
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 1, Number 2, pages 211–229, July 2011

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

Marcos Slomp, Michihiro Mikamo, Bisser Raytchev, Toru Tamaki, Kazufumi Kaneda

Intelligent Systems and Modeling Laboratory
Faculty of Engineering, Hiroshima University

1-4-1 Kagamiyama, Higashi-hiroshima City, Hiroshima Prefecture, 739-8527, Japan

Received: January 31, 2011
Revised: May 2, 2011

Accepted: June 20, 2011
Communicated by Yasuaki Ito

Abstract

Photomosaic generation is a popular non-photorealistic rendering technique, where a sin-
gle image is assembled from several smaller ones. Visual responses change depending on the
proximity to the photomosaic, leading to many creative prospects for publicity and art. Synthe-
sizing photomosaics typically requires very large image databases in order to produce pleasing
results. Moreover, repetitions are allowed to occur which may locally bias the mosaic. This
paper provides alternatives to prevent repetitions while still being robust enough to work with
coarse image subsets. Three approaches were considered for the matching stage of photomosaics:
a greedy-based procedural algorithm, simulated annealing and SoftAssign. It was found that
the latter delivers adequate arrangements in cases where only a restricted number of images
is available. This paper introduces a novel GPU-accelerated SoftAssign implementation that
outperforms an optimized CPU implementation by a factor of 60 times in the tested hardware.

Keywords: Non-photorealistic rendering (NPR), Photomosaic, SoftAssign, Simulated Annealing,
General-Purpose GPU programming (GPGPU)

1 Introduction

As opposed to photorealistic rendering, non-photorealistic rendering (NPR) algorithms trade-off
physical accuracy in exchange for feature highlighting or artistic effects. The current affordability of
computers and digital cameras is empowering many inventive outcomes from user-generated content,
paving access to NPR effects like photomosaics [6].

Photomosaics comprise special instances of mosaics. A mosaic is a stylization of an image,
consisting of a collection of bulky primitives. A photomosaic is then envisaged as a mosaic whose
bulky primitives are images themselves, as illustrated in Figure 1. Over the past decades several
photomosaic generation algorithms were conceived [8, 5, 2].

Subjects experience different visual responses based on their relative proximity to a photomosaic.
Despite of being a fancy effect, photomosaics are widely acclaimed by advertisement producers. In
the hands of skilled marketing personnel, photomosaics can capture the essence of a product at

211

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

Figure 1: A 20× 20 photomosaic assembled from 1500 images assigned through one of the proposed
algorithms (simulated annealing). The input image is miniaturized at the left for reference. The
usage of available images was maximized so that no image appears repeatedly in the resulting mosaic.

different perspectives, ultimately entertaining and attracting potential consumers. Many commercial
opportunities can arise through clever utilization of photomosaics.

Silvers et al. delivered the first efforts on photomosaic generation [8]. Klein et al. extended the
concept to video mosaics, where lower resolution movies are used as bulky primitives to assemble a
larger video [5]. Di Blasi et al. derived a faster method to generate photomosaics by varying the
sizes of the images that appear in the photomosaic, clustered into an antipole tree data structure [2].
The interested reader can further refer to Battiato et al.’s survey on photomosaic generation tech-
niques [1].

Current photomosaic generation algorithms, however, require huge amounts of images in order
to produce attractive results. Repetitions are allowed to occur, which may locally bias the mosaic.
Another common strategy, if only a small image set is available, is to reduce the size of the bulky
primitives, subdividing the input image into very small chunks, but this ends up breaking the
illusion of the photomosaic, unless observed very closely. Tuning photomosaics manually is obviously
exhaustive and impractical.

This paper is an extension to our previous work in [7]. The original publication studied three
methods to maximize the usage of available images in photomosaics by preventing image repetitions:
a greedy-based procedural algorithm, a simulated annealing driven solution [4] and a SoftAssign-
based [3] approach. From these strategies, the greedy-based is the fastest, but lacks in quality;
simulated annealing, on the other hand, is time-prohibitive. SoftAssign is capable of producing
photomosaics that are qualitatively equivalent to simulated annealing in a much faster rate, but

212

International Journal of Networking and Computing

still time demanding nonetheless. The present paper builds upon this investigation and provides
an efficient GPU-based implementation of SoftAssign. The performance increase is about 60 times
when compared to an optimized CPU implementation, in the tested hardware configuration.

The next three sections of this document presents the studies performed in the above mentioned
prior research [7]: Section 2 formalizes the problem of maximizing the number of images used in
photomosaics; Section 3 reviews the three image assignment approaches; Section 4 focuses on the
initial results originally published.

The remainder of this document is designed based on the analysis of the referred research, paving
the road to further investigation of the SoftAssign algorithm in GPU: Section 5 provides a blueprint
to implement SoftAssign and discusses issues and parallelization strategies, Section 6 focuses on
mapping the SoftAssign algorithm to the graphics pipeline in order to exploit parallelism in GPU,
Section 7 extends the initial results with additional mosaics and performance comparisons between
CPU and GPU implementations of SoftAssign, and Sections 8 and 9 conclude the paper and points
future directions.

2 Maximizing Image Utilization on Photomosaics

In general, given a source image I and a set of n images T = {t1, ..., tn}, ordinarily known as tiles,
synthesizing a photomosaic P digests to:

1. Subdivide the target image into a regular w × h lattice of rectangular regions; these regions
will be referred to as patches and denoted as pi ∈ {p1, ..., pm}, where m = w × h;

2. For each patch pi, search for an appropriate tile tj ∈ T to replace the patch; this step may
require manipulation of the tile images (resizing, cropping, etc.)

The goal is to maximize the usage of distinct tiles in the resulting photomosaic. Tile utilization
can be maximized by preventing any individual tile to be assigned to more than a single patch. That
means that a tile can only be assigned to a patch if it is not currently assigned to any other patch.
In the end, every patch must hold a unique tile assigned to it, although it is possible for some tiles
to remain unassociated to any particular patch, since typically there are more tiles than patches.
When there are more patches than tiles, no solution can be determined.

However, maximizing tile utilization itself does not guarantee that the resulting photomosaic P
will resemble the input image I. Therefore, the visual similarity between patches and tiles can not
be neglected, being critical to guide the optimization process. The metric chosen to determine visual
similarities is a simple Euclidean distance in RGB color space. More sophisticated metrics or color
spaces could be used instead, but such simplistic measure proved to be satisfactory.

In order to determine the visual similarity between a patch pi and a tile tj , both are further
partitioned into smaller u × v = s rectangular regions: pi = {p1

i , ..., p
s
i} and tj = {t1j , ..., tsj}. The

average intensity of each partition, pk
i = (R

k

i , G
k

i , B
k

i) and t
k
i = (rk

j , gk
j , b

k

j), is then computed through
simple component-wise arithmetic average. Finally, the visual similarity function can be defined as:

d(pi, tj) =

√√√√ s∑
k=1

[
(R

k

i − rk
j)2 + (G

k

i − gk
j)2 + (B

k

i − b
k

j)2
]

(1)

Note that the lower the value of the visual similarity function, the more closely tile tj resembles
patch pi; a “perfect” match would evaluate d(pi, tj) to zero. Therefore it is sound to think of
d(pi, tj) as a distance function. Such formulation will later be used to populate a distance matrix, a
fundamental component of all of the involved algorithms (Section 3.1, Figure 2).

213

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

The problem of maximizing image utilization on photomosaics can then be formalized as an
optimization scheme for minimizing the sum of d(pi, tj) under the restriction that all patches must
have uniquely assigned tiles, as formulated below:

min

m∑
i=1

n∑
j=1

d(pi, tj) y(pi, tj) (2)

subject to the following constraints:

y(pi, tj) =
{

1 if tj is assigned to pi

0 otherwise (3)

n∑
j=1

y(pi, tj) = 1 (4)

m∑
i=1

y(pi, tj) = 1 or
m∑

i=1

y(pi, tj) = 0 (5)

The membership function y(pi, tj) models the patch-tile assignment by assuming the binary
values defined in Equation 3. The constraint from Equation 4 ensures that a patch will always
have a single tile assigned to it, while the final constraints from Equation 5 guarantee that tiles
are assigned at most once. All three algorithms detailed in the subsequent section enforce these
requirements.

3 Photomosaic Optimization Strategies

The photomosaic optimization strategies from [7] can be summarized as follows:

• Greedy-based Search: locates the most similar matches and sequentially revamps repetitions
with unmatched ones; likely to fall into local minima solutions.

• Simulated Annealing: attempts to reach a solution close to the global optimum photomosaic
through stochastic minimization algorithm that avoids local minima.

• SoftAssign: similar to simulated annealing, but the solution narrows down to the global opti-
mum through a deterministic process that also avoids local minima.

All of these algorithms share a common resource, the distance matrix, which will be introduced
beforehand.

3.1 The Distance Matrix

The purpose of the distance matrix is to track the color similarities (distances) amongst each patch
pi and each tile tj . If we let the rows correspond to the m = w × h patches and the columns to the
n available tiles, then the distance matrix Dm×n can be expressed as:

D = dij =

 d11 · · · d1n

...
. . .

...
dm1 · · · dmn

 (6)

where dij = d(pi, tj), according to Equation 1. The distance matrix is also depicted in Figure 2.
All of the subsequent algorithms use the distance matrix as an input, and it can be computed in
advance. The distance matrix is immutable: none of the algorithms ever modify its contents.

214

International Journal of Networking and Computing

Figure 2: The distance matrix stores the color similarities between patches and tiles.

3.2 The Greedy-Based Search

The greedy approach begins by assigning tiles to patches based on the “best-match” criteria. Since
repetitions are likely to occur with such criteria, the algorithm iterates once more, sequentially
reassigning unused tiles to conflicting patches based once again on the same criteria.

For each patch pi, the corresponding row of the distance matrix Di = [di1 · · · din] is examined,
searching for the element diq that holds the lowest distance (most similar). The tile tq is then
assigned to pi as the best-match.

As repetitions are prone to happen, each tile tj is further classified as: assigned once, assigned
multiple times and not assigned. The rationale is then to keep uniquely assigned tiles unchanged,
while replacing multi-assigned tiles by unassigned ones. This can be done by means of the absolute
difference between each multi-assigned tile tmulti and each unassigned tile tfree; whichever has the
lowest difference wins (Figure 3).

Figure 3: The corresponding patches of a multi-assigned tile are sequentially replaced by unassigned
tiles until that multi-assigned tile becomes uniquely assigned. The reassignment process is based on
the best-match criteria, i.e., lowest distance (highest visual similarity).

215

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

3.3 Simulated Annealing

Simulated Annealing (SA) [4] is a generic stochastic technique for optimization problems, identifying
potential solutions through random inspection of large search spaces. SA is relatively easy to im-
plement and can account for almost any objective function, with constraints being attached directly
into the SA procedure. SA is capable of finding very close approximations to the global optimum if
given enough time.

The key component of SA is the dynamic temperature parameter. Higher temperatures permit
configurations in search space that lead to an increase in the cost function, helping the algorithm
to avoid local minima. As the temperature lowers, the solution is progressively enhanced and the
search becomes more restricted.

Photomosaic tile matching can be expressed as a SA process through the minimization of the
following cost function:

E(X,D) =
m∑

i=1

n∑
j=1

(dij − α) xij (7)

where xij are elements of the correspondence matrix X which only takes binary values: if tj is
a possible match to pi then xij = 1, otherwise xij = 0. The constraints from Equations 3 to 5
must also be respected; therefore every row Xi = [xi1 · · · xin] should hold exactly one element
xiq = 1, while every column of X should have at most one element set to 1. The semantics of the
correspondence matrix X is thus equivalent to the semantics of the membership function y(pi, tj)
as expressed through Equations 3 to 5. The parameter α is used to favor a certain range of visual
similarities (distances) between patches and tiles.

In order to minimize Equation 7, the correspondence space is stochastically sampled via a Markov
process. A new solution X∗ is produced at each iteration by modifying only a single row of X. This
row Xr = [xr1 · · · xrn] is selected randomly. The single element currently set to 1 in Xr, xrb = 1,
is flipped in X∗

r so that x∗
rb = 0, thus leaving the entire row X∗

r filled with zeros. What remains
to be done is to pick some aleatory element xrw | w ̸= b and flip it in X∗

r , yielding x∗
rw = 1. This

last step should be performed carefully to prevent the same tile tw of being assigned twice in the
new solution X∗. The index w is repeatedly shuffled if necessary until no such assignment conflict
occurs.

For the particular case of square correspondence matrices, the procedure described above fails
since a conflict-free element xrw | w ̸= b would never be found. In such special case, another aleatory
row Xr̂ | r̂ ̸= r is selected and swapped with Xr, thus making X∗

r = Xr̂ and X∗
r̂ = Xr.

Once a new solution X∗ is established, it can be accepted or rejected according to the following
transition probabilities:

P (X → X∗) =
{

1 if ∆E ≤ 0
e−∆E/τ otherwise

(8)

where ∆E = E(X∗, D) − E(X,D). The rationale is that state changes are allowed as long as the
cost function decreases; to prevent local minima, state may also change with increasing costs based
on the current temperature τ . The temperature is gradually lowered during the stochastic search
process according to the annealing schedule: the temperature τ ′ of the next iteration is obtained by
τ ′ = f τ , with a cooling factor of 0.85 ≤ f ≤ 0.99 typically.

At the end of the simulation, each row Xi = [xi1 · · · xin] allegedly accommodates a unique
element xiq = 1, which allots tq as the best replacement for pi.

216

International Journal of Networking and Computing

3.4 SoftAssign

In computer vision, SoftAssign [3] offers a robust solution to match point clouds, ensuring unique
matching criteria while still avoiding being trapped into local minima cusps. SoftAssign derives
from deterministic annealing and can be seen as simulated annealing (SA) when applied under the
condition of mean field approximation, i.e., it does not rely on any stochastic search.

An optimal photomosaic can be reckoned as the best unique match between tiles and patches.
This naturally settles SoftAssign as an alluring solution, if readapted to minimize the following cost
function E:

E(X,D) =
m,n∑
i,j=1

xijdij − α

m,n∑
i,j=1

xij + τ

m,n∑
i,j=1

xij ln(xij) (9)

with xij being elements of the correspondence matrix X. In contrast to SA, here X holds “fuzzy”
correspondences, with 0 ≤ xij ≤ 1. The rationale is that each tile tj is a potential match to each
patch pi by some weight xij . The fuzziness is guided by the last entropy term and the current
temperature τ .

The elements of X are initialized randomly with very small quantities. Subsequent iterations
modify X according to the following expression:

x′
ij = e−xij(dij−α)/τ (10)

The temperature τ decreases at each iteration akin to SA. Equation 10 is obtained from Equa-
tion 9, optimizing the same objective function of Equation 9 [3]. The key component of this equiv-
alence is the fact that once X ′ is computed, a row-column normalization through Sinkhorn itera-
tions [3, 9] is performed.

Such normalization procedure forces all rows and columns of X ′ to sum up to 1. Because of such
behavior, columns that correspond to irrelevant tiles (unassigned) will also retain some quantities
in their elements, a fact that can bias the convergence process. SoftAssign originally attached
to the correspondence matrix an additional row and column, referred to as outliers, in order to
isolate discrepant matches, discarding them once the solution is found. For the case of photomosaic
optimization, only the outlier row is necessary, thus mapping unused tiles to an imaginary patch.
In contrast, an outlier column would allow patches to be assigned to an imaginary tile which, once
discarded, would result in patches not being assigned to any tile.

At the end of the simulation, save for the attached outlier row, every row Xi = [xi1 · · · xin]
should contain a unique element xiq = 1 while all others set to zero. The tile tq is then settled as
the best candidate to replace pi.

4 Initial Results

We based the current results on a hot-air balloon reference photograph (Figure 4, upper left). As for
the color similarity function evaluation (Equation 1), each patch and tile was partitioned into 4×4
smaller square-shaped regions. A total of three configurations were studied by varying the number
of subdivided patches and the number of available tiles, as enumerated below:

1. 10 × 10 = 100 patches selected from 100 tiles; Figure 4-uppermost; first row of Table 1.

2. 10 × 10 = 100 patches selected from 500 tiles; Figure 4-center; middle row of Table 1.

3. 20 × 20 = 400 patches selected from 1500 tiles; Figure 4-bottom; last row of Table 1.

217

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

The Simulated Annealing and SoftAssign parameters were determined empirically. Their corre-
sponding performance results in Table 1 were measured through our MATLAB implementation of
the corresponding algorithms. The exception is the greedy-based search, which was implemented
in C++, the binary being compiled and linked from the Microsoft Visual C++ 2008. The target
hardware is an Intel Core2 Duo 2.5GHz with 2GB RAM running Windows XP 32bit SP3.

Figure 4: Summary of experimental results: the upper left image is the reference image; the lower
left one is a 20x20 photomosaic generated from 1500 tiles (similar to Case 3) through a simple
best-match (minimal cost) algorithm which allows tile repetition (only 82 tiles were selected; final
absolute cost of 79989). Note how such recurring tiles tend to bias the photomosaic, leading to weak
aesthetics. The remaining rows corresponds to one of the three studied configurations enumerated in
the Experimental Results Section, and each column corresponds to one of the three tile-repetition-
free discussed algorithms.

Patches Tiles Measurements Greedy Simulated Annealing SoftAssign
abs. cost 44172 43370 42713

100 (10×10) 100 rel. cost 1.03 1.02 1.00
gen. time 7s 13min 6s
abs. cost 31997 31282 31656

100 (10×10) 500 rel. cost 1.02 1.00 1.01
gen. time 6s 1h32min 35s
abs. cost 128817 123350 127560

400 (20×20) 1500 rel. cost 1.04 1.00 1.03
gen. time 3min 2 weeks 8min

Table 1: Summary of results. The final minimized cost (absolute and relative) of each algorithm in
each case is listed, as well as the total time that each algorithm took to find the solution.

218

International Journal of Networking and Computing

In the first two cases, SoftAssign and SA result in more visually appealing photomosaics, rating
them as good algorithmic choices when a comparatively small number of tiles is available; although
hard to perceptually decide which one feels better, SoftAssign is much faster. As for the third
case, SA converges to a qualitatively lower cost than the greedy and SoftAssign approaches, but is
excessively time demanding and thus impractical.

The performance and overall quality of the results originated from SoftAssign motivated us
to investigate the acceleration of the algorithm with the assistance of the modern programmable
graphics hardware (GPU). For that purpose, the following sections will focus on the SoftAssign
method, introducing a pseudo-code template, mitigating potential issues, and clarifying decisions
made while porting the technique to the GPU.

5 SoftAssign Implementation

The blueprint for the SoftAssign technique can be summarized in the following pseudo-code:

Parameters:

t0 : scalar, input // The initial temperature
tk : scalar, input // The temperature cooling factor
alpha : scalar, input // Bias factor for the objective function
D : matrix, input // The distance matrix to be minimized
S : matrix, output // The solution (optimal correspondence)

Algorithm:

M = matrix(#rows,#cols)
Q = matrix(#rows,#cols)
lowest = +%big
t = t0

for each temperature cooling iteration
for each temperature stabilization iteration

Q = M .* (D - alpha)
M = exp(-Q / t) / sqrt(t)

outlier_row = array[#cols] of +%tiny // Refresh outliers
for each Sinhkhorn iteration // Sinkhorn method:
M = M ./ (sum_cols(M) + outlier_row) // Normalize columns
M = M ./ sum_rows(M) // Normalize rows

end-for

end-for

cost = sum_all(Q) // Compute the cost (fitting)
if (cost < lowest) // Update solution if necessary
lowest = cost
S = M

end-if

t *= tk; // Lower the temperature
end-for

219

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

The terms #rows and #cols are, respectively, the number of rows and columns of the input
distance matrix D. The algorithm should initialize M with some very small random quantities. The
operator .* denotes element-wise multiplication. The expression exp(-Q / t) does not denote
matrix exponentiation, but a simple element-wise exponentiation. The idioms +%big and +%tiny
should evaluate, respectively, to some very big and very small positive constant quantities.

The function sum_cols(M) results in a row-vector whose elements correspond to the sum of the
respective columns in M. Analogously, sum_rows(M) yields to a column-vector holding the sum of all
elements in the associated rows of M. As for sum_all(Q), all elements of Q are accumulated, reducing
to a single value.

The operator ./ denotes element-wise division, but such division happens in a slightly different
fashion. When applied in M ./ sum_cols(M), each row of M is divided, element-wise, by the resulting
row-vector of sum_cols(M). The semantics is similar for M ./ sum_rows(M), but operating element-
wise on columns instead.

The outlier row plays an important role: it accumulates residual weights for tiles that don’t seem
to fit to any particular patch. Note that the outlier row must be reassigned before triggering the
Sinkhorn normalization, each element initialized with the same small value. The outlier row can be
attached as an extra row to M and ignored during temperature stabilization and row-normalization.

The ideal number of iterations is problem-dependent and usually obtained empirically. The
interested reader should refer to the original SoftAssign paper [3] for additional algorithmic details
and parameter setup guidelines, as this is out of the scope of this paper.

5.1 Addressing Precision Issues

SoftAssign is prone to run into precision issues, pushing values towards infinity as they escape from
the representable range of the underlying floating-point scheme. Continuing to operate on such
extravagant quantities will eventually cause numerical inconsistencies which will then compromise
the entire solution with no turning back.

Having the values of the distance matrix normalized into some small range is preferable. This
way the SoftAssign algorithm is unlikely to run into precision issues. However, normalization itself
may cause accuracy losses if the fractional part can not be accommodated properly in the underlying
representation. When the normalization process is not able to cope with the accuracy required, extra
care is necessary in order to prevent precision issues during the algorithm execution. In order to
avoid such precision pitfalls in an elegant and efficient way, it is important to understand how and
were they can potentially happen.

As the solution converges, individual values of the matrix M will approach one. When this
happens, the subsequent updates of the associated values in the Q matrix will result in progressively
larger quantities, based on the magnitude of D-alpha. When M is then updated based on Q, the term
exp(-Q/t) is likely to evaluate beyond the maximum representable floating-point value, resulting in
infinity. The sums from the Sinkhorn Normalization stage are also likely to accumulate to infinity,
and the following division would possibly have to deal with ∞

∞ , which results in not-a-number (NaN).
At this point, there is no way to remedy the issue and the whole solution is forever spoiled.

The obvious point to address the precision issues is by preventing exp(-Q/t) to ever evaluate
out of the representable range. In double precision floating-point (64bit) scenario, exp(-708) ≈
3.3× 10−308 is very close to the minimum allowed positive number, that is, 2.2× 10−308. Similarly,
exp(+709) ≈ 8.2 × 10+307 is close to the maximum allowed positive number, 1.8 × 10+308. Single
precision floating-point (32bit) is much worse: exp(-87) ≈ 1.6× 10−38 and exp(+88) ≈ 1.6× 10+38

already sit near the representable limits, respectively, 1.1 × 10−38 and 3.4 × 10+38.

220

International Journal of Networking and Computing

In order to eliminate numerical inconsistencies, the values of -Q/t are preset in a safe range
before the evaluation of exp(-Q/t). One could simply bind around the numerical limits highlighted
previously, but we found that giving an extra margin to the exponent limits also helps to prevent the
posterior division by sqrt(t) and subsequent array sums to accumulate to infinity. In this paper
we clamped -Q/t in the range [−650, +650] when computing in double precision, or [−70, +70] with
single precision.

5.2 Parallelism in SoftAssign

As can be seen from the pseudo-code, SoftAssign is a heavily sequential algorithm: in order to
proceed to the next iteration, all nested iterations should finish, and every operation within each
loop is tightly bound to the results of the previous one. Thus, an optimized single-threaded CPU-
based implementation of SoftAssign is trivial from the pseudo-code. The challenge is then to harness
parallelism from such a conceptually sequential procedure.

Unfortunately macro-parallelism in SoftAssign is not feasible due to the sequential nature of the
algorithm. What can be done is to exploit micro-parallelism from each individual operation within
the loops. Most of the operations involved are one-to-one: they read-from and write-to individual
elements of distinct matrices, and this is simple to parallelize. The exception is for matrix/array
sums which are many-to-one: multiple elements must be gathered from the input in order to compute
a single element of the output.

Even though threads are not intended to optimally deal with micro-parallelism, a multi-threaded
CPU-based implementation of SoftAssign can provide significant speedup if designed carefully. The
basic idea is to keep each thread responsible for a portion of the matrix address space, synchronizing
them before continuing to the next operation. Since threads can keep local internal state indefinitely,
implementing sums of arrays is simple if access to the required elements happens without races. It
is also possible to further exploit micro-parallelism in CPU if a SIMD instruction subset is available
such as Streaming SIMD Extensions (SSE).

On the other hand, a GPU-based implementation of SoftAssign is much more challenging. The
following Section discusses in detail the design principles and implementation decisions proposed by
this paper to map the SoftAssign algorithm to the GPU.

6 SoftAssign on GPU

Even though most of the required operations are one-to-one, thus mapping well to the programmable
graphics hardware, the gathering process required by the sums of arrays imposes extra effort. Exe-
cution contexts in GPU are much more volatile than threads are in CPU, preventing them to easily
hold or share state amongst multiple parallel executions.

There are two philosophies to implement SoftAssign in GPU: a) using traditional GPGPU by
wrapping GPGPU concepts around the graphics pipeline, which is more portable, efficient and can
inter-operate better with further rendering operations if needed; and b) the more recent GPGPU
pipeline exposed through technologies such as CUDA, DirectCompute and OpenCL, which provides
better synchronization scheme and read/write memory access patterns.

In this paper the traditional GPGPU approach was adopted. Besides performance and porta-
bility, the choice for a traditional GPGPU implementation was made towards future use of the
framework in interactive and progressive rendering optimization research problems. The interested
reader can refer to Tamaki et al.’s CUDA-based implementation of SoftAssign [10], although applied
to a different problem domain.

221

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

6.1 Mapping SoftAssign on the Graphics Pipeline

All matrices and arrays required by the SoftAssign algorithm are stored as floating-point textures;
a texture being a fundamental, highly optimized structure that can access memory mostly in a
two-dimensional fashion. These textures should reside in video memory whether possible in order
to prevent the pipeline to stall while waiting for data to be transfered, and also to eliminate any
bottleneck in the video bus while the algorithm executes.

Read operations on matrices assume that the corresponding textures are bound to texture targets,
each on a separated texture unit. Write operations on a matrix assume that the related texture
is bound to the framebuffer. In order to execute a given operation, a quadrilateral is issued to
be rendered around the interest region. The graphics pipeline will then rasterize such rectangular
region, producing fragments. Each fragment holds an automatically interpolated texture coordinate,
which can be seen as a matrix index, uniquely addressing a particular element position.

A shader, that is, a small GPU program, is invoked for each fragment. The GPU schedules and
executes the same shader, for each generated fragment, in multiple processing units, all in parallel.
The shader code uses the texture coordinate to access elements from the currently bound texture
units/targets. Once the intended computation is performed on such elements, the shader outputs the
result as a color component. Such color will be placed, by the graphics pipeline, into the appropriate
position in the framebuffer, which is allegedly pointing to the destination matrix (texture).

One limitation of the current graphics pipeline is that it is not permitted to have a texture
bound for reading and writing simultaneously, since this could yield to race conditions and shading
languages do not expose intra-synchronization directives. When such conflicts happen, an auxiliary
texture can be employed to hold partial results and feedback them subsequently. Fortunately, all of
the SoftAssign operations, save for the ones in the Sinkhorn Normalization stage, have distinct read
and write access patterns.

6.2 SoftAssign Implementation on GPU

Overall, the following shaders must be implemented:

Temperature Stabilization:

• one to compute Q = M .* (D-alpha)

• one to compute M = exp(-Q/t) / sqrt(t)

Sinkhorn Normalization:

• one for the vertical parallel reduction: V = sum_columns(M)

• one for matrix-row division: A = M ./ V

• one for the horizontal parallel reduction: H = sum_rows(A)

• one for matrix-column division: M = A ./ H

The shaders for the temperature stabilization stage are trivial to implement as they only require
one-to-one operations. The parameters alpha and t are defined as uniform variables within the
respective shaders. The value of alpha has to be set only once, while t has to be uploaded for every
temperature cooling iteration, which happens in a very low-frequency pace.

As for the shaders of the Sinkhorn normalization stage, additional considerations are required.
First, the outlier row is assumed to be attached as an extra row of M; this is not a requirement, but
reduces the amount of shaders to write and intermediate textures to manage. Second, note that
an auxiliary matrix (texture), A, is being used in order to eliminate the simultaneous read-write

222

International Journal of Networking and Computing

Figure 5: Parallel Reduction instance that performs the total sum of each row of a given table.
The result is held in a column-vector whose elements correspond to the sum of all elements of that
corresponding row in the original input table. At each step, two consecutive elements are gathered
and accumulated together from the partial results of the previous step.

conflict that would otherwise happen in M. Third and more important, since both sum_columns(M)
and sum_rows(A) require gathering several elements of M and A, respectively, the shader must be
able to keep track of the partial sums until the total amount is computed.

Although one could simply accumulate all values in a single step, this would significantly com-
promise the texture cache performance, thus slowing down the entire process. To complicate the
matters even more, shading languages do not provide any synchronization directives, and the order
of scheduling and execution of the fragments are unpredictable.

The solution is then to employ Parallel Reduction, a well known multi-pass parallel gather pattern,
keeping the state stored in intermediate sets of data that feedback each other at every subsequent
pass, as depicted in Figure 5. Such parallel reduction algorithms are typically stream-based and
cache-coherent, and thus GPU-friendly.

In the example of Figure 5, only two elements are gathered and accumulated at each step,
but operating on more elements can improve performance and lower memory requirements. The
ideal number of gathers per pass is hardware-dependent. Small values may sub-utilize the number
of available texture fetch units, while big values may stress them, thus penalizing texture-cache
performance. Hence the ideal choice is rather empirical and must be refined manually for each
particular hardware.

When allocating space for intermediate tables, if the dimensions of the source table happen not
to be multiples of the number of gathering samples, they should be rounded-up. Additionally, any
attempt to gather elements outside of the boundaries of a table should yield zero value in order to
keep the accumulation semantics sound.

In order to compute sum_all(Q), no additional shader effort is required. Such sum can be
computed in two stages, first by a vertical reduction, resulting in a single row-vector, and then by
an horizontal reduction on such row-vector, resulting in a single value that corresponds to the entire
sum of Q (the other way around would yield the same result). Moreover, note that the intermediate
memory of the parallel reductions used by the Sinkhorn Normalization stage can be shared amongst
this reduction as well, as they happen independently.

Another strategy to compute sum_all(Q) would be to perform a 2D Parallel Reduction, a process
that resembles texture mip-map generation. This would only increase performance marginally since
such a sum is computed at a very low frequency, once per temperature cooling iteration. Besides the
effort of implementing and keeping an additional shader, this would also require dedicated additional
memory.

223

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

Finally, reading-back from GPU is required when comparing the cost of each iteration. Fortu-
nately, such read-back is very small (only one texel). Furthermore, updating the output matrix S
from the values of M does not require a shader, just a simple texel copy. The same can be said for
the reassignment of the outlier row before starting each of the Sinkhorn normalization process: a
template of the initial outlier row is kept in video memory in a buffer and simply copied over the
additional row of M when required.

6.3 Implementation Details

Our current implementation is OpenGL 1.4 / GLSL 1.0 compliant, requiring few but widely sup-
ported OpenGL extensions: framebuffer object, rectangle textures, floating-point textures and
shader objects. This makes the algorithm portable to a wide range of GPUs, the lower bound
being the commodity GeForce FX series (now 9 generations old).

All textures are stored in 32bit floating-point format (GL_LUMINANCE32F or equivalent). Dou-
ble precision floating-point texture formats are not yet mainstream, and even when available, the
hardware may not achieve full performance because not all arithmetic units in commodity graphics
GPUs can operate on double precision quantities. This causes the shaders to stall as they race for
these units. Half precision floating-point textures, on the other hand, are widely supported and
optimized by the graphics hardware and could potentially double the overall performance, but we
found that they do not suffice for stable executions of the SoftAssign algorithm.

Textures are bound for read in rectangular texture targets (GL_TEXTURE_RECTANGLE or similar).
This is not an enforcement, just a convenience to ease debugging the implementation. Regular 2D
texture targets (GL_TEXTURE_2D) could be used instead as well.

The OpenGL Shading Language has a built-in function to restrain values within a range called
clamp(val,min,max). This is useful to workaround the precision issues when updating M as it is
hardware accelerated and more efficient than placing a manual conditional logic.

In order to ensure the proper semantics when sampling outside of a texture boundary during
the parallel reductions, no special shader control, such as conditionals or extra uniform variables,
is required. By simply setting the texture access wrap mode to GL_CLAMP_TO_BORDER_COLOR, and
specifying RGBA=(0,0,0,0) as the border color, is enough to keep the semantics sound.

For parallel reductions, texture filtering can be used to fetch two texels at the same time by
sampling at the exact boundary of the corresponding texels, just being careful to multiply the
filtered value by two afterwards. Note that some old graphics hardware may not support single
precision floating-point texture filtering (GeForce FX Series), even though they may support it for
half precision (GeForce 6 Series).

Finally, keep in mind that the hardware has limitations regarding the maximum dimensions
for textures. It is possible to split and stitch bigger matrices into smaller textures in order to
accommodate all the data, if the limit lies below the required one. Additional control is then required
to manage such texture chunks. Also keep in mind that video memory (VRAM) is more scarce than
regular RAM. Although most graphics drivers are capable of virtualizing video memory, it is not
necessary to do so. Besides, such virtualization is prone to drastically impact the performance.

7 Extended Results

The performance comparison between the GPU and CPU implementations is summarized in Table 2
and Figure 6. Regarding the CPU implementation, for a more fair comparison, we decided to move

224

International Journal of Networking and Computing

away from the MATLAB environment and write an optimized multi-threaded implementation in
C++ with the Win32 Threads API; the binary was compiled with the Microsoft C Compiler under
the Visual C++ 2010 Professional development environment. The GPU implementation is OpenGL
1.4 / GLSL 1.0 compliant.

The hardware configuration used for the performance measurements is an Intel Core2 Quad
CPU 2.55GHz with 4GB RAM running Windows 7 Enterprise 32bit, equipped with a GeForce
GTX 280 with 1GB VRAM (240 stream processors). All performance results refer to a single
temperature cooling iteration, comprised of 10 temperature stabilization iterations, each with 10
Sinkhorn normalization iterations.

rows 100 100 256 400 512 900 1024 1200 1600 1800 2048
columns 100 500 1024 1500 2048 3000 4096 5000 6000 7000 8192
CPUx1 0.024 0.114 0.617 1.506 2.572 6.485 10.01 14.29 22.73 29.82 39.77
CPUx4 0.022 0.062 0.358 0.780 1.479 3.912 5.963 8.532 13.85 17.78 23.62

GPU 0.022 0.023 0.024 0.035 0.052 0.114 0.171 0.239 0.374 0.487 0.643

Table 2: Performance results for the CPU and GPU implementations of SoftAssign. CPUx1 stands
for single-threaded execution, while CPUx4 represents a multi-threaded execution context with 4
threads. All time measurements are expressed in seconds.

Figure 6: Performance chart comparing the CPU and GPU implementations of SoftAssign. For
clarity, the chart was plotted with time being expressed in a base-10 logarithmic scale. The samples
in the horizontal axis are spaced linearly according to the total number of elements in the distance
matrix, that is, rows × columns. Note that the GPU performance is far better than the CPU: the
1s barrier is never reached by the GPU while in the CPU cases this barrier is crossed at very small
distance matrix dimensions.

Even though the measurements are bound to a specific iteration profile, the performance grace-
fully scales linearly on the number of iterations. Hence, raising the number of temperature stabi-
lization iterations by a factor of p and the Sinkhorn normalization iterations by a factor of q would

225

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

yield to a relative increase of p × q times in the computation time, either in CPU or GPU.
The choice of using four threads is due to the fact that the target CPU, Intel Core2 Quad, is

a quad-core microprocessor. Note that the x4 multi-threaded execution is unable to deliver the
theoretical 4 times boost in performance when compared to a single-threaded execution. In fact,
the x4 multi-threaded performance is very close to a x2 multi-threaded execution. We believe that
there are two main reasons for which the implementation is unable to reach peak performance: the
first is due the overhead of thread synchronization directives that are essentially managed by the
operating system kernel (the thread model was not designed to effective harness micro-parallelism);
and the second is the fact that such quad-core processors are arranged in two dies, each holding a
dual-core unit that share a common cache.

The GPU implementation, on the other hand, outperforms the 4x multi-threaded CPU imple-
mentation by a factor of 35. Compared to a single-thread CPU execution context, the speedup is
about 60 times. The only exception is for very small distance matrices: in such cases, the driver
overhead congests the actual amount of processing required by the algorithm, and the performance
gain is not as significant. However, such small cases are already fast enough to compute anyway
and, in practice, neither relevant nor useful at all.

The proposed OpenGL/GLSL-based implementation outperforms Tamaki et al.’s CUDA-based
SoftAssign [10] by a factor of two in a setup equipped with an identical graphics hardware con-
figuration, a GeForce 8800 GT with 512MB VRAM (112 stream processors). While Tamaki et al.
approach takes about 30s to solve a 3000x3000 distance matrix, the proposed approach takes less
than 16s.

Finally, a few more examples of photomosaics optimized through the proposed GPU-based imple-
mentation of SoftAssign is presented in Figures 7 to 10. They comprise thematic situations where a
given input image is transformed into a photomosaic by using image tiles that have similar semantic
context to the one of the original input image. All mosaics were subdivided into 900 patches (30x30)
assigned from tile sets composed of 8192 images, thus leading to a 900x8192 distance matrix. The
total SoftAssign computing time (for 200 cooling iterations) was less than 1 minute in the GPU
execution, while the single-threaded CPU run took about 1 hour and the four-threaded took around
35 minutes.

8 Conclusion

Novel strategies to maximize the usage of images for photomosaic synthesis based on a greedy
procedural algorithm, simulated annealing and SoftAssign were presented. The maximization is
ensured by restricting tiles to be assigned only once to any given patch.

The experimental results show that SoftAssign and SA are effective when the number of available
tiles is comparatively small. As more tiles become accessible, SA still remains as the most effective
choice, but turns to be impractical due to time constraints; the greedy approach still produces
plausible mosaics in such cases.

SoftAssign, on the other hand, not only provides an elegant, deterministic solution for the prob-
lem, but also requires much less processing time. The algorithm can be implemented in GPU,
providing performance improvements higher than 60 times over optimized CPU implementations.

Such performance improvement is welcome not only to optimize the solution, but also to assist
the user in identifying the ideal parameters of the SoftAssign algorithm. There are no principal
guidelines on how to tune SoftAssign, thus the search for an optimal parameter set can be very
tedious if the user has to wait significant amounts of time between each test setup. A GPU-based

226

International Journal of Networking and Computing

implementation of SoftAssign delivers a more immediate feedback to the user.

9 Future work

As future work, further investigation is required to determine the impact of more perceptually-aware
color similarity metrics to derive the distance matrix and drive the optimization process. The use of
different optimization strategies, specially those based on evolutionary algorithms, is also a potential
and promising target for subsequent analysis.

Acknowledgements

We would like to thank the open source initiatives of DevIL† (Developer’s Image Library, former
OpenIL), GLEW‡ (The OpenGL Extension Wrangler Library) and boost§ for their generosity and
contributions to the open and free software community that accelerated the development of this
research project.

References

[1] S. Battiato, G. Di Blasi, G. M. Farinella, and G. Gallo. Digital mosaic frameworks - an overview.
Eurographics - Computer Graphic Forum, 26(4):794–812, 2007.

[2] Gianpiero Di Blasi and Maria Petralia. Fast photomosaic. In In poster proceedings of
ACM/WSCG2005, 2005, 2005.

[3] Steven Gold, Anand Rangarajan, Chien ping Lu, and Eric Mjolsness. New algorithms for 2D
and 3D point matching: Pose estimation and correspondence. Pattern Recognition, 31:957–964,
1997.

[4] S. Kirkpatrick, C. D. Gelatt., and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[5] Allison W. Klein, Tyler Grant, Adam Finkelstein, and Michael F. Cohen. Video mosaics. In
NPAR 2002: Second International Symposium on Non Photorealistic Rendering, pages 21–28,
June 2002.

[6] Barbara J. Meier. Painterly rendering for animation. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, pages 477–484, New
York, NY, USA, 1996. ACM.

[7] Michihiro Mikamo, Marcos Slomp, Shungo Yanase, Bisser Raytchev, Toru Tamaki, and Kazu-
fumi Kaneda. Maximizing image utilization in photomosaics. International Conference on
Natural Computation, 0:275–278, 2010.

[8] Robert Silvers. Photomosaics. Henry Holt and Co., Inc., New York, NY, USA, 1997.

[9] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic
matrices. The Annals of Mathematical Statistics, 35:876–879, 1964.

[10] Toru Tamaki, Miho Abe, Bisser Raytchev, and Kazufumi Kaneda. SoftAssign and EM-ICP on
GPU. International Conference on Natural Computation, 0:179–183, 2010.

†http://openil.sourceforge.net
‡http://glew.sourceforge.net
§http://www.boost.org

227

GPU-based SoftAssign for Maximizing Image Utilization in Photomosaics

Figure 7: A kimono photomosaic made of 30x30 patches selected from a thematic Japanese tile set
of 8192 images. The original input image is shown in the left.
Image and tile set courtesy of http://www.image-net.org

Figure 8: A fish image photomosaic made of 30x30 patches selected from a thematic fish tile set of
8192 images. The original input image is shown miniaturized in the left.
Image and tile set courtesy of http://www.image-net.org

228

International Journal of Networking and Computing

Figure 9: A chair image photomosaic made of 30x30 patches selected from a thematic chair tile set
of 8192 images. The original input image is shown miniaturized in the left.
Image and tile set courtesy of http://www.image-net.org

Figure 10: A butterfly image photomosaic made of 30x30 patches selected from a thematic butterfly
tile set of 4096 images. The original input image is shown miniaturized in the left.
Image and tile set courtesy of http://www.image-net.org

229

