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Abstract

This paper investigates the fault tolerance of Mirrored k-Ary n-Tree (MiKANT) networks
with link faulty. The MiKANT network is a variant of the traditional k-ary n-tree (Fat-tree)
and Clos networks. It doubles the number of compute nodes of the fat-tree by adding a few
switches and links and has a shorter average distance to reduce the packet latency. As the scale
of MiKANT becomes larger, the probability of link faulty becomes higher. In order to improve
the successful routing ratio of MiKANT, we give four link fault tolerant routing algorithms for
MiKANT and evaluate their performance through simulations. In addition, the performance of
the combined algorithms is also evaluated.

Keywords: interconnection network, fat-tree, mirrored k-ary n-tree, routing, fault tolerance,
algorithm, simulation

1 Introduction

The fat-tree [4] is one of the most popular topologies of the interconnection networks in current
large-scale supercomputers. In a k-ary n-tree [9], one of the fat-trees, the switch radix is 2k, and
the number of levels is n. The compute nodes are connected only to the leaf switches. Fat-tree
networks provide the non-blocking feature with 1 : 1 oversubscription ratio and high path diversity
but meanwhile require a great number of switches and links with a complex wire connection, and
hence increase the hardware cost and packet latency. [7] and [10] focused on the cost of the switches
and links, but their proposed topologies reduce the diversity of paths.

In order to reduce the hardware cost of the switches and links and improve the communication
performance of the fat-tree networks, a Mirrored K-Ary N -Tree (MiKANT) network [5] was pro-
posed. It is a variant of fat-trees aimed at reducing hardware cost and packet latency. As the scale
of MiKANT becomes large, the probability of switch or link failure increases. Fault tolerance is
one of the important issues of the interconnection networks for large-scale parallel computers. The
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dynamic fault tolerance in fat-trees was discussed in [11]; [6] has discussed switch fault tolerance
in MiKANT. [12] proposed a new heuristic probe selection algorithm based on adaptive probing to
solve consumed large number of probes and wavelengths in large-size networks. [8] investigated six
Traffic Patterns and analyzed two Adaptive Routing Algorithms namely the Non-Minimal Adaptive
Routing Algorithm and Minimal Adaptive Routing Algorithm. [1] proposed a further extension to
the fat trees called Zoned-Fat tree, and gave a fault tolerance algorithm for it. [2] presented a fast
deterministic routing algorithm for fat-trees, which minimizes congestion risk even under massive
topology degradation caused by equipment failure.

This paper focuses on the link fault tolerance for MiKANT networks. The main contributions
are to propose fault tolerant routing algorithms for MiKANT networks with link faulty and evaluate
their performance through simulations. We also give a method to avoid the deadlock during the link
fault tolerant routing. The rest of the paper is organized as follows. Section 2 introduces MiKANT
networks. Section 3 gives link fault tolerant algorithms. Section 4 evaluates the performance of the
algorithms. And Section 5 concludes the paper.

2 Mirrored K-Ary N-Tree

This section introduces the structure of the MiKANT network and its shortest path routing algo-
rithm.

2.1 MiKANT Topology

A MiKANT(k, n) has two groups and each group has n− 1 levels. There are 2(n− 1)kn−1 switches,
(2n − 1)kn links, and 2kn compute nodes. Each switch has 2k bidirectional ports. We discuss
MiKANT(k, n) with a restriction of n ≥ 2. For n = 1, there is only one switch and 2k compute
nodes are connected to the switch.

Each switch in a MiKANT(k, n) for n ≥ 2 is labeled as

〈G,L,Dn−2, Dn−3, . . . , D1, D0〉

each link in a MiKANT(k, n) for n ≥ 2 is labeled as

〈G,L,Dn−2, Dn−3, . . . , D1, D0, P 〉

and each compute node in a MiKANT(k, n) is labeled as

〈G,Cn−1, Cn−2, Cn−3, . . . , C1, C0〉

where G indicates the group with G ∈ {0, 1}, L indicates the level with L ∈ {0, . . . , n − 2}, P
indicates the port number of a switch with P ∈ {0, . . . , k − 1}, Cn−1, Cn−2, . . . , C1, C0 is an n-tuple
{0, 1, . . . , k−1}n, and Dn−2, Dn−3, . . . , D1, D0 is an (n−1)-tuple {0, 1, . . . , k−1}n−1 which identifies
the switch inside level L of group G. A switch

W = 〈G,L,Dn−2, . . . , DL+1, DL, DL−1, . . . , D0〉

connects to switches
〈G,L + 1, Dn−2, . . . , DL+1, ∗, DL−1, . . . , D0〉

via links
〈G,L + 1, Dn−2, . . . , DL+1, ∗, DL−1, . . . , D0, P 〉

with P = DL, if 0 ≤ L ≤ n− 3; otherwise (L = n− 2) to switches

〈G,L, ∗, Dn−3, . . . , D1, D0〉

via links
〈1, L, ∗, Dn−3, . . . , D1, D0, P 〉
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with P = DL−1, G is the bit-inversion of G. ∗ is any value for ∗ ∈ {0, 1, . . . , k − 1}. Note that the
links in between two groups are labeled with G = 1 and L = n − 1. For example, a level 1 switch
of group 0 W = 〈0, 1, 0, 0〉 in a MiKANT(3, 3) (k = 3 and n = 3) connects to switches 〈1, 1, 0, 0〉,
〈1, 1, 1, 0〉, and 〈1, 1, 2, 0〉 via links 〈1, 2, 0, 0, 0〉, 〈1, 2, 1, 0, 0〉, and 〈1, 2, 2, 0, 0〉, with P = DL−1 = 0.
The switch W = 〈0, 1, 0, 0〉 also connects to switches 〈0, 0, 0, 0〉, 〈0, 0, 0, 1〉, and 〈0, 0, 0, 2〉 via links
〈0, 1, 0, 0, 0〉, 〈0, 1, 0, 0, 1〉, and 〈0, 1, 0, 0, 2〉, with P = DL−1 = ∗. A compute node

〈G,Cn−1, Cn−2, . . . , C1, C0〉

connects to the switch
〈G, 0, Dn−2, . . . , D1, D0〉

via link
〈G, 0, Dn−2, . . . , D1, D0, Cn−1〉

For example, a level 0 switch of group 0 W = 〈0, 0, 0, 0〉 in a MiKANT(3, 3) connects to nodes
〈0, 0, 0, 0〉, 〈0, 1, 0, 0〉, and 〈0, 2, 0, 0〉 via links 〈0, 0, 0, 0, 0〉, 〈0, 0, 0, 0, 1〉, and 〈0, 0, 0, 0, 2〉.

Figure 1: A Mirrored 3-ary 3-tree

Fig. 1 shows a MiKANT(3, 3). There are 2(n − 1) = 4 levels and each level has kn−1 = 9
switches, and the total number of the switches is 2(n− 1)kn−1 = 36. The number of compute nodes
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Algorithm 1 MiKANT Routing (packet)

Input: packet = 〈T, data〉; /* received packet which will be sent to T */
W = 〈GW , LW ,Wn−2, ...,W1,W0〉; /* my switch ID */
T = 〈GT , Tn−1, Tn−2, ..., T1, T0〉; /* destination node ID */
if (GW 6= GT ) /* W,T : different groups */

send packet to T+
LW

port; /* increasing level */
else /* W,T : same group */

if (Wn−2, ...,WLW
6= Tn−2, ..., TLW

) /* going to NCA */
send packet to T+

LW
port; /* increasing level */

else /* going to destination from NCA */
if (LW > 0) /* not a level 0 switch */

send packet to T−
LW−1 port; /* decreasing level */

else /* a level 0 switch */
send packet to T−

n−1 port; /* to destination node */
endif

endif
endif

is 2kn = 54, and the number of links is (2n− 1)kn = 135. The upper two levels are of group 1 and
the lower two levels are of group 0. The figure also shows the link labels, switch labels, and node
labels.

We summarize the topological properties of MiKANT(k, n) as follows. The radix of all the
switches is 2k. The diameter of MiKANT(k, n) is 2n. The bisection width of MiKANT(k, n) is
kn/2. The average distance of MiKANT(k, n) is (2n− 1)/(k − 1) + 1/(k − 1)kn − 1/2.

2.2 Routing Algorithm

The routing algorithm is based on the destination compute node ID and switch IDs. The output
port on each switch is selected based on the current switch ID and destination node ID. Each switch
has 2k ports in a MiKANT(k, n). In each group, the ports in the side near to compute nodes are
labeled with 0, 1, . . . , k− 1; the ports in the other side are labeled with k, k + 1, . . . , 2k− 1. We call
the switch connected to the source (destination) compute node source (destination) switch.

We use W = 〈GW , LW ,Wn−2, ...,W1,W0〉 to denote the current switch ID. The packet received
by W contains the destination node ID T = 〈GT , Tn−1, Tn−2, ..., T1, T0〉. Based on T , W selects a
port and sends the packet through the selected port. Case 0: If GW 6= GT (W and T are of different
groups), W sends the packet to an upper-level switch through the port TLW

+ k. For example, in
a MiKANT(3, 3), for W = 〈1, 0, 0, 1〉 and T = 〈0, 2, 1, 2〉, W sends the packet through the port
T0 + k = 2 + 3 = 5, to the switch 〈1, 1, 0, 2〉. Similarly, switch 〈1, 1, 0, 2〉 sends the packet through
the port T1 + k = 1 + 3 = 4, to the switch 〈0, 1, 1, 2〉. These routings are in an upward phase in
which the packet is sent from the source switch to a nearest common ancestor (NCA) of both the
source and destination nodes. Because there are more than one NCA, we can select other ports to
send the packet to different NCAs. This is helpful for the fault tolerant routing. If GW = GT (W
and T are of the same group), there are three cases. Case 1: Wn−2, ...,WLW

= Tn−2, ..., TLW
and

LW > 0. This means that the packet already reached the NCA and the routing enters to a downward
phase. In this phase, the routing is deterministic. The port of TLW−1 must be selected for sending
the packet toward the destination switch. For example, in a MiKANT(3, 3), for W = 〈0, 1, 1, 2〉
and T = 〈0, 2, 1, 2〉, W sends the packet through the port T1−1 = 2, to the switch 〈0, 0, 1, 2〉. Case
2: Wn−2, ...,WLW

= Tn−2, ..., TLW
and LW = 0. This means that the packet already reached the

destination switch. The port of Tn−1 will be selected for sending the packet to the destination
compute node. For example, in a MiKANT(3, 3), for W = 〈0, 0, 1, 2〉 and T = 〈0, 2, 1, 2〉, W sends
the packet through the port T2 = 2 to T . Case 3: Wn−2, ...,WLW

6= Tn−2, ..., TLW
. This means

that the packet did not yet reach the NCA. W will send the packet to an upper level switch through
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the port TLW
+ k. For example, in a MiKANT(3, 3), for W = 〈0, 0, 0, 0〉 and T = 〈0, 2, 1, 2〉, W

sends the packet through the port TLW
+ k = T0 + k = 2 + 3 = 5, to the switch 〈0, 1, 0, 2〉. The

routing algorithm is formally given in Algorithm 1, where T+
x = Tx + k and T−

x = Tx.

3 Link Fault Tolerance in MiKANT

The purpose of fault tolerant routing is to enable a system to continue operating properly in a high
probability with switch or link faulty. A link faulty means that the ports of the switches connected
by the link cannot be used for passing the packet. In this section, we give four link fault tolerant
routing algorithms and their combinations. In addition, some algorithms are compared with other
existing methods.

Figure 2: Go-Neighbor-Switch algorithm

3.1 Fault Tolerant Routing Algorithms

The routing algorithm given in Algorithm 1 finds a shortest path between the source and destina-
tion compute nodes. If a link in the path is faulty while the path to the destination node is deter-
mined, the shortest path routing algorithm will fail. For example, the current switch is 〈0, 1, 0, 0〉 in
a MiKANT(3, 3) and the destination node is 〈1, 0, 0, 0〉. In this case, if the link 〈1, 2, 0, 0, 0〉 is faulty,
the current switch cannot reach the switch 〈1, 1, 0, 0〉 in the shortest path. Based on the shortest
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path routing algorithm, we give four link fault tolerant routing algorithms that select other links for
the routing if a faulty link is encountered.

3.1.1 Go-Neighbor-Switch Algorithm

In the previous example, the link 〈1, 2, 0, 0, 0〉 is faulty. We can send the packet to the neighbor switch
〈1, 1, 0, 1〉 or 〈1, 1, 0, 2〉 of switch 〈1, 1, 0, 0〉. In this way, the current switch can send the packet to
the destination node 〈1, 0, 0, 0〉 via the lower level switch 〈0, 1, 0, 1〉 or 〈0, 1, 0, 2〉. We call this the
“Go-Neighbor-Switch” algorithm. The current switch can go to the lower level and back to the
current level to change to the neighbor switch, as shown as in the Fig. 2. The red dotted link is the
faulty link and the bold links are the related links to the algorithm. The current switch is 〈0, 1, 0, 0〉
and destination node is 〈1, 0, 0, 0〉. We can select the path like 〈0, 1, 0, 0〉 → 〈0, 0, 0, 1〉 → 〈0, 1, 0, 1〉
→ 〈1, 1, 0, 1〉 → 〈1, 0, 0, 0〉 or 〈0, 1, 0, 0〉 → 〈0, 0, 0, 0〉 → 〈0, 1, 0, 2〉 → 〈1, 1, 0, 2〉 → 〈1, 0, 0, 0〉. Gener-
ally, for W = 〈GW , LW ,Wn−2, . . . ,W1,W0〉 and T = 〈GW , Tn−1, Tn−2, . . . , T1, T0〉, suppose that the
link 〈1, LW + 1, Ln−2, . . . , L1, L0, P 〉 is faulty. If GW = 1, P equals Tn−2 and (Ln−2, . . . , L1, L0 =
Wn−2, . . . ,W1,W0). Otherwise, P equals Wn−2 and (Ln−2, . . . , L1, L0 = Tn−2, . . . , T1,W0). W will
send a packet to 〈GW , LW−1,Wn−2, ∗, . . . ,W1,W0〉, then to 〈GW , LW ,Wn−2, ∗−Wn−3, . . . ,W1,W0〉,
and next to 〈GW , LW , Tn−2, ∗−Wn−3, . . . ,W1,W0〉, where ∗−Wn−3 are all the element ∈ {0, 1, . . . , k−
1} except Wn−3.

Figure 3: Go-Down-Level algorithm
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Figure 4: X-Turns algorithm

3.1.2 Go-Down-Level Algorithm

In the downward phase, the path to the destination node is determined. As shown as in the Fig. 3,
the current switch W = 〈0, 1, 0, 0〉 in a MiKANT(3, 3) wants to send a packet to the destination node
〈0, 2, 0, 0〉 via switch 〈0, 0, 0, 0〉. If the link 〈0, 1, 0, 0, 0〉 is faulty, the shortest path algorithm will fail.
But W can use other ways to get to the switch 〈0, 0, 0, 0〉. For example, 〈0, 1, 0, 0〉 → 〈0, 0, 0, 1〉 →
〈0, 1, 0, 1〉 → 〈0, 0, 0, 0〉 or 〈0, 1, 0, 0〉 → 〈0, 0, 0, 2〉 → 〈0, 1, 0, 2〉 → 〈0, 0, 0, 0〉. We call this “Go-Down-
Level” algorithm. Generally, for W = 〈GW , LW , Tn−2, . . . , T1, ∗〉, T = 〈GT , ∗, Tn−2, . . . , T1, T0〉,
GW = GT , and LW = 1, if 〈GW , LW , Tn−2, . . . , T1, ∗, T0〉 is a faulty link, W can send the packet to
the 〈GW , 0, Tn−2, . . . , ∗ − T0〉, then to 〈GW , 1, Tn−2, . . . , ∗ −W0〉, next to 〈GW , 0, Tn−2, . . . , T1, T0〉,
and finally to the destination node.

3.1.3 X-Turns Algorithm

In the Go-Neighbor-Switch algorithm, when all the links connected to neighbor switches are faulty,
W cannot send the packet to the destination node via neighbor switches. Referring to Fig. 4,
switch 〈0, 0, 0, 0〉 can not use Go-Neighbor-Switch algorithm to send packet to switch 〈1, 0, 0, 0〉.
But there are still other ways to get to the destination node. For example, W = 〈0, 1, 0, 0〉
in a MiKANT(3, 3) routing to the destination node 〈1, 2, 0, 0〉 and links 〈1, 2, 0, 0, 0〉, 〈1, 2, 0, 1, 0〉
and 〈1, 2, 0, 2, 0〉 are faulty. We can send the packet to the destination node via 〈1, 1, 0, 1〉 or
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〈1, 1, 0, 2〉 instead of the 〈1, 1, 0, 0〉, and we can route to the 〈1, 1, 0, 1〉 or 〈1, 1, 0, 2〉 by these ways:
〈0, 1, 0, 0〉 → 〈1, 1, 1, 0〉 → 〈1, 0, 1, 1〉 → 〈1, 1, 1, 2〉 → 〈0, 1, 1, 2〉 → 〈1, 1, 0, 2〉 → 〈1, 0, 0, 0〉 or 〈0, 1, 0, 0〉
→ 〈1, 1, 2, 0〉 → 〈1, 0, 2, 0〉 → 〈1, 1, 2, 1〉 → 〈0, 1, 1, 1〉 → 〈1, 1, 0, 1〉 → 〈1, 0, 0, 0〉. We call this
“X-Turns” algorithm. Generally, for W = 〈GW , LW ,Wn−2, . . . ,W1,W0〉 and destination node
T = 〈GW , Tn−1, Tn−2, . . . , T1, T0〉. 〈1, LW + 1, Ln−2, . . . , L1, L0, P 〉 are faulty links. If GW = 1,
(Ln−2, . . . , L1, L0 = Wn−2, . . . ,W1, ∗), P will equal Tn−2. Otherwise P will equal Wn−2. And
(Ln−2, . . . , LLW

, . . . L1, L0 = Wn−2, . . . , ∗, . . . , T1, T0). The current switch can send a packet to
〈GW , L+

W , ∗−Tn−2, . . . ,W1,W0〉, then to 〈GW , L+
W , ∗−Tn−2, . . . ,W1, ∗−W0〉, next to 〈GW , L+

W , ∗−
Wn−2, . . . ,W1, ∗−W0〉, and final to the destination node via switch 〈GW , L+

W , Tn−2, . . . ,W1, ∗−W0〉
where L+

W = n− 1.

Algorithm 2 Go-Neighbor-Switch and X-Turns

W = 〈GW , LW ,Wn−2, ...,W1,W0〉; /* my switch ID */
T = 〈GT , Tn−1, Tn−2, ..., T1, T0〉; /* destination node ID */
L = 〈GL, LL, Ln−2, ..., L1, L0, P 〉; /* link ID */
if (GW 6= GT ) /* W,T : different groups */

send packet to T+
LW

via link L; /* increasing level */
if (L is faulty link)

send packet to WN via link L; /* Go-Neighbor-Switch */
if (L is faulty link)

send packet to N(T+
LW−(n−2)) via link L; /* X-Turns */

if (L is faulty link)
routing fails;

endif
else

if (current switch in N(T+
LW−(n−2))

send packet to T
+

LW
via link L; /* Back to */

if (L is faulty link)
routing fails;

endif
else

if (current switch in T
+

LW
)

send packet to T+
LW

via link L;
if (L is faulty link)

routing fails;
endif

endif
endif

endif /* X-Turns end */
else

if (current switch in WN )
send packet to T+

LW
via link L; /* Go to T+

LW
via WN */

if (L is faulty link)
routing fails;

endif
endif

endif
endif

X-Turns algorithm must be used together with Go-Neighbor-Switch algorithm, see Algorithm
2, where WN means the neighbor switch of W , N(T+

LW−(n−2)) means W has the same group ID as

T and in level LW − (n− 2) = 0.

X-Turns algorithm is quite complex and may cause deadlock. In order to avoid the deadlock,

147



Link Fault Tolerant Routing Algorithms in Mirrored K-Ary N -Tree Interconnection Networks

we prepare two parameters to save the values of Wn−2 and W0 for each packet, and avoid selecting
those paths that were visited before when the packet goes back to the switch.

Figure 5: Three-Turn algorithm

3.1.4 Three-Turn Algorithm

As shown as in the Fig. 5. For W = 〈0, 1, 0, 1〉, in the shortest path algorithm, if the link
〈1, 2, 1, 1, 0〉 is faulty, the packet cannot be sent to the destination node 〈1, 0, 1, 1〉 via this link.
Another algorithm can be used by the following path, 〈0, 1, 0, 1〉 → 〈1, 1, 0, 1〉 → 〈0, 1, 1, 1〉 →
〈1, 1, 1, 1〉 or 〈0, 1, 0, 1〉 → 〈1, 1, 2, 1〉 → 〈0, 1, 2, 0〉 → 〈1, 1, 1, 1〉. It changes group three times, so
we call it “Three-Turn” algorithm. Generally, for W = 〈GW , LW ,Wn−2, . . . ,W1,W0〉 and destina-
tion node T = 〈GW , Tn−1, Tn−2, . . . , T1, T0〉, suppose that 〈1, LW + 1, Ln−2, . . . , L1, L0, P 〉 is faulty.
If GW = 1, P equals Tn−2 and (Ln−2, . . . , L1, L0 = Wn−2, . . . ,W1,W0). Otherwise, P equals Wn−2

and (Ln−2, . . . , L1, L0 = Tn−2, . . . , T1,W0). W will send a packet to 〈GW , LW , ∗−Tn−2, . . . ,W1,W0〉,
then to 〈GW , LW , ∗ −Wn−2, . . . ,W1,W0〉, and next to 〈GW , LW , Tn−2, . . . ,W1,W0〉.

In order to avoid the deadlock, we need a parameter to save the value of the Wn−2 before W sends
a packet to 〈GW , LW , ∗−Tn−2, . . . ,W1,W0〉, and avoid selecting switch 〈GW , LW ,Wn−2, . . . ,W1,W0〉
when the packet goes back from 〈GW , LW , ∗ − Tn−2, . . . ,W1,W0〉.
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3.2 Combined Algorithms

In the previous sections, we described the Go-Neighbor-Switch, Go-Down-Level, X-Turns, and Three-
Turn algorithms. Some algorithms improve performance when used in combination, and some algo-
rithms compete with each other when used in combination. In this section, we give three combined
algorithms that achieve better performance in the MiKANT.

3.2.1 Go-Neighbor-Switch and Go-Down-Level Algorithms

The Go-Neighbor-Switch algorithm is used when the current switch and destination/NCA are in
different groups (upward phase), and the Go-Down-Level algorithm is used in the downward phase.
Therefore, using the Go-Neighbor-Switch algorithm and the Go-Down-Level algorithm together can
improve performance.

3.2.2 Go-Neighbor-Switch, X-Turns and Go-Down-Level Algorithms

As shown as in the Algorithm 2, X-Turns should be used with the Go-Neighbor-Switch algorithm.
X-Turns is also used when the current switch and destination/NCA are in different groups. In short,
the Go-Neighbor-Switch, X-Turns, and Go-Down-Level algorithms improve performance when they
are combined.

3.2.3 Three-Turn and Go-Down-Level Algorithms

As described in Section 3.1.4, Three-Turn is also used when the current switch and destination/NCA
are in different groups. That is, the Three-Turn algorithm competes with the Go-Neighbor-Switch
and X-Turns algorithms. When Three-Turn is used in combination with Go-Neighbor-Switch or X-
Turns, no obvious performance improvement is achieved. Therefore, performance is only improved
when Three-Turn is combined with the Go-Down-Level algorithm.

3.3 Compare to DCell Local-Reroute with Proxy

DCell Fault-tolerant Routing protocol (DFR)[3] is a near-optimal, decentralized routing solution
that effectively exploits the DCell structure and can effectively handle various failures. In this
section, we mainly discuss the Local-route with proxy of DFR which handles in faulty links. This
section compares our algorithms to the DCell Fault-tolerant Routing protocol.

Consider the following case. In a MiKANT(k, n), the source node and destination node are in the
same group and there is a faulty link in the path of the source node to the NCA. For example, for a
current switch 〈0, 1, 0, 0〉 and a destination switch 〈0, 0, 1, ∗〉 in MiKANT(3, 3), the link 〈1, 1, 0, 0, 0〉
is fault. It is the same as the example in Fig. 2. The current switch will choose the neighbor switch
as its “proxy” and re-routes the packet to the NCA via the proxy. This is the same as the DCell
Fault-tolerant Routing protocol.

Another example of using the local-reroute with proxy is for the case that the current switch
reached the NCA and goes to the destination node. For example, for current switch 〈0, 1, 0, 0〉 and
a destination node 〈0, ∗, 0, 0〉 in MiKANT(3, 3), the link 〈0, 1, 0, 0, 0〉 is fault. It is the same as the
example in Fig. 3. The neighbor switch of the current switch will be selected as its “proxy” and
re-routes the packet to the destination node via the proxy. This is also the same as the DCell
Fault-tolerant Routing protocol.

That is, DCell local-reroute with proxy is a similar method to the Go-Neighbor-Switch and Go-
Down-Level. But DCell local-reroute with proxy is mainly suitable for the case where the current
switch can find a neighbor switch as its proxy. When all the links connected to the neighbor switches
are faulty, DCell local-reroute with proxy cannot reach destination/NCA. For such a case, we further
prepared other two algorithms, X-Turns and Three-Turn, to solve this problem.
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4 Evaluation of Algorithms

We have evaluated the performance of the shortest path, Go-Neighbor-Switch, Go-Down-Level, X-
Turns, and Three-Turn algorithms and their combinations through simulations. We simulate the
network MiKANT(3, 3) with 135 links. MiKANT(3, 3) is the smallest scale in which all the algo-
rithms can be used and all the algorithms can be effective in a larger scale network of MiKANT(k, n).
Although the mainstreams now use large-scale parallel systems, for hybrid network structures, using
multiple small-scale parallel structures is also a popular method.

We developed our own simulator. For a given number of faulty links, we simulate each algorithm
100,000 times. To configure the network for each time, we randomly assign the source and destination
nodes. The faulty links are also assigned randomly. One configuration is used for the simulations of
all the algorithms.

Fig. 6 shows the successful routing ratios of the algorithms with the faulty links number from 0
to 20. The shortest path algorithm has the lowest successful routing ratio. The Go-Neighbor-Switch
algorithm, Go-Down-Level algorithm, Three-Turn and their combination have better performance
than shortest path algorithm. As shown in Algorithm 2, the X-Turns algorithm must be used with
the Go-Neighbor-Switch algorithm. We also applied the Go-Down-Level algorithm to the X-Turns
and Three-Turn simulation,respectively. From the figure, we can know the impacts of the algorithms
on the successful routing ratios.
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Figure 8: Successful routing ratio on link faulty

Fig. 7 shows the average path length when the routings are successful. 20 faulty links in
MiKANT(3, 3) are less than 15% of total links, the improvement of successful routing ratio in
Go-Neighbor-Switch is not obvious. Because we only count the path length when the routing is suc-
cessful, and some routings with shorter paths may be successful by using the Go-Neighbor-Switch
algorithm but such routings are failed by using the shortest path algorithm, the average path length
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of Go-Neighbor-Switch may be smaller than that of shortest path. Go-Down-Level algorithm, Three-
Turn algorithm and X-Turns algorithm increase path lengths obviously. Go-Down-Level algorithm
and Three-Turn algorithm have almost the same path length. Generally, the algorithm achieves
higher successful routing ratio has a longer routing path.

Fig. 8 shows the successful routing ratios of the algorithms with the link faulty rate ranging from
0% to 100%. The combined algorithms show better performance. Faulty rate of 100% means that
all the links are faulty. This does not happen for a well-maintained system.

Fig. 9 shows the average path length when the routings are successful with the link faulty rate
ranging from 0% to 100%. We can find that the path length increases and then decreases as the link
faulty rate increases. This is because, when the link faulty rate is high, the routing can be successful
only when the source node and destination node have a shorter distance between each other.
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Figure 9: Average path length on link faulty

5 Conclusions

As one of the variants of fat-trees, MiKANT network can achieve higher performance at lower
implementation cost. As the scale of MiKANT becomes large, the probability of link failure increases.
Fault tolerance is one of the important issues of the interconnection networks for large-scale parallel
computers. The four algorithms and their combinations proposed in this paper can find a path from
the source node to the destination node at high probability in the MiKANT with faulty links. The
future research work may include developing new link fault tolerant algorithms of higher performance
and evaluating the performance of the algorithms for both the switch and link fault tolerance in
MiKANT.
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