
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 11, Number 2, pages 215–230, July 2021

ExtraFerns: Fully Parallel Ensemble Learning Technique with
Random Projection and Non-Greedy yet Minimal Memory Access Training

Shungo Kumazawa, Kazushi Kawamura, Thiem Van Chu, Masato Motomura, and Jaehoon Yu
Tokyo Institute of Technology

Yokohama, Kanagawa, 226-8503, Japan

Received: February 15, 2021
Revised: May 3, 2021

Accepted: May 25, 2021
Communicated by Ikki Fujiwara

Abstract

Training machine learning models on edge devices is always a conflict with power consumption and
computing cost. This paper introduces a hardware-oriented training method called ExtraFerns for a unique
subset of decision tree ensembles, which significantly decreases memory access and optimizes each tree in
parallel. ExtraFerns benefits from the advantages of both extraTrees and randomFerns. As extraTrees does,
it generates nodes by randomly selecting attributes and generating thresholds. Then, as randomFerns does, it
builds ferns, which are decision trees that share identical nodes at each depth. In contrast to other ensemble
methods using greedy optimization, ExtraFerns attempts global optimization of each fern. Experimental
results show that ExtraFerns requires only 4.3% and 4.1%memory access for training models with 3.0% and
1.2% accuracy drops compared with randomForest and extraTrees, respectively. This paper also proposes
applying lightweight random projection to ExtraFerns as a preprocessing step, which achieved a further
accuracy improvement of up to 2.0% for image datasets.

Keywords: ensemble learning, fern ensemble, decision tree ensemble, non-greedy optimization, parallel
optimization, random projection

1 Introduction
Machine learning on edge devices, so-called edge AI, is a natural progression given the advent of computa-
tionally powerful and efficient IoT devices. The most typical form of edge AI is load balancing: training on
clouds and inference on the edge. By reducing data transmission from an edge to clouds, edge AI provides
a solution for privacy, high power consumption, and low bandwidth issues. However, edge AI often requires
on-site training with the data obtained from edge devices because training on clouds requires massive data
transmission from the edge to clouds, resulting in increased power consumption. Then, why is on-site training
less common? What makes it challenging?

The challenge is that the computational cost for training is unaffordable to edge devices; training on the
edge is not advantageous compared with training on clouds, even considering the data transmission. For
example, neural networks require significant computational capabilities and large memory for their training
based on back-propagation. However, it is difficult for edge devices to satisfy these requirements or to afford
the power consumption required for such computation. Therefore, machine learning algorithms with more
lightweight but efficient training methods are required for edge devices.

To tackle this problem, we propose an edge-oriented machine learning algorithm called ExtraFerns [1],
which is based on conventional decision tree ensemble learning methods [2–5] that use decision trees as base

215

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Fern
(Boolean function form)Decision Tree

000 001 010 011 100 101 110 111

0
0
0
0
1
1
1
1Leaf nodes

0 1

0 1 10

0 1

Fern
(Tree form)

vs.
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0 1 0 1 0 1

TrueFalse

: Attribute
: Threshold

Figure 1: Decision trees and ferns. A decision tree consists of internal nodes, branches, and leaf nodes,
which represent tests on attributes, the tests’ outcomes, and expected values, respectively. A fern is a unique
subset of decision trees. Because a fern has identical nodes at each depth, it can be considered a Boolean
function.

learners: randomForest [2], extremely randomized trees (extraTrees) [3], randomFerns [4], and rFerns [5].
Decision tree ensembles are not state-of-the-art machine learning algorithms, but they still outperform neural
networks for tabular data. Compared with neural networks, they require only a few parameters and a small
amount of computation. These are suitable features for training on the edge, but there is still room for
improvement in the training phase in terms of power consumption and processing performance.

ExtraFerns is an algorithm that takes advantage of the benefits of both extraTrees and randomFerns. As
extraTrees does, it generates nodes by randomly selecting attributes and generating thresholds. This node
generation largely reduces off-chip memory accesses, which are the dominant factor in power consumption.
Then, as randomFerns does, it builds ferns, which are decision trees sharing identical nodes at each depth. This
fern structure eliminates the processing dependency on input data. Also, by using this structure, ExtraFerns
conducts non-greedy optimization in training to find optimal ferns.

The contributions of this paper can be summarized as follows:

• We describe the details of ExtraFerns, which requires an extremely small number of off-chip memory
accesses.

• ExtraFerns conducts non-greedy optimization in parallel, which leads to accuracy improvement.

• We also empirically show that Dirichlet prior, as used in randomFerns, is dispensable for ExtraFerns.

• Finally, we propose applying random projection [6, 7] to ExtraFerns as a preprocessing step for further
accuracy improvement.

The remainder of this paper is organized as follows. Section 2 briefly describes the features of conventional
decision tree ensembles. Section 3 describes the details of the proposed ExtraFerns based on them, and then
Sections 4 and 5 present preliminary experimental results and evaluation results, respectively. Section 6
describes how to introduce random projection to ExtraFerns for accuracy improvement and demonstrates its
effectiveness through experimental results. Finally, Section 7 concludes this paper.

2 Related Work
Decision tree ensembles are statistical machine learning algorithms that use decision trees as base learners.
As shown in Figure 1, a decision tree consists of internal nodes, branches, and leaf nodes, which represent
tests on attributes, the tests’ outcomes, and class labels/expected values, respectively. Ferns are decision trees
with a unique structure, sharing identical internal nodes at each depth. Therefore, ferns can be considered
Boolean functions using the internal nodes’ outcomes as arguments.

This section briefly describes four ensemble algorithms used in designing ExtraFerns: randomForest,
extraTrees, randomFerns, and rFerns. RandomForest and extraTrees use trees as base learners, while random-
Ferns and rFerns use ferns. Table 1 presents a complexity comparison between these decision tree ensemble

216

International Journal of Networking and Computing

Table 1: Complexity Comparison between Ensemble Algorithms

Algorithm # Leaf
Nodes

Internal
Nodes

Memory
Accesses

Computational
Complexity

randomForest O("#̃) O("#̃) O("#̃ log #̃) O("#̃ (log #̃)2)
extraTrees O("#) O("#) O("# log #) O("# log #)

randomFerns O(�"#) O(�"#)
rFerns O(�"#̃) O(�"#̃)

ExtraFerns
O(2�") O(�")

O(*�"#) O(*�"# log #)

Table 2: Definitions of Variables for
Complexity Comparison
Variable Description

� depth of trees / ferns
 # of candidate attributes
" # of trees / ferns
of training data
#̃ # of bootstrapped training data
* # of updates in ExtraFerns

algorithms in training. Table 2 defines the variables used in Table 1. The following paragraphs explain the
details of each algorithm separately.

randomForest randomForest builds a forest, i.e., a set of decision trees, based on randomized node optimiza-
tion [2]. It makes each tree composing the forest with #̃ bootstrapped samples from # training data. Once
randomForest decides a training dataset to build a tree with, it randomly selects attributes and chooses
the best internal node to achieve the highest purity. In the best case, each internal node partitions a training
dataset into two balanced subsets, i.e., the root node splits #̃ data into two sets of #̃/2 data; its child nodes
halves the data again, etc. Therefore, in this case, the complexity of the expected depth is O(log #̃), and
the complexities of the number of both leaf nodes and internal nodes become O(#̃). The computational
complexity for training a tree is O(#̃ (log #̃)2), where randomForest requires searches for #̃ data for
each log #̃ depth because the sum of the numbers of node’s data is #̃ at each depth, and the additional log #̃
comes from the sorting procedure for optimization split thresholds [8, Sec. 5]. Table 1 lists each complexity
when the size of the forest is " .

extraTrees extraTrees is a further randomized decision tree ensemble [3]. While it is similar to randomForest,
it has two major differences. First, extraTrees trains trees with # training data without bootstrapping, and
second, it uses randomly selected split thresholdswithout optimization. Therefore, extraTrees can significantly
reduce the computational complexity compared with randomForest. In the best case, as shown in Table 1,
each complexity, except for computational, is the same as that for randomForest except using # instead of #̃ .
The computational complexity of extraTrees for training " trees is O("# log #); because extraTrees does
not require any sorting procedure, there is no extra log # as there is in randomForest [8, Sec. 5].

randomFerns randomFerns is a fern ensemble specialized for image classification [4]. Its unique feature is
the use of two attributes in each internal node instead of using an attribute–threshold pair. This comparison
can be considered binary edge extraction in image processing:

5 =

{
1, if �G,~ > �G′,~′
0, otherwise

, (1)

where �G,~ and �G′,~′ are pixel intensities at the (G, ~) and (G ′, ~′) coordinates, respectively.
Given images from a set of � classes, C = {1, 2, . . . , �}, and a set of outcomes from a fern with � depths,

F = { 51, 52, . . . , 5�}, randomFerns finds the class label 2∗ by calculating

2∗ = arg max
2∈C

%(2 | 51, 52, . . . , 5�), (2)

where (2) can be rewritten by Bayes’ theorem as follows:

2∗ = arg max
2∈C

%(2)%(51, 52, . . . , 5� |2). (3)

When using " ferns, randomFerns assumes semi-naive Bayes. Let the outcome set of the <-th fern F< =

{ 5<1, 5<2, . . . , 5<�}. RandomFerns considers all F< as independent from each other but 5<3 ∈ F< depends
on other outcomes within F<. This assumption leads to

2∗ = arg max
2∈C

%(2)
"∏
<=1

%(F< |2). (4)

217

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Therefore, randomFerns learns the probability distribution %(F< |2) in its training phase.
The number of leaf nodes within a fern, !, is 2� . Because this size is much larger than the size of the

training data in many cases, there are many leaf nodes without assigned training data. A zero probability is
not valid for (4) to get the proper class label. Therefore, randomFerns assumes a Dirichlet prior to give some
baseline probability to all possible outcome sets:

%(F< = ; |2) =
#;2 + n∑!

8=1 (#82 + n)
, (5)

where #;2 is the number of 2-class data assigned to the ;-th leaf node, and n is a small positive value: n = 1
in [4]. Note that the binary expression of ; is identical to the outcome set of F<.

Table 1 shows each complexity of randomFerns with " ferns. The most significant difference compared
with randomForest and extraTrees is in randomFerns’ complexities of memory access and computation, which
are of much smaller order at O(�"#).

rFerns rFerns is an extension of randomFerns for general-purpose classification. It generates ferns with
randomly selected pairs of attributes and thresholds, similar to extraTrees. Because rFerns uses #̃ bootstrapped
training data instead of # , the complexities of its memory access and computation are O(�"#̃), which are
less than those of randomFerns.

As shown in Table 1, these methods listed above have no significant differences from each other in
the amount of computation and the number of memory accesses. Most of the calculations, except for
randomForest, consist of additions and comparisons, requiring one comparison operation and several addition
operations to decide each branch of a decision tree from each data read. Assuming 32-bit data, the power
consumption of one DRAM access is 6400x more than that of one integer addition [9]. Even if we assume the
number of addition operations is 10-100x larger than the number of DRAM accesses, its power consumption
is still far less than that of the DRAM access.

Most calculations of randomForest also consist of additions and comparisons but, in addition to them,
it calculates the branching score multiple times proportional to the number of data read to find the optimal
branching point. Each branching point calculation requires at least two multiplication for both left and right
child nodes’ impurity calculations. Although multiplication requires more power than addition, one DRAM
access consumes 173x more energy than floating-point multiplication [9]. Even for two multiplications, the
power consumption ratio is 86.5x, and memory access is still dominant for the power consumption in this
case.

In these conventional methods, randomForest and extraTrees show better accuracy performance than
others but require more memory accesses. That is why we mainly focus on memory access when designing a
new decision tree ensemble algorithm in this paper.

3 ExtraFerns
ExtraFerns is an ensemble learning method based on extraTrees and randomFerns. This section provides an
overview of ExtraFerns, details its TWO distinct key components, and analyzes its complexities.

3.1 Algorithm Overview
Figure 2 shows an overview of ExtraFerns. The learning phase consists of four processes: 1. random node
generation, 2. fern construction, 3. parallel threshold optimization, and 4. leaf probability calculation. The first
two processes are based on conventional methods, and the other two processes are novel approaches devised
for ExtraFerns. ExtraFerns builds a fern ensemble by repeating these four processes.

In random node generation, ExtraFerns generates nodes by randomly selecting pairs of attributes and
thresholds like extraTrees. Then, ExtraFerns builds a fern in the same manner as randomFerns. By adopting
these processes, ExtraFerns inherits the characteristics of low memory access and low computational com-
plexity from extraTrees and randomFerns. However, it is not a panacea because this randomized generation
makes it difficult to achieve high inference accuracy: rFerns is a good example; it also adopts these processes,
and its inference accuracy is significantly lower than those of other methods.

218

International Journal of Networking and Computing

...

3. Optimize thresholds

2. Construct fern

4. Calculate leaves' probability

...

......

 : Attribute
 : Threshold ...

Pick
 one

...

...

1. Generate nodes at random

0
0

1
1

0
0

1
1

0
1

0
1

...

...
...

...

...

...
 : Pixel intensity

...

0

1

...

0

1

0

1

...
...

...

ExtraFerns algorithm
(Single fern)

RandomFernsExtraTrees

Figure 2: Overview of ExtraFerns. ExtraFerns consists of random node generation, fern construction, parallel
threshold optimization, and leaf probability calculation. The former two are based on conventional methods
and bring memory access and computation advantages to ExtraFerns. The latter two enable ExtraFerns to
achieve comparable performance to other methods.

To solve this problem, ExtraFerns conducts parallel threshold optimization. Instead of the greedy search
for optimizing each node’s prediction performance, ExtraFerns searches the best thresholds for optimizing the
entire fern’s prediction performance. After that, ExtraFerns calculates each leaf node’s probability distribution
similarly to randomFerns and rFerns. The distinct difference is that ExtraFerns does not use Dirichlet priors,
allowing a more than 80% reduction in memory requirements for storing leaf nodes. The following two
subsections describe the details of parallel threshold optimization and leaf node probability calculation,
respectively.

3.2 Parallel Threshold Optimization
Given a training dataset T and randomly generated fern F , we define the objective function for threshold
optimization as follows:

� (Θ|T , F) = max
Θ

!∑
;=1

#; (T)
�∑
2=1

%(2 |F (Θ) = ;)2, (6)

where Θ represents the tuple of thresholds {\1, \2, . . . , \3}, #; is the number of training data assigned to the
;-th leaf, and F (Θ) is the fern using Θ. To achieve non-greedy optimization, in (6), we calculate the sum
of each leaf’s purities derived from Gini impurities. Then, we calculate the weighted sum of entire leaves’
purities, where #; is considered as a confidence factor.

For maximizing the objective function, ExtraFerns searches the best tuple of thresholds in parallel.
Algorithm 1 shows the detailed process flow, where we quantize each training dataset with an 8-bit fixed-point
expression in advance. As shown in Algorithm 1, parallel threshold optimization has triple-nested loops. It
executes the inner two loops for each update D ∈ [1,*]. Of the two inner loops, the outer loop corresponds
to the node at each depth 3 ∈ [1, �], and the innermost loop corresponds to the search range A ∈ [−', +'].
Because the iterations of the two inner loops are mutually independent, ExtraFerns executes them in parallel.

Figure 3 shows an example of parallel threshold optimization using the Iris dataset [10], where we set

219

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Algorithm 1 Parallel Threshold Optimization
Input: Training dataset T & fern F
Output: Tuple Θ∗ of optimal thresholds for F
1: Θ := (\1, \2, . . . , \�) s.t. \3 ∈ [0, 255] (3=1,2,...,�)
2: for each D ∈ [1,*] do
3: for each 3 ∈ [1, �] do
4: Θ′ := Θ
5: �<0G := 0
6: for each A ∈ [−', +'] do
7: \ ′

3
:= \3 + A

8: if 0 ≤ \ ′
3
≤ 255 then

in parallel

9: Θ′(3) := \ ′
3

10: if �<0G < � (Θ′ |T , F) then
11: �<0G := � (Θ′ |T , F)
12: \∗

3
:= \ ′

3

13: Θ := (\∗
1
, \∗
2
, . . . , \∗

�
)

14: Θ∗ := Θ

hyperparameters *, �, and ' to 3, 4, and 11, respectively. The top row illustrates the concept of searching
thresholds in parallel, and the bottom row shows the corresponding changes in the attribute space.

3.3 Sparsified Probability Distribution of Leaf Nodes
The basic equation for ExtraFerns is equivalent to (4) of randomFerns. We take the logarithm of (4) because
addition is more practically efficient than multiplication. Therefore, (4) can be rewritten as

2∗ = arg max
2∈C

"∑
<=1

log %(F< |2) + log %(2). (7)

The most significant difference is in how to handle the leaves without assigned training data. While random-
Ferns uses Dirichlet priors, this requires a large amount of memory space for storing leaf node information.
ExtraFerns reduce the memory space by modifying (5) to

%(F< = ; |2) =
{

#;2∑!
8=1 #82

(#; ≠ 0)
1 (#; = 0)

, (8)

where #; is the number of all data in the ;-th leaf node. In (8), we equally assign 100% probability to every
class when a leaf node is empty, ignoring the decision of an empty leaf node. Because the logarithm of one
is zero, ExtraFerns’ leaf information becomes sparse.

3.4 Complexity of ExtraFerns
Referring to Table 1, while ExtraFerns has the same complexities in leaf nodes and internal nodes as
randomFerns and rFerns, its number of non-empty leaf nodes is much smaller compared with randomFerns
and rFerns thanks to the sparsified leaf information. Due to the newly-introduced hyperparameters * and
', ExtraFerns’ memory access and computational complexities are slightly larger than those of conventional
methods. Because ' is usually a small constant value from 5 to 10, we exclude ' from the computational
complexity, defining it asO(*�"# log #). The additional log # comes from the process of storing sparsified
leaf nodes.

The computational complexity of ExtraFerns is not much different from that of randomForests and
extraTrees, and the training time is about the same as for conventional decision tree ensembles, e.g., a few
seconds or minutes to run on the CPU. This time is much less than the training time for deep neural networks,
which requires a few hours or days to run on the GPU, which is one of the reasons why decision tree ensembles
are suitable for training on edge.

220

International Journal of Networking and Computing

0 255

Fixed

Node 1

Fixed

Fixed

0 255

Fixed

Node 2

0 `Fixed

0 255

Fixed

Node 3

Fixed

0 255

Node 4

Fixed

Fixed

Fixed Fixed Fixed

Node 4

Node 3

Node 2

Node 1

Moving

Moving

Moving

Moving

t

Node 4

Node 3

Node 1 Node 2

Parallel

Threshold optimization

Figure 3: Example of parallel threshold optimization. The top row illustrates the concept of searching thresh-
olds in parallel, and the bottom row shows the corresponding changes in the attribute space. Hyperparameters
*, �, and ' are set to 3, 4, and 11, respectively.

Table 3: Evaluation Dataset Description

Dataset
Training

Data
Test
Data # Attributes # Classes

MNIST 60,000 10,000 784 10
Fashion-MNIST [11] 60,000 10,000 784 10
Kuzushiji-MNIST [12] 60,000 10,000 784 10
Devanagari-Script [13] 76,666 15,334 1,024 46

HIGGS [14] 80,000 20,000 28 2
SUSY [14] 80,000 20,000 18 2

4 Preliminary Experiments
Before evaluation, we must find appropriate hyperparameters in advance because they impact the threshold
optimization results. It is also necessary to verify how the absence of both bootstrapping and the Dirichlet prior
influences inference accuracy. We conducted a grid search of hyperparameters and examined the accuracy of
ExtraFerns by adding bootstrapping and the Dirichlet prior. Table 3 describes the datasets used in this study,
where HIGGS and SUSY are randomly subsampled datasets of the originals.

4.1 Hyperparameter Grid Search
As mentioned above, ExtraFerns newly introduces two hyperparameters ' and*, where ' is the range of the
threshold search, and * is the number of updates. If either ' or * is too small, ExtraFerns falls into one of
the local optimal solutions. To find appropriate ' and *, we conducted a grid search on datasets in Table 3.
Figure 4 shows the grid search results for accuracy in the form of heatmaps, where we set " and � to 500 and
15, respectively. As shown in Figure 4, each heatmap shows a similar tendency, and based on these results,
we set ' and* to 8 and 30, respectively.

4.2 Influences of Bootstrapping and Dirichlet Prior
We designed ExtraFerns without bootstrapping and Dirichlet priors based on empirical results. Table 4 lists
the results comparing the baseline mode and other variations with bootstrapping and Dirichlet priors, where

221

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Figure 4: Heatmaps of hyperparameter grid search. Two hyperparameters ' and * are examined on datasets
in Table 3, and each heatmap shows a similar tendency. Based on the results, we use ' = 8 and* = 30 as the
parameters for other evaluation.

Table 4: Preliminary Evaluation of ExtraFerns Variations

Dataset
Accuracy[%] (diff)

ExtraFerns
baseline

ExtraFerns
+bootstrap

ExtraFerns+Dirichlet
n = 0.1 n = 1

MNIST 93.9 93.5 (−0.4) 92.7 (−1.2) 92.0 (−1.9)
Fashion-MNIST 82.5 80.6 (−1.9) 80.8 (−1.7) 80.2 (−2.3)
Kuzushiji-MNIST 80.9 78.8 (−2.1) 77.1 (−3.8) 74.5 (−6.4)
Devanagari-Script 88.9 86.4 (−2.5) 85.2 (−3.7) 82.1 (−6.8)

HIGGS 68.0 66.7 (−1.3) 68.1 (+0.1) 68.1 (+0.1)
SUSY 78.9 78.7 (−0.2) 78.8 (−0.1) 78.7 (−0.2)

we set " and � to 1,000 and 15, respectively. From Table 4, we can confirm that the baseline outperforms
both bootstrapping variation and Dirichlet variation except in one case. Based on these results, we excluded
both processes from ExtraFerns.

5 Evaluation
We compared ExtraFerns with conventional decision tree ensembles in terms of accuracy, memory space,
memory access, and power consumptionwhere randomForest, extraTrees, and rFernswere comparison targets;
we excluded randomFerns because it is not applicable to general tabular data. Each implementation came
from machine learning libraries: randomForest and extraTrees from scikit-learn (v0.22.1) and rFerns (v3.0.0)
from R package. In the experiments, we set the number of trees/ferns to 1,000, and other values to their
default. Each reported result is an average of ten trials.

5.1 Accuracy
Table 5 lists the results for accuracy of each method, where we set � to 15, 20, and 25. However, we measured
the accuracy of rFerns only for � set to 15 because the implementation in the R package of rFerns only allows
a depth of up to 17. It seems that this is due to the large memory requirement of rFerns because it stores all
2� leaf nodes.

First, we compare each method for depth 15. The average accuracy of ExtraFerns was 9.3% higher than
that of rFerns thanks to the threshold optimization. However, it was 3.0% and 1.2% lower than those of
randomForest and extraTrees, respectively, due to the model simplicity.

222

International Journal of Networking and Computing

Table 5: Accuracy Comparison between Ensemble
Methods

Dataset � (Depth) Accuracy[%] (diff)

ExtraFerns randomForest extraTrees rFerns

MNIST
15 93.9 96.8 96.7 86.9 (−8.9)
20 95.2 97.1 (+1.3) 97.3 N/A25 95.8 97.1 (+1.3) 97.4 (+1.6)

Fashion
MNIST

15 82.5 87.1 86.3 74.2 (−10.2)
20 83.9 87.7 87.4 N/A25 84.4 87.9 (+3.5) 87.7 (+3.3)

Kuzushiji
MNIST

15 80.9 84.9 82.3 59.3 (−24.9)
20 83.4 86.4 86.1 N/A25 84.2 86.5 (+2.3) 87.1 (+2.9)

Devanagari
Script

15 88.9 89.6 87.5 70.1 (−20.0)
20 90.0 92.0 92.0 N/A25 90.1 92.2 (+2.1) 92.6 (+2.5)

HIGGS
15 68.0 72.5 68.5 68.8 (+0.8)
20 67.2 72.8 (+4.8) 70.3 N/A25 66.8 72.8 (+4.8) 71.1 (+3.1)

SUSY
15 78.9 80.0 (+0.8) 79.2 78.1 (−1.1)
20 79.2 80.0 (+0.8) 79.7 N/A25 79.1 80.0 (+0.8) 80.0 (+0.8)

Table 6: Comparison of Average Numbers of Leaf
Nodes per Tree

Dataset � (Depth) # Leaf Nodes !

ExtraFerns randomForest extraTrees rFerns

MNIST
15 539 3,803 5,590 32,768
20 1,701 4,799 9,205 N/A25 4,356 4,942 10,041

Fashion
MNIST

15 3,010 2,599 4,378 32,768
20 8,730 4,237 8,714 N/A25 16,042 4,771 10,723

Kuzushiji
MNIST

15 6,520 4,421 5,371 32,768
20 18,387 6,460 10,517 N/A25 30,684 6,754 12,733

Devanagari
Script

15 3,371 7,733 10,007 32,768
20 15,666 14,615 23,690 N/A25 35,510 15,931 28,500

HIGGS
15 5,337 3,884 2,935 32,768
20 26,844 8,393 10,348 N/A25 52,805 10,623 21,011

SUSY
15 1,388 2,818 2,292 32,768
20 6,605 5,921 7,969 N/A25 16,089 7,990 16,602

Table 7: Memory SpaceRequirements for Internal andLeafNodes
Algorithm Internal Nodes [byte] Leaf Nodes [byte]

randomForest
extraTrees (! − 1) ((G + (\ 5 + (ptr)

rFerns � ((G + (\ 5)
!�(%

ExtraFerns � ((G + (\8) ! (�(% + 2(ptr + (index)

* refer to Table 6 for !

Table 8: Byte Size of Each Constant
Constant Description Byte

(G size of attribute 2

(\ 5 size of float threshold 4
(\8 size of integer threshold 1
(ptr size of node address 2
(index size of index 2 or 4
(% size of leaf’s probabilities 4

Second, we compare the accuracies for the � with the highest accuracy for each method. The shaded areas
in the table are the highest accuracy for each method. ExtraFerns significantly outperformed rFerns, except
on one dataset. In two of the six datasets, ExtraFerns was at least 20% more accurate than rFerns. ExtraFerns
was inferior to randomForest and extraTrees in all cases. However, the accuracy difference was always within
5%, and the average differences were 2.5% and 2.4% for randomForest and extraTrees, respectively.

5.2 Memory Space
For comparison, we consider only the dominant factors occupying memory space in each method: internal
nodes and leaf nodes. Table 6 lists the number of leaf nodes per tree for each method. Shaded areas indicate
the highest accuracy of each method in Table 5. In Table 6, ExtraFerns shows smaller leaf node sizes than
rFerns except for Devanagari-Script because there is no need to consider Dirichlet priors with ExtraFerns.
Compared with randomForest and extraTrees, however, more leaf nodes were required in most cases.

We estimate the memory space requirements for each method based on Tables 7 and 8. Table 7 lists the
formulae to calculate the memory sizes for internal and leaf nodes, and Table 8 lists the byte size of each
constant. For internal nodes, each node includes a pair of an (G-byte attribute G and an (\ 5 / 8 -byte threshold
\. In contrast to other methods using 4-byte float thresholds, ExtraFerns adopts 1-byte integer thresholds.
Also, randomForest and extraTrees require an (ptr-byte pointer to each child node. For leaf nodes, each node
includes a probability distribution for each class. Because ExtraFerns’ implementation stores sparsified leaf
nodes in an associative container, its leaf nodes include two (ptr-byte pointers and an (index-byte index. When
the leaf node size is less than or equal to 216, we use a 2-byte integer for each index. When it is more than
216, we use a 4-byte integer instead.

Figure 5 depicts the data sizes of internal and leaf nodes per tree when � is 15 or 25. We excluded
rFerns results from all graphs because the number of leaf nodes is too large to place on the graphs. As
shown in Figure 5, while ExtraFerns requires a smaller or equivalent memory size for depth 15 compared with
conventional methods, it requires more memory on average for depth 25. This large memory requirement is

223

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Figure 5: Memory requirement breakdown of each ensemble method. ET, RF, and EF represent extraTrees,
randomForest, and ExtraFerns, respectively. When the depth is 15, ExtraFerns requires an equivalent or
smaller memory size to other methods, but when the depth is 25, ExtraFerns requires more memory space
than others due to the large number of leaf nodes.

a weakness of the current ExtraFerns.

5.3 Memory Access
We estimate the number of fetched training data from off-chip memory as off-chip memory accesses for the
training of each method based on the following three cases: 1. small # (number of training data) and few
attributes, 2. small # and many attributes, and 3. large # .
1. Small # and Few Attributes
This case corresponds to HIGGS and SUSY in Table 3. Because it is possible to put all the training data in
the on-chip memory, the number of off-chip memory accesses is equivalent between all methods by storing
the data in on-chip memory at the beginning of the training.
2. Small # and Many Attributes
This case corresponds to all datasets except HIGGS and SUSY in Table 3. In this case, we estimate that the
number of fetched data from off-chip memory for ExtraFerns and rFerns is �# per tree because each of �
nodes has one splitting attribute. ExtraFerns must store the �# samples in on-chip memory and use them
every time it updates thresholds. Additionally, we estimate that the number of fetched data from off-chip
memory for randomForest and extraTrees is # log ! per tree because, in the best splitting case, the depth is
log !, and each node has different candidate attributes (see Section 2). Also, randomForest and extraTrees
execute random access because the subset of training data changes for each update, except for the root node.

The upper half of Table 9 gives the ratio of fetched training data from off-chip memory for each method
when we set � to 15. RandomForest and extraTrees required 23.4 and 24.3 times more training data from
off-chip memory than ExtraFerns, respectively. Therefore, ExtraFerns required only 4.3% and 4.1% off-chip
memory accesses compared to randomForest and extraTrees, respectively.
3. Large #
This case corresponds to the original full datasets of HIGGS and SUSY. In this case, the number of fetched data
from off-chip memory for ExtraFerns is*�# per tree because it is impossible to store �# samples in on-chip
memory. Although ExtraFerns’ threshold optimization requires* times more off-chip memory accesses than
rFerns, the increase in accuracy far outweighs this disadvantage. In randomForest and extraTrees, each node
must read data twice for node selection and data division because each node cannot store all data used in node
selection due to too much data. Because the number of nodes is O(#) from Table 2, we assume that the tree
makes nodes up to max depth �, and the number of fetched data from off-chip memory is 2 #� per tree.

224

International Journal of Networking and Computing

Table 9: Ratio of Fetched Training Data from Off-Chip Memory
Case Dataset ExtraFerns rFerns randomForest extraTrees

2

MNIST 15 15 333 (×22.2) 349 (×23.2)
Fashion-MNIST 15 15 318 (×21.2) 339 (×22.6)
Kuzushiji-MNIST 15 15 339 (×22.6) 347 (×23.1)
Devanagari-Script 15 15 413 (×27.6) 425 (×28.3)

Average 15 15 351 (×23.4) 365 (×24.3)

3
Original HIGGS 30 1 10 10
Original SUSY 30 1 8 8

Average 30 1 9 9

The lower half of Table 9 shows the ratio of training data amount fetched from off-chip memory for original
HIGGS and SUSY. For comparison, we assume the same � for the four methods. The ratio of ExtraFerns is
multiplied by * set to 30 in this paper. Both ratios of randomForest and extraTrees multiplied by 2 , where
we set 5 and 4 to for HIGGS and SUSY, respectively. As a result, ExtraFerns requires 3 times and 3.75
times more data fetches for HIGGS and SUSY than randomForest and extraTrees need. Because randomForest
and extraTrees require random access to off-chip memory, it is not always true that ExtraFerns is inferior to
extraTrees or randomForest. Still, it is undeniable that ExtraFerns has a weak point against large-size datasets
and needs to be improved.

5.4 Power Consumption

We can estimate the power consumption of ExtraFerns by multiplying the number of operations and the
energy consumption for each operation. As mentioned in Section 2, however, the off-chip memory access
operation takes 6400x more energy than the addition or the comparison operation needs. So even if we require
10-100x more computational operations than off-chip memory access, off-chip memory access is still the most
dominant factor in power consumption. This case can happen only when the training data size from off-chip
memory is small enough to store all of them in on-chip memory. So, in usual, the power consumption for
computation is negligible in ExtraFerns, so that we can approximately estimate the total power consumption
by considering only the off-chip memory access.

Figure 6 shows the estimated power consumption per tree for four datasets: MNIST, Fashion-MNIST,
Kuzushiji-MNIST, and Devanagari-Script. From [9], we assume DRAM access consumes 20pJ/bit. In each
graph, red bars and blue bars show the power consumption required to load training data from DRAM and
write a trained model back to it. At a depth of 25, we excluded rFerns from evaluation targets because its
model size is too large to store. In Figure 6, ExtraFerns shows the minimal power consumption for all four
datasets thanks to the lightweight data read requirement. However, as mentioned in Section 5.2, the model
size becomes more significant at a depth of 25. For two of the four datasets, the model size becomes larger
than the amount of training data read, resulting in increased power consumption. The model size with large
depths is a problem even in terms of power consumption.

6 Random Projection with ExtraFerns

As mentioned in Section 5, ExtraFerns achieves better memory access efficiency but still has room for
improvement in memory usage. This section shows that random projection (RP) [6,7] improves the accuracy
of ExtraFerns with a low depth, especially on image datasets, resulting in memory usage reduction. This is not
the ultimate solution for the problem but a piece of evidence that there still exist ways to enhance ExtraFerns.

225

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Figure 6: Power consumption comparison betweenMNIST, Fashion-MNIST, Kuzushiji-MNIST, Devanagari-
Script. ET, RF, RFe, and EF represent extraTrees, randomForest, rFerns, and ExtraFerns. In each graph, red
bars and blue bars show the power consumption required to load training data from DRAM and write a trained
model back to it. From the result, we can confirm that ExtraFerns requires minimal power consumption in
every condition.

6.1 Modified Random Projection for ExtraFerns
RP is a linear transform method usually used for dimensionality reduction [6, 7]. We propose applying a
modified RP to ExtraFerns as a preprocessing step, which achieves higher accuracy. Figure 7 shows the
difference between the original RP and our modified RP. As shown in Figure 7, given the original data matrix
- , RP linearly transforms the original data - to the projection data -RP with the random matrix '. The
random matrix ' is not necessarily square, but we use a square matrix ':×: to preserve the original data’s
dimensionality. Also, sparse RP [7] stochastically defines non-zero A8 9 as

A8 9 =

+
√
B with probability 1

2B

0 with probability 1 − 1
B

−
√
B with probability 1

2B

, (9)

where the hyperparameter B is usually a large number proportional to the number of attributes. However, our
RP leaves a constant number of non-zero A8 9 in each row, where this constant is � in Figure 7. This simple
modification allows better performance with ExtraFerns.

6.2 Effectiveness of Modified Random Projection
Figure 8 shows accuracy comparison results between bare ExtraFerns, ExtraFerns with the original RP, and
ExtraFerns with the modified RP. The comparison is conducted on two configurations, � = 15 and � = 25,
and six datasets: MNIST, Fashion-MNIST, Kuzushiji-MNIST, Devanagari-Script, HIGGS, and SUSY. In
each comparison, we investigated accuracies with � in the range of 2 to 10. Also, we set B as half of the
number of attributes for � = 2, one third for � = 3, etc. for fair comparison. Each row of Table 10 compares
the ExtraFerns’ accuracies with and without RP, where the accuracy with RP is the maximum value of each
corresponding graph shown in Figure 8. The blue indicates the higher accuracy, and the red indicates the
lower accuracy at the same depth.

As shown in Figure 8 and Table 10, the modified RP shows better performance than the original RP,
improving the accuracy by up to 2.0% and 1.1% on average at � = 15 and � = 2, respectively for the four

226

International Journal of Networking and Computing

Projection Data Random Matrix Original Data

Sample 2 Sample Sample 1 Sample 2 Sample

Attribute 1

Attribute 2

Attribute

Attribute 1

Attribute 2

Attribute

Attributes 2 of become meaningless # of both and are fixed at in each row

Sample 1

Sparse Random Projection Modified Random Projection
when

Random Projection

Figure 7: Overview of RP for ExtraFerns. The :-dimensional original data with # samples ^:×# are
projected to -RP

:×# using a random : × :-dimensional matrix X:×: . The dimensionalities of the original
data and the projection data are the same. The modified RP is a variation of sparse RP with a restriction on
the number of non-zero values in each row vector and without the multiplication of

√
B because quantization

follows RP in ExtraFerns.

Table 10: Accuracy Comparison between ExtraFerns without RP and with RP

Dataset
Accuracy[%]

Depth 15 Depth 25
w/o RP w/ RP w/o RP w/ RP

MNIST 93.9 95.9 (+2.0) 95.8 96.2 (+0.4)
Fashion-MNIST 82.5 83.7 (+1.2) 84.4 84.3 (-0.1)
Kuzushiji-MNIST 80.9 82.1 (+1.2) 84.2 83.8 (-0.4)
Devanagari-Script 88.9 89.0 (+0.1) 90.1 87.9 (-2.2)

HIGGS 68.0 63.3 (-4.7) 66.8 62.5 (-4.3)
SUSY 78.9 77.8 (-1.1) 79.1 78.5 (-0.6)

datasets: MNIST, Fashion-MNIST, Kuzushiji-MNIST, and Devanagari-Script. For the other two datasets,
HIGGS and SUSY, both ExtraFerns with RP showed accuracy drops under all configurations, dropping by
2.9% on average at depth 15. The most significant difference between these two groups of datasets is their data
type, i.e., the modified RP has good compatibility with the former four datasets because they contain image
data with correlated attributes. However, when the depth is 25, RP is ineffective for three out of four image
datasets, decreasing the accuracy by 0.9% on average. Therefore, RP is only effective for the image datasets
when the depth of ExtraFerns is shallow. This means we can improve ExtraFerns’ accuracy for image datasets
by applying the modified RP instead of deepening the fern structure, saving significant memory usage.

6.3 ExtraFerns with Random Projection and RandomFerns
ExtraFerns with the modified RP includes randomFerns as a subset; when � = 2 and the threshold in each
node is 0, the structure of ExtraFerns is identical to that of randomFerns. Therefore, we thought it would be
an interesting analysis to compare ExtraFerns and randomFerns and investigate what happens if we merge
the two methods. We implemented a program merging ExtraFerns and randomFerns in a certain ratio and
evaluated it on image datasets. As mentioned above, randomFerns is not useful for tabular datasets.

Table 11 lists the accuracy comparison results at� = 15 on the four image datasets. In Table 11, the column

227

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

Figure 8: Experimental results for the effect of RP. The parameter � on the horizontal axes is the expected
value of the number of non-zero values in each row of '. The RP was effective for datasets with large
dimensions, and � = 15 was more effective than � = 25. In comparing the implementation of RP, the
modified RP was more accurate for the datasets where RP was effective.

with a ratio of 0 represents bare ExtraFerns, and the columnwith a ratio of 1 represents bare randomFerns. The
middle columns list the accuracies of the methods merged with the corresponding ratios. Also, the right-most
column represents ExtraFerns with RP. From Table 11, we can confirm that ExtraFerns with RP achieves
higher accuracy than other variations and is more effective than randomFerns, even on image datasets.

7 Conclusion

This paper proposed an edge-oriented decision tree ensemble called ExtraFerns that requires extremely
low memory access for training. For achieving high inference accuracy, ExtraFerns conducts non-greedy
optimization so that it can significantly outperform rFerns based on the fern structure. Experimental results
show that ExtraFerns required only 4.3% and 4.1% memory access for training models only with 3.0% and
1.2% accuracy drops compared with randomForest and extraTrees, respectively. However, we also found that
ExtraFerns has a weakness in memory usage, which increases significantly with its depth. To increase the
accuracy without an increase in the depth, we proposed applying modified RP to ExtraFerns and showed that
RP improves ExtraFerns’ accuracy by up to 2.0% on the image datasets, which have correlated attributes. Our
future work will aim to achieve further accuracy improvement and lower memory usage.

Acknowledgement

We are grateful to Prof. Ichigaku Takigawa for suggesting random projection with ExtraFerns. This work
was partially supported by JST CREST Grant Number JPMJCR18K3, Japan.

228

International Journal of Networking and Computing

Table 11: Accuracy Comparison between ExtraFerns with RP and ExtraFerns Combined with RandomFerns
at Different Ratios

Dataset

Accuracy[%]

+RandomFerns’ nodes +Random
projectionRatio of randomFerns’ nodes

0 0.25 0.5 0.75 1

MNIST 93.9 94.0 93.8 93.8 93.8 95.9
Fashion-MNIST 82.5 82.6 82.4 82.5 82.3 83.7
Kuzushiji-MNIST 80.9 80.7 80.3 79.8 79.3 82.1
Devanagari-Script 88.9 88.7 88.5 88.1 87.8 89.0

References
[1] Shungo Kumazawa, Kazushi Kawamura, Thiem Van Chu, Masato Motomura, and Jaehoon Yu. Ex-

traFerns: Fully parallel ensemble learning technique with non-greedy yet minimal memory access
training. In Proceedings of International Symposium on Computing and Networking, pages 146–152,
2020.

[2] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

[3] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3–42, March 2006.

[4] Mustafa Ozuysal, Pascal Fua, and Vincent Lepetit. Fast keypoint recognition in ten lines of code. In
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
1–8, 2007.

[5] Miron Bartosz Kursa. rFerns: An implementation of the random ferns method for general-purpose
machine learning. Journal of Statistical Software, 61(10):1–13, November 2014.

[6] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: Applications
to image and text data. In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 245–250, August 2001.

[7] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page
287–296, August 2006.

[8] Gilles Louppe. Understanding random forests: From theory to practice. PhD thesis, University of Liège,
2014.

[9] Mark Horowitz. Computing’s energy problem (and what we can do about it). In Proceedings of IEEE
International Solid-State Circuits Conference, pages 10–14, 2014.

[10] Dheeru Dua and Casey Graff. UCI machine learning repository. http://archive.ics.uci.edu/ml,
2017.

[11] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, 2017.

[12] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv:1812.01718, 2018.

[13] Shailesh Acharya, Ashok Kumar Pant, and Prashnna Kumar Gyawali. Deep learning based large scale
handwritten Devanagari character recognition. In Proceedings of the International Conference on
Software, Knowledge Information, Industrial Management and Applications, pages 1–6, 2015.

229

http://archive.ics.uci.edu/ml

ExtraFerns: Fully Parallel Ensemble Learning with Minimal Memory Access

[14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy physics
with deep learning. Nature Communications, 5:4308, July 2014.

230

	Introduction
	Related Work
	ExtraFerns
	Algorithm Overview
	Parallel Threshold Optimization
	Sparsified Probability Distribution of Leaf Nodes
	Complexity of ExtraFerns

	Preliminary Experiments
	Hyperparameter Grid Search
	Influences of Bootstrapping and Dirichlet Prior

	Evaluation
	Accuracy
	Memory Space
	Memory Access
	Power Consumption

	Random Projection with ExtraFerns
	Modified Random Projection for ExtraFerns
	Effectiveness of Modified Random Projection
	ExtraFerns with Random Projection and RandomFerns

	Conclusion

