robot ri ∈ Q at time t is a restriction of Ct to those robots that are
visible to ri at t. Clearly, Ct(ri) ⊆ Ct. We will sometimes write C,C(ri) to denote Ct,Ct(ri).

Basic results. The following results will be used in the algorithm in Section 3.

Lemma 2.1 Let Li be an axis-aligned grid line passing through robot ri ∈ Q such that: (a) there is
at least one robot on each side of Li, and (b) ri can see a robot colored red on only one side of Li
(with no visible red-robots on the other side). Let LPi be a line perpendicular to Li passing through
ri. Let pup and pdown be the grid points on LPi adjacent to ri’s position where pup is on the side
with red robots. Robot ri can correctly move to pup or pdown as needed.

Proof. Since robots on one side of Li are colored differently than the other side, ri can differentiate
the neighboring points pup or pdown on LPi as needed. ut

Lemma 2.2 Let Li be an axis-aligned grid line passing through robot ri ∈ Q. Let LPi be a line
perpendicular to Li passing through ri. Let LPf and LPj be lines parallel to LPi and on opposite
sides of LPi. Let Lα be a line parallel to Li such that a robot each from LPf and LPj is on it with
color different from other robots on those lines. Let there be no robots between LPf and LPi and
between LPi and LPj on the side of Li that includes Lα, and let there be no robot on LPi or LPj
beyond Lα. Let p be the grid point on LPi adjacent to ri’s position and on the side of Li opposite
that of Lα. Robot ri can correctly move to p.

Proof. Since a robot ri on LPi always sees robots on LPf and LPj colored different from other
robots, by Lemma 2.1, ri can correctly move to point p. ut

Lemma 2.3 Let AB be an axis-aligned grid line segment joining two grid points A,B. Suppose
length(AB) = x units. For any 1 ≤ y ≤ x + 1, y robots placed arbitrarily on the points of AB can
be relocated to be positioned consecutively on AB starting from A (or B) in 2x+ 2 epochs.

55

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

Proof. If there are y = x + 1 robots on AB, no relocation is necessary. If y = 1, then it needs x
epochs. Suppose the only robot is at B and has to move to A. If there are 2 ≤ y ≤ x robots, then a
robot may not be able to make its first move for y − 1 epochs (suppose y robots are on consecutive
positions). After that, it can move in each epoch as the robots are moving in the same direction
and when the next point is empty and a robot moves into it, then the new next point will be empty
in the next epoch as well. Therefore in total, y ≤ 2x+ 2 epochs. ut

Time Complexity of the Previous Algorithm. Adhikary et al. [1] constructed the only previous
algorithm for Complete Visibility on a grid. They provided no runtime.

Theorem 2.4 (runtime of Adhikary et al. [1]) The algorithm of Adhikary et al. [1] for Com-
plete Visibility on a grid of unbounded size has runtime Ω(max{DN,N2}).

Proof. Their algorithm has three phases that execute sequentially.

• Phase 1 (interior depletion) moves all the robots in the interior of the initial configuration
to form an SER configuration so that all N robots are positioned on the boundary of the SER.
The robots already on the boundary of the SER do not move and the robots in the interior of
the SER sequentially move to position themselves on the boundary of the SER. If all positions
on the SER boundary are occupied, then the robots on the boundary of the SER move to the
exterior to create empty positions. After all the robots position themselves on the boundary
of the SER, Phase 1 finishes.

• Phase 2 (corner creation) If the four robots on the SER are not already on the four corner
points of the SER, then robots on the boundary of the SER move to place robots on the four
corners of the SER. Phase 2 then finishes.

• Phase 3 (symmetric movements) moves the robots on the SER, two at a time (from each
side of the SER), in the exterior of the SER to form a Complete Visibility configuration.
After two robots (from a side of SER) are placed on their positions, the next two from that
side will move, and so on. The moves of two robots from four sides of SER run independently
in parallel. The four robots on the corners of the SER will not move, and they act as references
to position the N − 4 robots appropriately to achieve a Complete Visibility configuration.
If two robots moved simultaneously before are placed at distance d from the Phase 2 SER (in
the exterior of the Phase 2 SER), the two robots moved simultaneously after are placed at
distance d′ > d.

We now discuss why the runtime is Ω(max{DN,N2}). In Phases 1 and 3, there are configurations
such that these phases need time Ω(DN) and Ω(N2), respectively. For time Ω(DN) for Phase 1,
consider the initial configuration of bN/2c robots in the interior on a line (that is not a vertical
or horizontal axis-aligned line of the grid) and the remaining dN/2e robots on the SER. This gives
bN/4c rectangle layers in the interior of the SER with two robots serving as the corners of each
rectangle layer. Suppose the distance between robots on the SER boundary to any robot in the
interior of it is D = Ω(N). In this configuration, the robots in the interior of the SER need to move
to the SER boundary. Since the robots on a side move sequentially, only two robots on a rectangle
layer in the interior of the SER can move to the SER at any round. Since there are bN/2c robots in
the interior and the distance from each of them to G′ is Ω(D), the total time is Ω(DN).

For time Ω(N2) for Phase 3, consider an SER with N/4 robots on each side. Only two robots
from each side move simultaneously at any time. After they are settled, then two other robots move.
This way this process repeats N/8 times. Two robots settle at distance 1 from the Phase 2 SER, two
robots settle at distance 2 from the Phase 2 SER, and so on. This way, the last two robots have to
move N/8 distance. Therefore, the total time is ≥ (1+2+ . . .+N/8) ≥ N/8(N/8+1) ·1/2 = Ω(N2).

ut

Time and Area Lower Bounds. In the grid plane, we consider the area of a configuration to
be the area of the SER of that configuration. The following results establish lower bounds the time
and area of the final configuration of any Complete Visibility algorithm for the grid.

56

International Journal of Networking and Computing

G

G’

LL

PP’

Figure 2: Lower bound example

Theorem 2.5 Every Complete Visibility algorithm for N robots running on a grid has a final
configuration whose SER has each side of size Ω(N) and whose area is Ω(N2).

Proof. In any solution to Complete Visibility no three robots can be on a straight line. This
implies that each “horizontal” or “vertical” grid line can hold at most two robots. That is, the
number of horizontal (or vertical) lines included in the SER of the final configuration is at least⌈
N
2

⌉
= Ω(N). Therefore the area is at least

⌈
N
2

⌉2
= Ω(N2). ut

We now use Theorem 2.5 to establish that there exists an initial configuration from which at
least one robot must move Ω(N) times; recall that a Complete Visibility algorithm must admit
any initial configuration.

Theorem 2.6 Every Complete Visibility algorithm for N robots running on a grid that admits
an arbitrary initial configuration has a worst-case time complexity of Ω(N).

Proof. Consider an initial configuration in which the N robots are placed compactly in a
⌈√

N
⌉
×⌈√

N
⌉

= Ai×Ai SER Si (say). (See Fig. 2.) By Theorem 2.5, the Complete Visibility algorithm

must move the robots into an SER Sf of size Af × Bf = Ω(N) × Ω(N). In a final configuration
whose SER is Sf , each side of Sf must have at least one robot positioned on it. Regardless of where
Si is positioned relative to Sf , it is easy to see that there is at least one side of Sf all of whose

points are at least 1
2 min{Af , Bf} − Ai = Ω

(
N −

√
N
)

= Ω(N) distance from every point in Si.

Therefore, at least one robot must move Ω(N) distance and the lower bound on the time of the
algorithm is Ω(N). ut

Observe that the results of Theorems 2.5 and 2.6 are independent of whether robots have lights
or not and their synchronization mode. These theorems will be used to establish the proposed
algorithm to be optimal in time and area.

3 O(max{D,N})-Time, O(N 2)-Area Algorithm

In this section, we describe an O(max{D,N})-time, O(N2)-area algorithm for Complete Visibil-
ity on a grid of unbounded size in the ASYNC setting for robots with lights. For simplicity in the
analysis, we first consider the cases of D = O(N). The algorithm and analysis extend immediately,
replacing N by D for cases where D = Ω(N). The area bound remains independent of D. The
algorithm consists of three stages, Stages 1–3. Fig. 3 provides an overview of these stages.

• Stage 1 (leader election) positions robots on the corners of an FCC and elects two robots A
and B on a side of the FCC to be leaders. A is elected first and is called the “first leader”. B
is elected after A and is called the “second leader”. The remaining two robots C,D on a side
of the FCC are also ranked first and second. Stage 1 is not needed if leader election capability
is already provided or available.

57

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

(a) (b) (c) (d)
Figure 3: A non-collinear initial configuration Cnon,init and the three stages of the algorithm: (a)
Cnon,init, (b) after Stage 1, (c) after Stage 2, and (d) after Stage 3. The configuration after Stage 3
is a Complete Visibility configuration.

• Stage 2 (line formation) moves the N − 2 non-leader robots to position themselves on

consecutive grid points on line
−−→
AB starting from A towards B, except one robot that will be

positioned on
−−→
AB at the grid point that is at distance N ′ − 1 from A, where N ′ ≥ N is the

first prime number greater than or equal to N .

• Stage 3 (placement) moves all robots (except A) from
−−→
AB perpendicular to

−−→
AB to posi-

tion them modulo N ′ on grid points forming a Complete Visibility configuration, where
Theorem 3.14 due to Roth [14] guarantees visibility.

At the initial configuration Cinit, all robots have color start. Each robot ri works autonomously
having only the information C(ri). Though robots are oblivious, the colors and configurations
of robots synchronize execution of the stages so that robots execute stages sequentially one after
another.

We differentiate initial configurations Cinit into two categories, collinear initial configurations
Ccol,init, and non-collinear initial configurations Cnon,init. Cinit is Ccol,init if all the robots are on
a single grid line in Cinit, otherwise Cinit is Cnon,init. An important point to note in the definition
of Ccol,init is that it does not include configurations where all robots exist on a single line that is
not a grid line. For example, in Fig. 1(b), if all robots are on line c1c4 or c3c4, then it is Cnon,init,
but if all robots are on line c1c3 then it is not Cnon,init. In both Ccol,init and Cnon,init, Stage 3 is
common. For Ccol,init, Stages 1 and 2 can be executed together. Therefore, Sections 3.1 and 3.2
describe Stages 1 and 2 for Cnon,init, respectively, and Section 3.3 describes Stages 1 and 2 together
for Ccol,init. Finally, Section 3.4 describes Stage 3 with correctness and runtime.

3.1 Stage 1: Leader Election for Non-collinear Configurations

Stage 1 forms a four-corners configuration (FCC) among robots and designates two of the corner
robots A and B on one side as leaders. We first discuss how to elect A and B for any Cnon,init when
N ≥ 4. We then discuss a special case of Cnon,init when N = 3. We have two sub-stages, Stage 1.1
and Stage 1.2. Stage 1.1 forms an FCC with N − 4 robots being in its interior (Fig. 3(b)). Stage 1.2
elects leaders A and B among the four corner robots of the FCC. The remaining two robots C,D
on the FCC are also ranked first and second.

Stage 1.1. Let P be an SER of the robots in Q in any given Cnon,init on a grid (of unbounded
size). All the robots of Q are either on the perimeter of P or in the interior of P (Fig. 4(b)). An
SER, P, is an FCC if and only if there are exactly four robots on the four corners of P and no other
robot on the perimeter. The goal here is to form an FCC from the SER of Cnon,init. A robot w
is at a corner (or on a side) of the SER if all visible robots are within an axis-aligned angle of 90◦

(or 180◦ but not 90◦). In the following discussion, w will take actions based on sides and corners
of an SER. These refer to the smallest enclosing rectangle of the configuration visible from w; this
rectangle may be the same as or a subset of the SER of the entire configuration.

The algorithm is as follows for each robot w ∈ Q.

58

International Journal of Networking and Computing

(a)

W1

W2

LV

LH

LV

LH

P

(b)

W1

W2

LV

LH

LV

LH

P

(c)

W4

W1

W2

W3 FCC

(d)
Figure 4: An illustration of Stage 1.1 forming an FCC: (a) Cnon,init, (b and c) during Stage 1.1, and
(d) after Stage 1.1. P is an SER (rectangular convex hull) of Cnon,init.

• Let w be at a corner of the SER, then w changes its color to rectangle-point.

• Let w be a side robot on side S of the SER. If w sees a corner or side robot in one direction
on S but nothing in the other direction, then it takes color ready1 (yellow colored robot in
Fig. 4(b)) and moves toward the empty corner. Suppose w sees no other robots on S and is
closer to corner cnear of S than it is to corner cfar of S. Let IS denote the set of interior robots
closest to S. If IS is empty or includes a robot whose projection to S is at equal or less distance
to cfar than w, then w takes color ready1 and moves toward cnear; otherwise, w takes color
ready1 and moves toward cfar. Now suppose w sees no other robots on S and is equidistant
from both corners of S. If IS has robots with projections to S in only one direction from w,
then w takes color ready1 and moves toward the corner in the opposite direction; otherwise,
w takes color ready1 and arbitrarily chooses one corner and moves toward it.

• Let w be an interior robot closest to side S of the SER and at an extreme toward a corner of S
of the set IS of robots closest to S, and let IS contain no robots with color ready1. In this item,
let corner robot mean a robot at a corner of the SER or a robot with color rectangle-point
that is Manhattan distance 1 or 2 away from a corner of the SER. If S has one corner robot
but no side robots and w is the robot in IS closest to the empty corner, then w moves toward
S. If S has one side robot x but no corner robots and x is closer to corner cnear of S than it
is to corner cfar of S, then w does the following. If the projection of w on S is closer to cfar
than x is and w is closer to cfar than other robots in IS , then w moves toward S. (Robot x
will move toward cnear and w will move toward cfar.) If the projection of w on S is closer
to cnear than x is and w is closer to cfar than other robots in IS , then w moves toward S.
(Robot x will move toward cfar and w will move toward cnear.) In the above in this item,
when the move of w toward S will place w on S, then w takes color ready1 before the move,
so w will have color ready1 when it arrives on S. Fig. 4(c) illustrates these robots (yellow
colored) moving to a side then toward a corner.

• Let w be a side robot not colored ready1, in a configuration with no interior robots, and
closest to side S of the SER that has only one side robot and no corner robots or only one
corner robot and no side robots, then w moves into the interior. This puts w into a position
from which it can later move to a corner of S.

• If two robots were to head to the same rectangle point (one in horizontal direction and one in
vertical direction) and they are at distance one from the rectangle point, then they use leader
election to break symmetry (and avoid collision) so that one will continue moving towards the
rectangle point. The leader election procedure described later in Stage 1.2 can be used for this
symmetry breaking. The robot that loses the leader election changes its color back to start.

• If a robot w has color rectangle-point and sees a robot on one of its (axis-aligned) sides
that does not have color rectangle-point or ready1 (that is, a side robot), then w moves
unit distance away from the side (toward the exterior) to be visible to the neighboring corner
(see Fig. 4(d)).

59

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

• If a robot w has color rectangle-point and is not at a corner of the SER, then it identifies
the robot with color rectangle-point at the neighboring corner and moves outward to align
itself with that robot in a corner position. If w has two such non-aligned neighbors, then w
picks one of them arbitrarily and moves to align with it.

• If a robot w has color ready1 and is not on a side S of the SER, then w moves to place itself
on S, keeping color ready1.

For any Cnon,init with N = 3, each robot will figure out that there are only three robots in Q
while executing Stage 1.1. The robots then terminate forming a triangular configuration.

Lemma 3.1 At the end of Stage 1.1: (i) for N = 3, the robots terminate during Stage 1.1, (ii)
for N ≥ 4, the FCC is correctly formed with N − 4 robots in its interior. The corner robots of the
FCC have color rectangle-point while the interior robots have color ready1 or start. Stage 1.1
finishes in O(N) epochs avoiding collisions, using randomization for symmetry breaking. The total
number of colors used in Stage 1.1 is 3.

Proof. For the SER of the robot configuration (starting from Cnon,init), consider each corner c. If
a robot is at c, then it will take color rectangle-point and will remain at a corner of the SER. (It
may move, but will remain at a corner of the new configuration.) If no robot is at c, then consider
one side S of that corner. If S has two or more side robots on it, then the one closest to c will
take color ready1 and move toward c. It will either reach c and take color rectangle-point or
it will lose a randomized selection to a robot colored ready1 on the adjacent side and that robot
will reach c and take color rectangle-point. If c has no robot and S has only one side robot r,
then if the corner at the other end of S has a robot, then r will take color ready1 and move toward
c as above, otherwise, an interior robot will move to S and the algorithm will proceed as above
for two or more side robots. Each corner robot colored rectangle-point will move to see the two
neighboring corners without being blocked by side robots. A robot will move at most twice after
taking color rectangle-point. Collision avoidance is obvious since robots never move to the same
grid point and towards each other (except for two robots moving to the same corner, and these use
leader election described later in Stage 1.2 to avoid collision). For runtime, O(N) epochs are enough
since even if the robots move sequentially, only at most eight robots compete to become rectangle
points and four are successful. It is immediate that Stage 1.1 uses 3 colors start, ready1, and
rectangle-point; the color start is the color of robots in Cinit. ut

Stage 1.2. After an FCC is formed, the goal is to elect two adjacent robots among the four on
rectangle points of the FCC as first and second leaders, A and B, respectively. Leader A is picked,
then leader B is picked, which is a neighbor of A on the SER. A is colored leader1 and B is colored
leader2. Two remaining rectangle points C,D are colored defeated1 and defeated2, respectively,
where C is the neighboring rectangle point of A in the FCC.

Leader Election. In the context of robots with lights, the leader election problem is as follows:
Given a non-empty subset S of robots (indicated by their relative positions and light colors), select
exactly one robot from S as the leader. On termination, the leader is colored leader and all other
robots of S are colored non-leader.

Leader Election under Complete Visibility. Here we assume that all robots in the set S are
visible to each other, so each competing robot is aware of M = |S|, the number of competing robots.
The algorithm executes the following for each robot at each round.

• Toss a coin to select light color leader (resp., non-leader) with probability 1
M (resp., 1− 1

M).

• If there is exactly one robot in S with color leader, then terminate; otherwise repeat the
previous step.

It is well-known that the above algorithm terminates with a leader in O(σ logM) rounds with
probability 1− 1

Mσ . Conversion of this algorithm to the ASYNC model is simply a matter of using
lights (states) to synchronize robots into simulated rounds. In each simulated round (see Fig. 5), a

60

International Journal of Networking and Computing

C1

C3

C7 or C8

C4

C2

C6 or C8

C
5 or C

9
C 5
or
C 9

wait-NL

ready

toss-L toss-NL

wait-L

leader non-leader

Figure 5: State diagram for ASYNC leader election when competing robots are visible to each other.
The conditions C1–C9 are explained in the text describing the algorithm.

robot will cycle through a ready state, one of two “toss” states (toss-L and toss-NL) and one of
two “wait” states (wait-L or wait-NL). From a “wait” state the robot either goes back to the ready

state or terminates in one of two “terminal” states (indicated by lights leader and non-leader).
For the description below on leader election, we assume that robots start at the ready state and

that every robot trying to be the leader can see every other robot trying to be the leader (complete
visibility among the competitors). We discuss later how this leader election procedure is applied in
the context of executing Stage 1.2 of our algorithm (where complete visibility among competitors is
not assured).

When a robot is in the ready state and it sees all robots in either the ready or one of the
“toss” states, it tosses a coin (as indicated in the algorithm above) and goes to state toss-L (resp.,
toss-NL) with probability 1

M (resp., 1− 1
M); these transition conditions are denoted by C1 and C2,

respectively in Fig. 5. No robot proceeds from a “toss” state until all robots are either in a “toss”
state or a “wait” state. When a robot is in toss-L (resp., toss-NL) state and it sees all robots
in either a “toss” state or a “wait” state, then it moves to state wait-L (resp., wait-NL); this is
indicated by conditions C3 and C4 in Fig. 5. No robot proceeds from a “wait” state until all robots
are in a “wait,” “terminal” or ready state; here we use the term “terminal state” to denote either
state “leader” or “non-leader.” Specifically, if a robot r is in state wait-L (resp., wait-NL), and
no robot is in a “toss” state, then it proceeds as follows. If there is a robot in state ready, then
robot r too moves to state ready (Condition C5 in Fig. 5). If there is a robot in a terminal state,
then the robot r moves to leader (resp., non-leader) (conditions C6 (resp., C7) in Fig. 5). If no
robot is in ready or a “terminal” state, then the robot r moves to state leader by condition C8

(resp., non-leader by condition C9) if it sees exactly one robot (including itself) in state wait-L;
otherwise, robot r moves to state ready (condition C9). The correctness of this algorithm follows
from the fact that no new round starts until all robots have completed the current round. In fact,
the time complexity of this ASYNC algorithm is the same as in the FSYNC model, with a round
replaced by an epoch. The number of colors needed for the algorithm is 7, one for each state in
Fig. 5.

Lemma 3.2 Leader election among a set of M robots that are visible to each other can be performed
on the ASYNC model with lights with 7 colors in O(σ logM) epochs, with probability 1− 1

Mσ .

For this paper we will require a special case of Lemma 3.2 with M = 2. For an overall problem
size of N and “with high probability (whp)” indicating a probability of at least 1−N−c for constant
c > 1, we use σ = c logN to obtain the following result.

Corollary 3.3 Leader election among a set of 2 robots that are visible to each other can be performed
on the ASYNC model with lights in O(logN) epochs, with probability 1− 1

Nc .

61

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

Leader Election on a Non-Empty Rectangle. Here S = {0, 1, 2, 3} is a set of four robots such
that for each 0 ≤ i < 4, robot i can see itself and robots (i± 1)(mod 4). (In the following discussion
we will write i±1 to mean (i±1)(mod 4). Also the index i itself is only for our reference; the robots
themselves are anonymous.) We will call the robots in set {i−1, i, i+ 1} as the “neighbors” of i. As
before, we consider the FSYNC case first. The basic algorithm is also the same as the one before
(the standard slotted ALOHA-based as described in Wattenhofer [22]).

The robots will start with color ready, flip a coin in the first round and color themselves ac-
cordingly. We will call this new color as the “toss color.” Specifically, the robots begin by coloring
themselves zero (or one) with probability 1

4 (or 3
4). If there is exactly one robot with toss color

one, then that will (subsequently) become the leader.
In the second round, each robot i will generate a composite color (xi, yi), where xi ∈ {zero, one}

is its toss color. The “view color” yi ∈ {0, 1, 2, 3} of robot i is the number of robots among its
neighbors i− 1, i, i+ 1 that have “toss color” one.

At the third round, each robot can determine whether a leader has been found or another iteration
of coin-flips is needed. The following lemma develops the conditions to make this determination.

Lemma 3.4 For S = {0, 1, 2, 3} and any robot i ∈ S, the number of robots in S with toss color one
is 0 (resp., 1, ≥ 2) iff the highest view color among the neighbors of i is 0 (resp., 1, ≥ 2).

Proof. We first prove that if the total number of robots with toss color one is c ∈ {0, 1,≥ 2}, then
the largest view color that robot i sees is c.

• Case c = 0: Every robot must have a view color of 0.

• Case c = 1: If robot i is the robot with toss color one, then robots i− 1, i, i+ 1 all have a view
color 1. If robot i − 1 or i + 1 is the robot with toss color one, then that robot and robot i
both have a view color of 1 while the other robot of the pair has a view color of 0. If robot
i+ 2 is the robot with toss color one, then robots i− 1 and i+ 1 have view color 1 while robot
i has view color 0. Across these instances, the largest view color that robot i sees is 1.

• Case c ≥ 2: If at least two of the neighbors of robot i have toss color one, then i has a view
color at least 2. If only one of the neighbors of robot i has toss color one, then i+ 2 must have
toss color one. Then if i− 1 or i+ 1 is the neighbor with toss color one, then that robot will
have view color 2; otherwise, i is the neighbor with toss color one, so i− 1 and i+ 1 will have
view color 2. Across these instances, the largest view color that robot i sees is at least 2.

We now prove the converse that if the largest view color that robot i sees is c ∈ {0, 1,≥ 2}, then
the total number of robots with toss color one is c. Again we consider some cases.

• Case c = 0: If robot i sees a maximum view color of 0, then neighbor j ∈ {i− 1, i, i+ 1} has
view color yj = 0, so each robot k ∈ {j − 1, j, j + 1} must have a toss color of zero. With
addition and subtraction modulo 4, the set {j − 1, j, j + 1 : i − 1 ≤ j ≤ i + 1 and 0 ≤ i <
4} = {i − 2, i − 1, i, i + 1, i + 2 : 0 ≤ i < 4} = {0, 1, 2, 3} is the entire set of robots under
consideration.

• Case c = 1: Suppose robot i sees a maximum view color of 1. If i has a toss color of one, then
each of robots i±1 must have a toss color of zero and so must robot i+2; otherwise, the view
color of i± 1 would be > 1. On the other hand, if i has a toss color of zero, then at most one
of i ± 1 has toss color one. If one does, then i + 2 has toss color zero; if neither does, then
i + 2 has toss color one because i sees a view color 1. These two observations imply that if i
that sees a maximum view color of 1, then exactly one among the four robots of S has toss
color one.

• Case c > 1: If a robot i sees a view color c ≥ 2, then at least two of its neighbors or its
neighbors’ neighbors must have a toss color of one. This set {j, j + 1, j − 1 : i − 1 ≤ j ≤
i+ 1} = {i− 2, i− 1, i, i+ 1, i+ 2} = {0, 1, 2, 3} is the entire set of robots under consideration.

62

International Journal of Networking and Computing

toss
states

all-toss
states

count
states

states
all-count

C1

C2 and CNL

C3 C3

C4 and C4a

C2 and CL

C4 and C4a

C4 and C4b

C5 or C5a

C5 or C5b

C7 C7 C7

C6 or C6a

C 6
or
C 4c

C
6 or C

4c

C6 or C6a

C6 or C6b

toss-NLtoss-L

all-toss-L all-toss-NL

ready

all-ready

all-count-0

leader non-leader

count-1-L count-1-NL count-0

all-count-1-L all-count-1-NL

Figure 6: State diagram for ASYNC leader election when competing robots are placed at corners
of a rectangle and two robots are visible to each other if they share a side in this rectangle (diagonal
robots may not be able to see each other). The conditions used to label the edges are given in
Table 2. Some of the states are collective names, for example states toss-L and toss-NL are
collectively called “toss states;” these collective names are also shown in the figure. In addition we
will also refer to states “1” and “0” states in the obvious way from the count and all-count states.

ut

Lemma 3.4 establishes the criterion to terminate the leader election algorithm with an appropriate
leader or non-leader flag or to iterate again. The extension of this algorithm to the ASYNC model
follows the idea of Fig. 5.

Consider the end of Stage 1.1 in which all four corner robots of the FCC have color
rectangle-point and all interior robots have color either ready1 or start. Only the four cor-
ner robots of the FCC take part in the leader election process with color rectangle-point. Let
A,C,D,B be four corners named consecutively in the clockwise direction starting from corner A.
For A to start the leader election procedure, it has to see both of its neighbors B,C colored
rectangle-point. This condition applies to B,C,D as well. Therefore, these four robots syn-
chronize on the colors such that all of them start leader election with color rectangle-point. This
is equivalent to having all four robots colored “ready” when starting leader election (Fig. 6). The
robots can then transition to other colors as described in the leader election procedure. Each state
in Fig. 6 corresponds to a light color.

63

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

Table 2: Conditions used in Fig. 6

Symbol Condition
C1 Robot can see only ready or all-ready states
C2 Robot can see only all-ready states
CL Robot has tossed a 1 (Leader)
CNL Robot has tossed a 0 (Non-Leader)
C3 Robot can only see toss or all-toss states
C4 Robot can only see all-toss states
C4a Robot can see exactly one robot (including itself) in state all-toss-L

C4b Robot cannot see any robots in state all-toss-L

C4c Robot can see more than one robot in all-toss-L state
C5 Robot can only see count or all-count states
C5a Robot can see a robot (possibly itself) in a “1” state
C5b Robot cannot see any robot in a “1” state
C6 Robot can see another robot in ready state
C6a Robot can see two or more robots in a “1” state
C6b Robot can cannot see any robots in “1” states
C7 Robot can only see all-count states and the robots sees a “1” state

As noted earlier, robots start at state ready. When a robot i (say), that in state ready, sees
itself and is two neighbors in state ready or all-ready, it moves to state all-ready and stays
there until all its neighbors have moved to all-ready. At this point robot i has the assurance
that all four robots competing in leader election are in states ready or all-ready. It now tosses
a coin and moves to one of states toss-L or toss-NL. It is possible that at this point robot i is in
a toss state, but its diagonally opposite robot i + 2 (that may not be visible to i) is still in state
ready. However, robots i ± 1 cannot move to a toss state until robot i + 2 moves to all-ready.
Consequently, robot i cannot leave the toss state until robot i + 2 moves to all-ready. Thus the
addition of state all-ready serves to synchronize robots between “ready” and “toss” states (that is
not automatic as diagonally opposite robots may not be visible to each other). Similarly, the all-toss
states serves to assure a robot trying to move to a count state that all robots are in a toss state, and
the all-count states assure robots that the toss of every robot has been factored in. At a count state
a robot has a possibly partial count of the number of “leaders”; in an all-count state, each robot
has an exact count of the number of “leaders.” If this count is greater than 1, then robots move to
ready for the next iteration. When all robots are in an all-count state and see a “1” robot, then the
leader has been found.

Thus, the leader election procedure above uses 14 colors to find a leader among the 4 corners
A,B,C,D of the FCC. One color ready can overlap with rectangle-point, therefore, Stage 1.2
needs 13 additional colors (that are different from colors in Stage 1.1) to elect a leader among the
4 corners A,B,C,D of the FCC. However, the current configuration of robots may block diagonal
robots of the FCC. To work as if all robots are visible for leader election, a robot must take cues
from the two robots on its FCC sides (that are visible to it).

After one corner, say A (among A,B,C, and D), is picked as a leader with color leader1,
the procedure can be repeated to select other three robots among B,C,D with colors leader2,
defeated1, and defeated2, respectively, as needed by our algorithm.

Consider the situation of one robot, say A, is picked as the first leader and colored leader1.
The rest three robots B,C,D are colored non-leader. Let B,C be the neighbors of A in the FCC.
We ask our algorithm to pick either B or C as the second leader and color leader2. We ask all
three robots B,C,D to assume color ready2, transitioning from non-leader. This color signifies
that they are now running the leader election algorithm to pick the second leader. Robot A colored
leader1 will not take part in the leader election process as it is already selected as a leader. B and C

64

International Journal of Networking and Computing

A B

DC

(a) After Stage 1

LiA

LPiA

A B

DC

(b) After Stage 2.1

LPβA

A B

DC

(c) After Stage 2.2

LPβA

A B

DC

(d) After Stage 2.3

LPβA

A B

DC

(e) After Stage 2.4

LPβA

A B

DC

(f) After Stage 2.5

A B

DC

(g) After Stage 2.6

DC

A B

(i) (ii)

(h) After Stage 2.7

Figure 7: An illustration of the configuration after Stage 1 and the seven sub-stages of Stage 2: (a)
after Stage 1, (b) after Stage 2.1, . . ., (h) after Stage 2.7. The configuration shown for each sub-stage
is achieved at the end of that sub-stage.

also know that A will not take part in the second leader election and communicate respectively with
D regarding A’s choice. Furthermore, since D is not the neighbor of A, it will help to select either
B or C the second leader. Therefore, using one extra color ready2, the colors in the leader election
process can be reused to elect the second leader. Let B be the second leader colored leader2. If D
is the neighbor of B it assumes defeated2, otherwise it assumes defeated1, since it must be the
neighbor of A. C assumes color defeated1 if D is colored defeated2 and vice-versa. Therefore, for
C,D to pick colors, the leader election process does not need to be repeated.

Therefore, Stage 1.2 needs 3 colors to denote leaders B,C,D on top of 13 colors for selecting the
first leader and one extra color while selecting the second leader. Therefore, in total Stage 1.2 needs
3+13+1 = 17 colors that are different from 3 colors in Stage 1.1. The lemma below summarizes the
results of Stage 1.2.

Lemma 3.5 By the end of Stage 1.2, two robots A,B on adjacent rectangle points of an FCC are
elected as the first (A) and the second (B) leaders and colored leader1 and leader2, respectively, and
the other two robots C,D are colored defeated1 and defeated2, respectively. Stage 1.2 finishes in
O(logN) epochs avoiding collisions, using randomization for symmetry breaking. The total number
of colors used in Stage 1.2 (that are different from the colors used in Stage 1.1) is 17.

3.2 Stage 2: Line Formation for Non-collinear Configurations

At the end of Stage 1, A,B,C,D are the rectangle grid points (or robots) of an FCC colored
leader1, leader2, defeated1, and defeated2, respectively. The point pairs (A,B), (B,D), (A,C)
and (C,D) share sides of the FCC. All remaining N−4 robots are in the interior of the FCC colored

start or ready (see Fig. 3(b)). The goal in Stage 2 is to position all N robots on
−−→
AB at distances

0, 1, 2, . . . , N − 2, and N ′ − 1 from A, where N ′ ≥ N is the smallest prime number greater or equal
to N (Fig. 3(c)). Robot A does not move and robot B will be at distance either N ′ − 1 or one of
1, 2, . . . , N − 2. Note that N is not known to the robots.

A simple approach is to move robots sequentially. All robots on a parallel line closest to
−−→
AB first

move to
−−→
AB. After that the robots on the next parallel line move to

−−→
AB, and so on. This approach,

however, needs O(N2) time (note we consider D ≤ N ; with D > N , the bound becomes O(DN));

65

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

at most N − 2 lines have at least a robot on each, and the robots on each line need to traverse

distance O(N) to be positioned on
−−→
AB. This will make the overall runtime O(N2). Therefore, the

challenge is to devise an approach that finishes Stage 2 in O(N) epochs.
Our approach runs in seven sub-stages, Stages 2.1–2.7, each taking O(N) time, giving overall

O(N) runtime for the algorithm. Fig. 7 illustrates the ideas behind each sub-stage. The main
challenge we address here is how to make moves in parallel.

We need some notation. For a robot w, let LH (LV) denote the horizontal (vertical) line through
it, as w’s local coordinate system defines horizontal (vertical). Without loss of generality, the
description below refers to LH when describing a condition that could apply to either line, such as

being parallel to
−−→
AB. Moreover, let LA0 (LB0) be the line perpendicular to

−−→
AB passing through A

(B). Let the length of the line segment AB joining leaders A and B be length(AB) = m units,

i.e., there are m − 1 grid points on
−−→
AB between A and B. Let LAi be the line perpendicular to

−−→
AB passing through the grid point on

−−→
AB at distance i from A. Since 1 ≤ i < m, there will be

m − 1 perpendicular lines between A and B, with LA1 closest to LA0 and LAm−1 closest to LB0 . Let

length(AC) = n units. Let LPAi be a line parallel to
−−→
AB at distance i from

−−→
AB towards

−−→
CD. LPA1

is closest to
−−→
AB and LPAn−1 is closest to

−−→
CD.

Stage 2.1. All the robots in the interior of the FCC are on the grid points of lines LA1 , . . . , L
A
m−1.

Each line LAi , 1 ≤ i ≤ m− 1, has no, one, or more robots positioned on its grid points. Let those be
called no-robot, one-robot, or multi-robot lines, respectively, depending on the number of robots on

them. Stage 2.1 moves the robots on one-robot lines to position them on
−−→
AB (Fig. 7(b)) in O(N)

epochs. The flow of Stage 2.1 is to sweep down each occupied row of the configuration until reaching−−→
AB, moving each robot on a one-robot line down one row and coloring each robot on a multi-robot
line as multi-robot. Due to the colors of A,B,C,D, the robots that move in this stage can always
differentiate side AB from side CD, and hence they can move to AB. Let w be a robot with color
start or ready that sees only colors defeated1, defeated2, or multi-robot on one side of LH ,

where LH is parallel to
−−→
AB. If w is the only robot on LV and is not at a side of the visible SER,

then it moves perpendicularly to LH in the direction opposite of the side with colors defeated1,
defeated2, or multi-robot (Lemma 2.1). If w is the only robot on LV and is at a side of the
visible SER, then it changes color to on-AB. If w is not the only robot on LV , then it changes color

to multi-robot. Stage 2.1 finishes when all robots on one-robot lines reach
−−→
AB and assume color

on-AB.

Lemma 3.6 During Stage 2.1, the robots in the interior of the FCC that are on one-robot lines move

to grid points on
−−→
AB and take color on-AB. The remaining interior robots, on multi-robot lines, take

color multi-robot and do not move. Stage 2.1 finishes in O(N) epochs avoiding collisions.

Proof. Let LPAβ be the line closest to
−−→
CD that has (at least) a robot on it at the start of Stage 2.1.

Let w be a robot on LPAβ . The robots from
−−→
AB to LPAβ−1 are colored different than C,D, hence

from Lemma 2.1, w can move to LPAβ−1 if it is on a one-robot line or it can take color multi-robot

if it is on a multi-robot line. Robot w can wait on LPAβ−1 until there is no robot on LPAβ or all
on it are colored multi-robot. After this, the conditions on Lemma 2.1 are again satisfied for
robots on LPAβ−1, and they can move to LPAβ−2 or take color multi-robot. This process then

continues until all robots on one-robot lines reach
−−→
AB and all robots on multi-robot lines have color

multi-robot. Regarding runtime, since we assume D = O(N), any side of the FCC is O(N) long,

and hence w needs to move for O(N) epochs to reach
−−→
AB. Since the moves of robots on one-robot

lines are happening in parallel (with synchronization between two consecutive lines finishing in one
epoch), Stage 2.1 finishes in O(N) epochs. Collisions are avoided since there is no other robot on
the one-robot lines. ut

Stage 2.2. At the beginning of Stage 2.2, all robots in the interior of the FCC are positioned on

multi-robot lines and have color multi-robot. Let LPAβ be the line closest to
−−→
CD that has at least

66

International Journal of Networking and Computing

one robot colored multi-robot on it. For all the multi-robot lines that do not have a robot on LPAβ ,

Stage 2.2 moves one robot each from those lines to position it on LPAβ . At the end of Stage 2.2,

the interior robots on LPAβ have color multi-robot-2, while the other interior robots have color

multi-robot-1. The flow of Stage 2.2 is to sweep up each occupied row of the FCC from
−−→
AB to

LPAβ . Stage 2.2 is done as follows. Let w be a robot with color multi-robot that sees only colors
multi-robot-1, on-AB, leader1, or leader2 on one side of LH . Call this side of LH as the bottom
side, and call the other side of LH as the top side. Robot w checks the following conditions to
determine whether to perform the corresponding action.

(a) If it sees a robot colored multi-robot on LV in the top side, then w changes its color to
multi-robot-1 without moving.

(b) If it sees one or more robots colored multi-robot in the top side but no such robot on LV
in that side, then it moves perpendicularly to LH into the top side, keeping its current color
multi-robot. Robot w is now unit distance closer to LPAβ .

(c) If it sees no robot in the top side except one each colored defeated1 and defeated2, then w
changes its color to multi-robot-2 without moving. Robot w is in fact positioned on LPAβ .

Case (c) makes sure that after w reaches LPAβ , it stops moving and this way guaranteeing the
end of Stage 2.2 for each robot on multi-robot lines. Fig. 7(c) illustrates what is achieved after Stage
2.2.

Lemma 3.7 Let LPAβ be the line parallel and closest to line
−−→
CD of the FCC that has at least a

robot colored multi-robot positioned on it at the end of Stage 2.1. At the end of Stage 2.2, a robot
colored multi-robot-2 from each multi-robot line is positioned on LPAβ . The other robots take color
multi-robot-1 (without moving). Stage 2.2 finishes in O(N) epochs avoiding collisions.

Proof. Stage 2.1 swept toward
−−→
AB, whereas Stage 2.2 sweeps toward

−−→
CD. At first, the robots

closest to
−−→
AB see the robots on one side colored differently than the robots on the other side. This

satisfies the conditions of Lemma 2.1, so they either move keeping their color multi-robot or change
their color to multi-robot-1 without moving. This continues for each occupied row. After reaching
LPAβ , a robot sees only robots C,D on the top side and can change its color to multi-robot-2 and

stay on LPAβ . Collisions are avoided since only one robot on each multi-robot line moves and the

moving robot is the one that is closest to LPAβ among the robots on that line. Regarding runtime,

the robots on each line can move independently in parallel, and in O(N) epochs, they reach LPAβ ,
since any side of the FCC is D ≤ O(N). ut

Stage 2.3. At the beginning of Stage 2.3, one robot from each multi-robot line is positioned on

LPAβ , the line closest to
−−→
CD that has robot(s) in it, and has color multi-robot-2. Stage 2.3 moves

all the robots on each multi-robot line LAk , except on LPAβ , to position them on consecutive positions

on LAk starting from
−−→
AB (including the grid point on AB). Fig. 7(d) illustrates what is achieved at

the end of Stage 2.3. Note that in the beginning of Stage 2.3, the position on AB of each multi-robot
line LAk is empty so a robot on LAk can be positioned on it.

Consider a multi-robot line LAk . Let LAj and LAl be two multi-robot lines closest to LAk , one on

each side of LAk . Notice that all these lines are perpendicular to
−−→
AB. If LAk has no other multi-robot

line on one or both sides of it, it can use AC (or BD) as LAj (or LAl). Notice that the robots on LAk
see all the robots on both LAj and LAl , in particular the robots with color multi-robot-2. They

will use the robots colored multi-robot-2 to orient themselves, determining the direction of AB.
Stage 2.3 is done as follows. Let robot w on LAk have color multi-robot-1. If its neighbors

on the line perpendicular to LAk have color on-AB, leader1, or leader2, then w changes its color
to on-AB, as it has reached AB. Otherwise, if the next grid point towards AB is empty, then w
moves to that grid point, but if that grid point has a robot with color multi-robot-consecutive

or on-AB, then w changes its color to multi-robot-consecutive.

67

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

Let robot w have color multi-robot-2. If all visible robots toward AB have colors
from

{
multi− robot− consecutive, on− AB, leader1, leader2

}
, then w changes its color to

multi-robot-3. This color change initiates Stage 2.4. Note that all these robots are still on LPAβ .

Lemma 3.8 At the end of Stage 2.3, all the robots on multi-robot lines, except those colored

multi-robot-3, are positioned on those lines in consecutive positions starting from
−−→
AB and col-

ored multi-robot-consecutive or on-AB. The robots that started with color multi-robot-2 have
changed color to multi-robot-3 without moving. Stage 2.3 finishes in O(N) epochs avoiding colli-
sions.

Proof. Consider the robots on LAk . Each robot on LAk sees the robots on LAj and LAl colored

multi-robot-2 (multi-robot-2 colored robots are positioned on LPAβ). Since the robots on LPAβ
do not move in this sub-stage, the robots on LAk see the robots on LAj and LAl colored multi-robot-2

at all times. Now, each robot w on LAk satisfies the conditions of Lemma 2.2 and hence they can move
on LAk toward AB. This continues until w is next to a robot with color multi-robot-consecutive
or on-AB when it stops and takes color multi-robot-consecutive or until w reaches AB when it
stops and takes color on-AB. Collisions are avoided since each robots moves only if the neighboring
grid point is empty. Runtime is O(N) rounds since there are at most N − 4 robots on a multi-robot
line and since D = O(N), they can relocate to consecutive positions in O(N) epochs (Lemma 2.3).
The robots colored multi-robot-2 can color multi-robot-3 since after the robots on LAk moved to
consecutive positions, a robot colored multi-robot-2 on LAk sees the closest robot on LAk colored
multi-robot-consecutive. ut

Stage 2.4. At the beginning of Stage 2.4, all the robots in the interior of the FCC are positioned as
follows for each multi-robot line: one robot is on LPAβ colored multi-robot-3, one-robot is on AB
colored on-AB, and the rest of the robots are on consecutive positions on those lines starting from
AB colored multi-robot-consecutive (Fig. 7(d)).

Stage 2.4 moves all the robots colored multi-robot-consecutive to position them on
−−→
AB

colored on-AB. Note that some of these robots may be past B on
−−→
AB. The flow of this stage is

for each multi-robot line to pipeline its robots down to LPA1 then along this line in the direction

from A to B until reaching an empty grid point on
−−→
AB. The robot will then drop onto

−−→
AB and

take color on-AB. The multi-robot lines do this in order starting from the line closest to B. Each

robot with color multi-robot-consecutive can orient itself to recognize the direction toward
−−→
AB

by using robots colored multi-robot-3. Each robot on LPA1 can recognize that fact because it can
see robots with color leader1 (A) and leader2 (B).

Let w be a robot with color multi-robot-consecutive. If w is not on LPA1 , then if the adjacent
grid point toward AB is open, then w moves to that grid point. If w is on LPA1 , then w checks if (i)
the adjacent grid point on LPA1 in the direction from A to B is open and (ii) no robot with color
multi-robot-consecutive is present in the quadrant defined by the side of LPA1 opposite to AB
and the side of the line through it perpendicular to AB that is opposite from A. If these conditions
are satisfied, then w changes its color to moving-to-AB and moves to that open grid point. This
is the circumstance when all multi-robot lines toward B from w have already pipelined themselves
onto LPA1 and it is the turn of w’s multi-robot line.

Let w be a robot with color moving-to-AB. If the adjacent grid point on
−−→
AB is open, then change

color to on-AB and move to that point. If the adjacent grid point on
−−→
AB is not open and the adjacent

grid point on LPA1 in the direction from A to B is open, then w moves to that open point.
This process then continues for all multi-robot lines of Stage 2.3 with at least three robots on

them (for a multi-robot-line with two robots, a robot reaches
−−→
AB in Stage 2.3 and one is still on LPAβ

colored multi-robot-3). After reaching
−−→
AB, they assume color on-AB. Fig. 7(e) illustrates what

Stage 2.4 achieves. Some of the robots that moved to
−−→
AB during this substage may have moved

beyond B, so the overall configuration may no longer be an FCC (though an SER still exists).

68

International Journal of Networking and Computing

Lemma 3.9 Stage 2.4 takes robots colored multi-robot-consecutive and positions them on
−−→
AB

with color on-AB. Stage 2.4 finishes in O(N) epochs avoiding collisions.

Proof. The process starts from the multi-robot line closest to B and goes toward A. The robots
on each line move to LPA1 in a pipelined fashion (Lemma 2.3). After reaching LPA1 , the robots see
both A,B and can determine the direction to move, always in the direction from A to B. Collisions
are avoided since robots move only if their next grid point is empty. Runtime of O(N) is also
immediate. While some robot has color multi-robot-consecutive, one such robot changes color
to moving-to-AB and starts moving along LPA1 at least every other epoch. Also, with this pipelined
movement along LPA1 , each robot needs to move at most O(N) distance to find the first empty grid

point on
−−→
AB to jump from LPA1 and take color on-AB. This is because length(AB) = O(N) and

there are N robots. So within O(N) distance from A on
−−→
AB, all robots moving on Stage 2.4 are

accommodated. ut

Stage 2.5. At the beginning of Stage 2.5, the only robots in the interior of the SER are on LPAβ
with color multi-robot-3. Each such robot w moves toward AB until it reaches LPA1 then waits
until all other robots of LPAβ reach LPA1 . When all are at LPA1 , these robots see both C,D and the

robots on
−−→
AB. Robot w then moves on LPA1 in the direction from A toward B whenever the next

grid point is empty in a pipelined fashion then changes color to on-AB and jumps to
−−→
AB whenever

the first empty grid point is available on
−−→
AB. Fig. 7(f) illustrates this sub-stage.

Lemma 3.10 Stage 2.5 moves all the robots colored multi-robot-3 on LPAβ to
−−→
AB and colors

them on-AB. Stage 2.5 finishes in O(N) epochs avoiding collisions.

Proof. The robots on LPAβ can move to LPA1 in O(N) epochs. After reaching LPA1 , they see both

A,B at all times and can move on LPA1 in the direction from A towards B in a pipelined fashion

until the first empty grid point on
−−→
AB is found into which to jump and color on-AB. This whole

process again takes O(N) epochs. Collisions are avoided by not moving to the next point until it is
empty. ut

Stage 2.6. At the beginning of Stage 2.6, no robots are in the interior of the SER. The robots on−−→
AB may not be in consecutive positions starting from A. The goal in this stage is to move them on−−→
AB towards A so that they will occupy consecutive positions on

−−→
AB. Fig. 7(g) illustrates what this

sub-stage achieves.

Let w be a robot on
−−→
AB with color on-AB or leader2. It can see C and D and so determine

the directions of A and B. If the adjacent grid point toward A on
−−→
AB is empty, then w moves

to that grid point. If the adjacent grid point toward A on
−−→
AB is occupied by a robot with color

on-AB-consecutive or leader1, then w changes color to on-AB-consecutive. The coloring process

starts from A towards B and after the farthest robot on
−−→
AB takes color on-AB-consecutive, Stage

2.6 finishes.

Lemma 3.11 Stage 2.6 relocates the robots on
−−→
AB to consecutive points of

−−→
AB with color

on-AB-consecutive. Stage 2.6 finishes in O(N) epochs avoiding collisions.

Proof. The correctness is immediate. There are N − 2 robots on
−−→
AB at the beginning of Stage

2.6. Let B′ be the robot that is farthest from A on
−−→
AB. B′ knows that it is the farthest. The total

length of AB′ from A until B′ is at most O(N). Therefore. moving the robots toward A takes O(N)
epochs since robots move in a pipelined fashion (Lemma 2.3). Collisions are avoided similarly as in
previous sub-stages by not moving until the next grid point is empty. ut

Stage 2.7. At the beginning of Stage 2.7, the robots on
−−→
AB are in consecutive positions and only

C,D are not on
−−→
AB. In this stage, C first moves to position itself on

−−→
AB next to a robot colored

69

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

on-AB-consecutive. D remains in its position until this is done. After that D can count the total
number of robots, N , in the system. It computes the first prime number N ′ ≥ N . It then moves first
to line LPA1 and then along line LPA1 until the neighboring grid point on AB is at N ′ − 1 distance

away from A. It then jumps to
−−→
AB and assumes color endpoint1. All N robots are now on

−−→
AB,

with A colored leader1, the robot at distance N ′ − 1 colored endpoint1, and the remaining N − 2
have color on-AB-consecutive. All robots are in consecutive positions with the possible exception
of the robot colored endpoint1. Fig. 7(h) illustrates this sub-stage. Stage 2.7 (and hence Stage 2)
then finishes.

Lemma 3.12 At the end of Stage 2, N−1 robots are on N−1 consecutive positions on
−−→
AB starting

from A, and one robot is on
−−→
AB at distance N ′− 1 from A where N ′ ≥ N is the first prime number

≥ N . Stage 2.7 finishes in O(N ′) epochs avoiding collisions. The total number of colors used in
Stage 2 (that are different from the colors used in Stage 1) is 9.

Proof. Similarly as in Lemma 3.11, C can move to
−−→
AB in O(N) epochs. D can compute N as it

sees all the robots on
−−→
AB. D can also compute what is its N ′ − 1 position on

−−→
AB until it is on

−−→
AB,

which happens at the end when it jumps to the (N ′ − 1)-th grid point from A towards B. Collision
avoidance is immediate.

The 9 colors used throughout Stages 2.1 to 2.7 are as follows: multi-robot, multi-robot-1,
multi-robot-2, multi-robot-3, multi-robot-consecutive, on-AB, on-AB-consecutive,
moving-to-AB, and endpoint1. These colors are different from the colors used in Stage 1. ut

3.3 Stages 1 and 2: Leader Election and Line Formation for Collinear
Configurations

We discussed in Sections 3.1 and 3.2 Stages 1 and 2 for Cnon,init. For Ccol,init, Stages 1 and 2
can be combined together and simplified significantly. Note that Ccol,init only considers initial
configurations where all robots are positioned on a single horizontal or vertical grid line. All other
initial configurations, including all robots initially on a single line which is not a grid line, are
handled in Cnon,init. We first discuss how to handle collinear Ccol,init when N ≥ 4. Let A,B
be the endpoint robots on Ccol,init. Let r1, . . . , rN−2 be the N − 2 robots between A and B on
AB, with r1 closest to A and rN−2 closest to B. We have that length(AB) = O(N), since we are
assuming that D = O(N). In Ccol,init, all robots are colored start. Robots A,B pick color ready3.
They do not move. The robots r1, . . . , rN−2 do nothing. After A is colored ready3, r1 picks color
collinear-moving and moves to either of the two neighboring grid points not on AB. Robot rN−2
also does the same after B is colored ready3. Let Lup, Ldown be the two lines parallel to AB at
unit distance each. Robots r1, rN−2 reach to either of them, independently, after they move, so they
may both be on the same line or one may be on Lup and the other on Ldown. After that, each robot
r2, . . . , rN−3 picks color collinear-moving and moves to position itself on either of Lup or Ldown.

After r1, . . . , rN−2 move from AB, A sees B (and vice-versa). Now A,B use the leader election
procedure in Stage 1.2 to elect one as the first leader colored leader1. The other becomes the second
leader colored leader2. Suppose A is the first leader colored leader1 and B is the second leader
colored leader2. A now elects two leaders C,D colored defeated1 and defeated2, respectively, as
follows. Let LV be the line perpendicular to AB closest to A such that it has at least a robot on
it. The single robot on LV colors itself defeated1, and we call it C. After that, the robot next to
C on line Lup or Ldown where C belongs colors itself as defeated2, and we call it D. D is already
further away from A than C; D does not need to move. If no other robots are on Lup or Ldown with
C, then the closest robot on the opposite line takes color defeated2 and moves perpendicularly to
AB to the same line as C; call this robot as D.

Suppose both C,D are on Lup after all this (C,D on Ldown is analogous). The robots on Ldown
pick color on-AB-1 and move to AB. The robots on Lup except C,D also move to AB picking color
on-AB-1. After this, all N − 2 robots except C,D are on AB. This provides a scenario similar to
the one that is achieved after Stage 2.5 (Section 3.2). The robots then execute Stages 2.6 and 2.7
(except D moves first in Stage 2.7) to reach the configuration achieved after Stage 2.7 in Section

70

International Journal of Networking and Computing

3.2. The resulting configuration is such that all N robots are on
−−→
AB with A colored leader1, the

robot at distance N ′ − 1 from A is colored endpoint1, and the remaining N − 2 robots are colored
on-AB-consecutive.

We now discuss Ccol,init with N ≤ 3. For N = 3, there is exactly one robot r1 between A and
B on AB. A,B do not move. Therefore, when r1 moves after it sees A or B colored ready3, a
non-collinear triangle configuration is achieved. A,B see each other and only one robot on Lup and
Ldown combined and hence terminate. r1 can also terminate since it sees only A,B. If N = 2, A
sees the light of the only other robot B ready3 and terminates. When N = 1, the only robot A can
simply terminate since it sees no other robot.

Lemma 3.13 For any Ccol,init, the approach above achieves the following: (i) For N = 1, 2, robot(s)
terminate without moving, (ii) for N = 3, the robots terminate in a triangular configuration; and

(iii) for N ≥ 4, the robots are positioned on a line
−−→
AB satisfying Lemma 3.12. Runtime is O(N)

epochs and no collisions. The total number of colors used is 23.

Proof. The correctness proof is immediate from the description and the proofs of Stages 2.6 and
2.7. Regarding runtime, the process until selecting A,B,C,D as leaders finishes in O(1) epochs. The
robots on Lup and Ldown, except C,D move back to AB again in O(1) epochs. After that moving the
robots already on AB to consecutive positions and after that placing C,D on AB using the techniques
of Stages 2.6 and 2.7, respectively, takes O(N) epochs. Thus, overall, for any Ccol,init, this approach
finishes inO(N) epochs. Collision avoidance is also immediate. The total number of colors used is 23:
start, ready3, collinear-moving, on-AB-1, endpoint1, on-AB-consecutive, and the 17 colors
of Stage 1.2 (the leader election starts with color ready3 here, which we counted already) to elect
the four leaders A,B,C,D with colors leader1, leader2, defeated1, and defeated2, respectively.

ut

3.4 Stage 3: Placement at Complete Visibility Points

Irrespective of whether the initial configuration is Cnon,init or Ccol,init, the configuration at the end

of Stage 2 has all N robots on
−−→
AB, with A colored leader1, the robot at distance N ′ − 1 colored

endpoint1, and the remaining N − 2 robots colored on-AB-consecutive. Let wi 6= A denote the

robot in this configuration on
−−→
AB at distance i, where 2 ≤ i ≤ N − 2 or i = N ′ − 1. The goal in

Stage 3 is to reposition the robots that are on
−−→
AB at the end of Stage 2 to guarantee a Complete

Visibility configuration. Let (0, 0) denote the coordinates of A, so the initial coordinates of wi are
(i, 0). We will establish that positioning each robot wi at the target point of (i, i2 mod N ′) achieves
Complete Visibility.

Observe that the target points of A and wN ′−1 are (0, 0) and (N ′ − 1, 1), respectively. Robots
will use A and wN ′−1 at their target points to orient themselves and determine N ′. Let LPA1 denote

the line parallel to
−−→
AB on one side to be determined. The flow of Stage 3 is to move all robots, other

than A, first to LPA1 then to sweep up, one row at a time, with each robot stopping at its target
point.

Every (infinite) line on the grid divides it into two “half-grids.” A given line and a grid point not
on the line uniquely specify a particular half-grid. Coming back to the problem, recall that robot w1

is adjacent to A. First w1 changes color to finalizing, picks a grid point perpendicular to
−−→
AB, say

γ, and moves to γ. This determines the half-grid to which the rest of the robots will move. Robot
w1 terminates, changing its color to final. We say that the coordinates of w1 while terminating
at grid point γ are (1, 1). Below, we will describe Stage 3 using the coordinate system determined
by the positions of A and w1. Other robots that can see landmarks in the configuration (such as

A) will be able to discern this coordinate system. Let HPγ denote the half-grid bordered by
−−→
AB

containing w1. The other robots will move into half-grid HPγ to reach on their final positions.
When wi becomes active and recognizes w1 with color finalizing or final, it takes color

finalizing (except wN ′−1, which takes color endpoint) and moves to its neighboring grid point
on LPA1 in HPγ . Robot wi can make this decision because it will see robots only toward HPγ , not

in the half-grid on the other side of
−−→
AB. Robot wi’s coordinates now are (i, 1). This way all robots

71

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

A (0,0)

E (N’-1,1)

W (2,4) W’ (8,4)

(1,1)

Figure 8: Placement to reach Complete Visibility points

that started on
−−→
AB (except A) will eventually be positioned on LPA1 between w1 and wN ′−1 with

color finalizing.

From here, Stage 3 sweeps up the rows parallel to
−−→
AB as follows. Let wi be a robot with color

finalizing. Let LH denote the axis-aligned line through wi such that on one side of LH (the
bottom side) it sees no robots with color finalizing and sees at least one robot with color leader1
(A), endpoint (wN ′−1), or final, and on the other side of LH (the top side) it sees no robots with
color leader1 (A), endpoint (wN ′−1), or final but can see robots with color finalizing. If wi
sees robots with both colors leader1 (A) and endpoint (wN ′−1) on the bottom side, then it can
extract the coordinates of A and wN ′−1 and its own coordinates (i, yi) in that system. If yi = i2

mod N ′, then wi changes it color to final and terminates. Otherwise (yi 6= i2 mod N ′ or wi does
not see both A and wN ′−1), wi moves to the adjacent grid point perpendicular to LH in the top side.
We will show that after all the robots assume color final and terminate, Complete Visibility is
achieved.

Fig. 8 illustrates how this is done for a robot w at coordinate (2, 4): Seeing both A and E (the
robot colored endpoint), w can compute its coordinate (2, 4), with respect to (0, 0). Robot w′ at
coordinate (8, 4) does not terminate at the grid point since (i) if it sees both A and E, then the
coordinate computed, (i′, y′i) = (8, 82 mod 11) = (8, 9), does not match (8, 4), (ii) if it does not see
both A and E, then its current position is not the Complete Visibility position.

Correctness and Runtime of Stage 3. We first prove the correctness of Stage 3 meaning that a
Complete Visibility configuration is indeed achieved. We will then prove the runtime and area
bounds. For the correctness proof, we need the following theorem.

Theorem 3.14 (Roth [14]) Suppose M is a prime number. Consider a 2-dimensional M ×M
grid G of M2 grid points with the bottom-left grid point denoted as (0, 0) and the top-right grid point
denoted as (M − 1,M − 1). The set of M grid points (i, i2 mod M), for 0 ≤ i < M , on G contains
no three collinear grid points.

What essentially Theorem 3.14 means is that, for any prime number M , if the robots can be put
on the M grid points (i, i2 mod M), 0 ≤ i < M , then Complete Visibility is solved. However,
there are several challenges in our model: robots do not know N and robots do not have a compass
or agreement on the global coordinate system. We show that despite these limitations, robots can
move to the grid points satisfying Theorem 3.14, correctly solving Complete Visibility after Stage
3. The following lemma helps in the correctness proof.

Lemma 3.15 Consider an M×M grid G of M2 grid points as in Theorem 3.14 with the bottom-left
grid point denoted as (0, 0) and the top-right grid point denoted as (M − 1,M − 1). Let LPAj be the

line connecting grid points (0, j) and (M − 1, j), for 0 ≤ j ≤M − 1, with LPA0 being
←→
AB. Suppose,

for 0 ≤ k ≤ M − 1, where 0 ≤ k2 mod M ≤ j − 1, the robots on LPA0 , . . . , LP
A
j−1 are on the

grid points (k, k2 mod M) of G and the rest of the robots are on LPAj . Any robot w on LPAj can

determine in Stage 3 whether it is on a grid point (k, k2 mod M) of G.

72

International Journal of Networking and Computing

Proof. Since all the robots on LPA0 = (
−−→
AB), . . . , LPAj−1 are on the grid points (k, k2 mod M), 0 ≤

k ≤ M − 1, and no robot is on any other grid point of LPA0 , . . . , LP
A
j−1, from Theorem 3.14, they

must see each other (i.e., no three are collinear among robots already placed on their final positions).
If a robot w on LPAj is on grid point (k, k2 mod M) such that j = k2 mod M , again from Theorem

3.14, it must see all robots on LPA0 , . . . , LP
A
j−1. We have that in Theorem 3.14, one robot is on LPA0

at (0, 0) (which is robot A colored leader1) and two robots are on LPA1 , one at (1, 1) and one at
(M − 1, 1). The robot at (M − 1, 1) is colored endpoint. Let that robot be denoted as E. When
w sees both A and E, it can compute M and the coordinates of A and E and its offset k from A.
With k and M , w can compute whether (k, k2 mod M) is its current grid point. ut

We also need the following theorem for the runtime proof.

Theorem 3.16 (Bertrand’s postulate) For any integer N > 3, there exists at least one prime
number N ′ with N < N ′ < 2N − 2. For any integer N > 1, N < N ′ < 2N .

Lemma 3.17 At the end of Stage 3, all robots are positioned on grid points solving Complete
Visibility. Stage 3 finishes in O(N) epochs avoiding collisions. The area occupied by the robots in
the final configuration is O(N2). The total number of colors used in Stage 3 (that are different from
the colors used in Stages 1 and 2) is 3.

Proof. Note that in the beginning of Stage 3, all robots are positioned on an axis-aligned line
−−→
AB,

starting from A in the direction from A to B. Let the position of A be (0, 0). At least N − 2 other
robots are on consecutive grid points. Let those points be (1, 0), . . . , (N − 2, 0). For N ′ the first
prime number greater than or equal to N , (N ′ − 1, 0) also has a robot on it. Consider A’s position

to be the origin of the global coordinate system with
←→
AB as one axis.

Let HPγ be one half-grid bordered by
←→
AB. If each robot on (i, 0), 0 ≤ i < N ′, can move toward

HPγ perpendicularly to
−−→
AB and position itself on the grid point at distance i2 mod N ′, Theorem

3.14 is satisfied and Complete Visibility is solved.

The move of robot w1 to (1, 1) provides a direction for robots w2, . . . to move, so that they
can all move to the same half-grid HPγ . Since 1 mod N ′ = 1 for any N ′ > 1, terminating w1 at
(1, 1) satisfies (i, i2 mod N ′). All robots, except A, then move to LPA1 (which has w1 on it) and

no robot moves to LPA2 until all robots of
−−→
AB reach LPA1 . A remains on

−−→
AB, providing (0, 0).

Robot wN ′−1 terminating on LPA1 satisfies (N ′ − 1, (N ′ − 1)2 mod N ′) = (N ′ − 1, 1), since for any
number M ′ > 1, (M ′ − 1)2 mod M ′ = 1. After all robots move to LPA2 , Lemma 3.15 is satisfied
for each robot. If a robot w is at a coordinate (i, i2 mod N ′), it terminates assuming color final.
Otherwise, it continues moving to LPA3 and beyond until it can terminate satisfying Lemma 3.15.
This way all robots settle at the grid points of Theorem 3.14, achieving Complete Visibility.
Collision avoidance is immediate since each robot moves on a line alone.

Regarding runtime, in one epoch, w1 moves to LPA1 . In the second epoch, w1 terminates. In the

same epoch, all the robots on
−−→
AB, except A, move to LPA1 . In the third epoch, w1, wN ′−1 terminate

on LPA1 and the rest move to LPA2 . Since there are N ≤ N ′ robots in Q and (i2 mod N ′) ≤ N ′−1,
the robots reach at most LPAN ′−1. Therefore, robots reach LPAN ′−1 at epoch N ′. The robots that
reach LPAN ′−1 terminate at epoch N ′ + 1. Therefore, Stage 3 finishes in N ′ + 1 epochs. Using
Theorem 3.16, N ≤ N ′ < 2N − 2. Therefore, Stage 3 finishes in O(N) epochs.

Regarding area, in the beginning of Stage 3, all the robots are on
−−→
AB within N ′ distance. During

Stage 3, robots move perpendicular to
−−→
AB on a half-grid. A robot may move perpendicularly

at most (i2 mod N ′) ≤ N ′ − 1. Therefore, the area of the final configuration is bounded by
N ′ × (N ′ − 1) ≤ 2N × (2N − 1) ≤ 4N2 = O(N2), since N ′ ≤ 2N .

Regarding the number of colors, Stage 3 uses 3 colors that are different from the colors used in
both Stages 1 and 2, which are finalizing, final, and endpoint. ut

73

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

3.5 Overall Correctness of the Algorithm

We showed so far that if each stage (and sub-stage) achieves the configurations as required to start the
next stage (and sub-stage), Complete Visibility is guaranteed in our algorithm. That is indeed
the case: The robots can correctly distinguish each stage (and sub-stage) during the execution and
they work as intended.

Lemma 3.18 Stages 1–3 execute sequentially one after another in the algorithm.

Proof. Consider first any Cnon,init. Stage 1 forms an FCC with four robots A,B,C,D on it. A is
colored leader1, B leader2, C defeated1, and D defeated2. B (C) is adjacent to A (D). In Stage
2, the robots in the interior of the FCC that are the first to move (or change color without moving)
must see both C,D colored defeated1 and defeated2, respectively. This happens only after Stage
1.2 (and hence Stage 1) is finished with D colored defeated2. For Ccol,init, when A,B,C,D pick
color, all others are colored collinear-moving (different than they would have been colored at end
of Stage 1 for Cnon,init) and hence they can continue until the desired line configuration is achieved.
For any Cinit (i.e., collinear and non-collinear), Stage 3 is started only after all robots are in a
collinear configuration with specific colors. In Stage 3, w1, adjacent to A, moves first. For w1 to

move, it should not see C or D. D is the last to move to
−−→
AB in Stage 2 and as soon as D moves to

AB, Stage 2 is finished. Therefore, Stage 3 executes only after Stage 2 finishes. ut

Lemma 3.19 Stages 1.1, 1.2, 2.1–2.7 correctly finish one after another in the algorithm.

Proof. Stage 1.1 finishes after four robots, r1, . . . , r4, are on an FCC and colored rectangle-point.
Stage 1.2 cannot start until at least three rectangle points of the FCC have color rectangle-point.
If Stage 1.2 starts after all r1, . . . , r4 colored rectangle-point, we are done. Otherwise, Stage 1.2
must be started by ri that sees both of its neighboring rectangle points colored rectangle-point. In
this case, ri−1 and ri+1 detect that one of their neighbors is still not colored rectangle-point and
do not take part in the Stage 1.2 procedure started by ri. Lemma 3.18 establishes the sequentiality
between Stages 1.2 and 2.1. Stage 2.2 starts only after all robots in the interior of the FCC are

colored multi-robot, since the robots closest to
−−→
AB start this process. For Stage 2.3, the robots

on LPAβ needs to be colored multi-robot-2. If robots on any line LAi start Stage 2.3 before Stage

2.2 finishes, the robots on LAi later wait for others to finish Stage 2.3, since they are independent
of each other. Similarly, Stage 2.4 is synchronized from LAi close to B towards A and hence it is
synchronized. For Stage 2.5, the only robots in the interior of the FCC should be on LPAβ with color
multi-robot-3. For Stage 2.6, there should be no robot in the interior of the SER, i.e., all robots

on
−−→
AB except C and D. For Stage 3, C and D should also be on

−−→
AB. This happens after D moves

to
−−→
AB in Stage 2.7 (Lemma 3.18). ut

Proof of Theorem 1.1. For any Cinit with diameter D = O(N), we have Theorem 1.1 with
runtime O(N) epochs combining the results of Lemmas 3.1–3.13 and 3.17–3.19, since N ′ ≤ 2N
from Theorem 3.16. For any Cinit with D = Ω(N), running the techniques for Stages 1–3 only
increases the runtime from O(N) epochs to O(D) epochs. In other words, D = Ω(N) does not have
impact on the correctness of the algorithm. The area bound is immediate from Lemma 3.17 and is
independent of D.

The total number of colors used throughout the algorithm depends on whether leader election
is needed or not. Furthermore, irrespective of leader election, the number of colors used in our
algorithm is the maximum between the number of colors used starting from non-collinear initial
configurations Cnon,init and starting from collinear initial configurations Ccol,init. The main reason
is that Stages 1 and 2 are different for Cnon,init and Ccol,init and Stage 3 is common. We first
describe the number of colors needed with leader election and then without leader election.

With leader election, for Cnon,init, we need 32 colors as follows.

• 20 colors in Stage 1, which is the combination of

74

International Journal of Networking and Computing

– 3 colors in Stage 1.1 (Lemma 3.1).

– 17 colors in Stage 1.2 (Lemma 3.5), that are different from the colors used in Stage 1.1.

• 9 colors in Stage 2 (Lemma 3.12), that are different from the colors in Stage 1.

• 3 colors in Stage 3 (Lemma 3.17), that are different from the colors in Stages 1 and 2.

With leader election, for Ccol,init, we need 26 colors as follows.

• 23 colors in the combined Stages 1 and 2 (Lemma 3.13).

• 3 colors in Stage 3 (Lemma 3.17), that are different from the colors in the combined Stages 1
and 2.

Thus, taking the maximum on the colors used for Cnon,init and Ccol,init, our algorithm needs 32
colors, when leader election is required.

We now discuss the number of colors required if no leader election is required. Without leader
election, for Cnon,init, we need 17 colors as follows.

• 5 colors in Stage 1, which is the combination of 4 colors to differentiate A,B,C,D (4 leaders)
and 1 color start in Cinit.

• 9 colors in Stage 2 (Lemma 3.12), that are different from the colors in Stage 1.

• 3 colors in Stage 3 (Lemma 3.17), that are different from the colors in Stages 1 and 2.

Without leader election, for Ccol,init, we need 12 colors as follows.

• 9 colors in the combined Stages 1 and 2, since 14 colors to pick the first and second leaders
are not required in the combined 23 colors with leader election.

• 3 colors in Stage 3 (Lemma 3.17), that are different from the colors in the combined Stages 1
and 2.

Therefore, taking the maximum on the colors used for Cnon,init and Ccol,init, our algorithm needs
17 colors, when leader election is not required.

Overall correctness is then given by Lemmas 3.18 and 3.19. Theorem 1.1 follows combining the
runtime, number of colors, and correctness results. ut

4 Concluding Remarks

We have presented an O(max{D,N})-time, O(N2)-area algorithm for Complete Visibility for
N ≥ 1 robots with lights in the ASYNC setting on a grid (of unbounded size), a natural discretiza-
tion of the 2-dimensional plane, where D is the diameter of the initial configuration. The number of
colors in our algorithm is 17 if leader election is not needed and 32 otherwise. We also proved a time
lower bound of Ω(N) and an area lower bound of Ω(N2), irrespective of whether unlimited number
of colors are available and leader election is not required, which shows that our algorithm is optimal
for D = O(N). The best previously known 11-color deterministic algorithm has Ω(max{DN,N2})
runtime and Ω(N2) area.

Several questions remain open. We focused only on minimizing time and area but not the number
of colors used. A better analysis would provide smaller number of colors than the current 32 when
leader election is needed and 17 when leader election is not needed. Therefore, one interesting
open question is can the number of colors be minimized to 2 (optimal) or close to 2 for Complete
Visibility on a grid (of unbounded size). Another direction is to see whether robot faults (crash
and/or byzantine) can be handled. The proposed algorithm and the previous algorithm do not
consider faults.

75

Optimal Randomized Complete Visibility on a Grid for Asynchronous Robots with Lights

References

[1] Ranendu Adhikary, Kaustav Bose, Manash Kumar Kundu, and Buddhadeb Sau. Mutual visi-
bility by asynchronous robots on infinite grid. In ALGOSENSORS, pages 83–101, 2018.

[2] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Martina Hüllmann, Barbara
Kempkes, Alexander Klaas, Peter Kling, Sven Kurras, Marcus Märtens, Friedhelm Meyer auf
der Heide, Christoph Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann, and
Daniel Wonisch. A new approach for analyzing convergence algorithms for mobile robots. In
ICALP, pages 650–661, 2011.

[3] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theor. Comput. Sci., 609:171–184, 2016.

[4] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Federico Poloni, Nicola
Santoro, and Giovanni Viglietta. Mutual visibility by luminous robots without collisions. Inf.
Comput., 254:392–418, 2017.

[5] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Nicola Santoro, and Gio-
vanni Viglietta. Robots with lights: Overcoming obstructed visibility without colliding. In SSS,
pages 150–164, 2014.

[6] Achim Flammenkamp. Progress in the no-three-in-line-problem. J. Comb. Theory, Ser. A,
60(2):305–311, 1992.

[7] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivious
mobile robots. Synthesis Lectures on Distributed Computing Theory, 3(2):1–185, 2012.

[8] Richard K. Guy and Patrick A. Kelly. The no-three-in-line problem. Canadian Mathematical
Bulletin, 11(4):527–531, 1968.

[9] R. R. Hall, T. H. Jackson, A. Sudbery, and K. Wild. Some advances in the no-three-in-line
problem. J. Comb. Theory, Ser. A, 18(3):336–341, 1975.

[10] Rory Hector and Ramachandran Vaidyanathan. On the distance and spatial complexity of
complete visibility algorithms for oblivious mobile robots. In PDPTA, pages 11–18. CSREA
Press, 2019.

[11] Rory Hector, Ramachandran Vaidyanathan, Gokarna Sharma, and Jerry L. Trahan. Optimal
convex hull formation on a grid by asynchronous robots with lights. In IPDPS, pages 1051–1060,
2020.

[12] Humberto Mart́ınez, Juan Pedro Cánovas, Miguel A. Zamora, and Antonio Gómez Skarmeta.
I-fork: a flexible agv system using topological and grid maps. In ICRA, pages 2147–2152, 2003.

[13] David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions and
challenges. In IWDC, pages 1–12, 2005.

[14] K. F. Roth. On a problem of heilbronn. Journal of the London Mathematical Society, s1-
26(3):198–204, 1951.

[15] Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay. Mutual visibility with an optimal
number of colors. In ALGOSENSORS, pages 196–210, 2015.

[16] Gokarna Sharma, Ayan Dutta, and Jong-Hoon Kim. Optimal online coverage path planning
with energy constraints. In AAMAS, pages 1189–1197, 2019.

[17] Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Constant-time complete
visibility for asynchronous robots with lights. In SSS, pages 265–281, 2017.

76

International Journal of Networking and Computing

[18] Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan. Optimal randomized
complete visibility on a grid for asynchronous robots with lights. In APDCM, pages 607–616,
2020.

[19] Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. Complete visibility for robots with lights in o(1) time. In SSS, pages 327–345, 2016.

[20] Gokarna Sharma, Ramachandran Vaidyanathan, Jerry L. Trahan, Costas Busch, and Suresh
Rai. O(log n)-time complete visibility for asynchronous robots with lights. In IPDPS, pages
513–522, 2017.

[21] Ramachandran Vaidyanathan, Costas Busch, Jerry L. Trahan, Gokarna Sharma, and Suresh
Rai. Logarithmic-time complete visibility for robots with lights. In IPDPS, pages 375–384,
2015.

[22] Roger Wattenhofer. Mastering Distributed Algorithms. Inverted Forest Publishing, 2020.

77

	Introduction
	Model and Preliminaries
	O(max{D,N})-Time, O(N2)-Area Algorithm
	Stage 1: Leader Election for Non-collinear Configurations
	Stage 2: Line Formation for Non-collinear Configurations
	Stages 1 and 2: Leader Election and Line Formation for Collinear Configurations
	Stage 3: Placement at Complete Visibility Points
	Overall Correctness of the Algorithm

	Concluding Remarks

