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Abstract

In this paper, the authors focus on and propose an approach to attack a kind of pairing-
friendly curves, the Barreto-Naehring (BN) curve, to accelerate the evaluation of the security
level concerning the elliptic curve discrete logarithm problem (ECDLP). More precisely, this
paper targets the BN curve, which is known to be a pairing-friendly curve, and Pollard’s rho
method based on the random-walk is adopted to attack the curve.

Though Pollard’s rho method with skew Frobenius mapping is known to solve the ECDLP
efficiently, this approach sometimes induces the unsolvable cycle, called the fruitless cycle, and
such trials must restart with a different starting point. However, any effective method to elim-
inate such fruitless cycles has not been proposed. Therefore, the authors focus and give the
sophisticated analysis to propose an effective approach to eliminate such cycles to optimize
Pollard’s rho method furthermore. In addition, we confirm the effectiveness of the method by
applying it to a BN curve with 12, 17, and 33-bit parameters.

Keywords: ECDLP, Pollard’s rho method, fruitless cycle, Barreto-Naehrig curve, skew Frobenius
mapping

1 Introduction

The IoT era has arrived, and many IoT devices are connected to the Internet. IoT devices with
few computing resources are required to have a safe, secure, and high-speed encryption system.
Currently, though RSA encryption is widely used as a public-key cryptosystem, it requires more
than 2000 bits length of a key. However, it is not always available for every IoT device due to the
lack of computational resources. Therefore, elliptic curve cryptography (ECC) capable of ensuring
security equivalent to that of the RSA cipher with a key length of 3072 bits at about 256 bits has
attracted attention and studied. ECC is used as digital signatures and authentication technology
in various things such as IC cards, server certificates, and Wi-Fi. The security of elliptic curve
cryptography is guaranteed by the elliptic curve discrete logarithm problem (ECDLP).

Pairing-based cryptography enables many innovative and multi-function cryptographic applica-
tions such as ID-based encryption [1] and searchable encryption [2]. The authors focus on the BN
curve used in pairing-based cryptography. One of the securities of pairing-based cryptography is
guaranteed by ECDLP. If ECDLP is solved, the security of the pairing-based cryptography needs to
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be re-verified. Since the method of solving DLP has been improved[3], the length of the secret key
is affected when the BN curve is used in pairing-based cryptography.

Pollard’s rho method, simply, rho method, is one of the most efficient methods for solving ECDLP
[4] and a variety of efficient rho methods are studied [5, 6, 7, 8, 9].

Skew Frobenius mapping can be applied to the rho method to decrease the solving time of ECDLP
for the BN curve. In [8], Miura et al. showed that a rho method with the skew Frobenius mapping
toward 9-bit ECDLP induces the increasing number of unsolvable cases called fruitless cycles rapidly.
When a random-walk path results in a fruitless cycle, the random-walk path must restart with a
different starting point. Though the cost to detect a fruitless cycle and restart the random-walk path
is not large if the length of the fruitless cycle is short, the terminated random-walk path is a waste
of resources of the attack. In addition, the results of [8] indicate that the probability of the restarted
random-walk path results in yet another fruitless cycle can be a non-negligible problem for the rho
method with skew Frobenius mapping. Therefore, combined with the restarting method, a method
to reduce the occurrence of the fruitless cycles brings non-negligible benefits for the attackers, if the
cost of the method is small enough. Note that, about 6 months were required to solve a 114-bit
ECDLP even if 2000 cores were used[6]. Since the elimination of the fruitless cycles might result in
a shorter attack time for the same setup, the fruitless cycles should be avoided.

In this paper, the authors show that the fruitless cycle increases rapidly in the rho method
with skew Frobenius mapping over a BN curve with 12-bit parameters. In addition, a method to
eliminate the fruitless cycles is proposed and applied to 12, 17, and 33-bit parameters. In this paper,
the authors mainly employ rho methods consist of a single random-walk path to clarify the situation
and structure of the fruitless cycles. Since the single path rho methods are not typical parallel rho
methods with restarting methods, the major purpose of this paper is not the evaluation on the
effectiveness of the proposed method with the parallel rho methods. Note that the authors assume
that any practical implementations of parallel rho methods should employ the restarting methods
for a random-walk path saturated with a fruitless cycle.

2 Mathematical fundamentals

The BN curve is one of the elliptic curves and is an elliptic curve defined on a finite field or an
algebraic number field. In this chapter, we review the four arithmetic operations in these algebraic
systems and describe the mathematical foundations of elliptic curves.

2.1 Group

A group (G, ◦) is a non-empty set together with a binary operation ◦ that satisfies the following
group axioms:

G1: For ∀a, b ∈ G, the result of a ◦ b is also in G. (Closure)

G2: For ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c). (Associativity)

G3: For ∀a ∈ G, there exists an element e ∈ G such that a ◦ e = e ◦ a = a, where e is called
unity. (Existence of unity)

G4: For ∀a ∈ G, there exists an element x ∈ G such that a ◦ x = x ◦ a = e, where x is called
inverse element. (Existence of inverse element)

In addition, (G, ◦) is said to be commutative group or abelian group when (G, ◦) satisfies the following
property:

AG5: For ∀a, b ∈ G, a ◦ b = b ◦ a. (Commutativity)

The order of a group (G, ◦) is defined as the number of elements in G and it is denoted by |G|.
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For a positive integer n, let (Zn,+) be a group with respect to an addition, where Zn =
{0, 1, 2, . . . , n − 1}. If addition + is a normal integer addition, then G1(Closure) does not be
fulfilled. Therefore, this paper adopts an addition with modular arithmetic defined below.

a+ b ≡ c (mod n), a, b ∈ Zn,

where the notation “c (mod n)” means that c is assigned to a remainder on division by n when
a+ b = c exceeds n. Then, c always belongs to Zn and (Zn,+) forms a group. For simplicity, both
addition and multiplication with modular arithmetic are represented as usual expressions such as +
and ·.

2.1.1 Field

A field (F,+, ·) has two operations denoted by + and · such that:

F1: F is a commutative group with respect to +. (Additive Group)

F2: F∗ is a group with respect to ·, where F∗ is the set that consists of every element distinct
from the unity (zero element) with respect to +. (Multiplicative Group)

F3: For all a, b, c ∈ F, we have a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a. (Distributive
law)

In general, the element 0 and 1 represent the unity concerning + and ·, respectively. The order
of F is the number of elements in F. If the order of F is finite, F is called finite field.

2.1.2 Prime field

Let (F,+, ·) be a field and (K,+, ·) be a subfield of (F,+, ·). If K 6= F, then (K,+, ·) is a proper
subfield of (F,+, ·). Prime field is defined as a field with no proper subfields. In other words, if
(K,+, ·) does not have any subfields except itself, then (K,+, ·) is called prime field.

For example, (Zp,+, ·) is a prime field and in what follows, it is denoted by Fp. This paper
especially focuses on a prime field with an odd prime number p where the field is called an odd
characteristic field.

2.2 Extension field

A field F is said to be an extension field of a field F′, if F′ be a subfield of F. In addition, the unity
exists in F′. Let p be a large prime number and m a relatively small positive integer called extension
degree. An extension field Fpm is a vector space over prime field Fp in which arithmetic operations
such as multiplication for a, b ∈ Fp are carried out with modulo p such as a × b (mod p). In order
to deal with the extension field Fpm as a vector space over Fp, a certain basis of dimension m be
denoted as (e1, e2, . . . , em) is needed. Then, arbitrary element A ∈ Fpm is represented as a vector as
follows,

A = (a1e1, a2e2, . . . , amem) a1, a2, . . . , am ∈ Fp. (1)

2.3 l-th power residue

For a 6= 0 ∈ Fp, when there exists an element x ∈ Fp such that xl = a (mod p), a is called a l-th
power residue. On the other hand, when there does not exist an element x ∈ Fp such that xl = a
(mod p), a is called a l-th power non-residue. More Formally, we say that a is l-th power residue

when a
p−1

l (mod p) = 1. Otherwise, a is l-th power non-residue.

In this paper, the case of l = 2 and l = 3 are described.

233



Sophisticated analysis of a method to eliminate fruitless cycles for Pollard’s rho method

• l = 2
In this case, an element a is called a quadratic residue(QR) element if a has a square root in
Fp, a quadratic non-residue(QNR) element in Fp otherwise.

a
p−1
2 (mod p) =

 1, if a is QR,
−1, if a is QNR,

0, otherwise.
(2)

This discriminant is widely known as the Legendre symbol(a/p) = a
p−1
2 .

• l = 3
In this case, an element a is called a cubic residue(CR) element if a has a cubic root in Fp, a
cubic non-residue(CNR) element in Fp otherwise.

a
p−1
3 (mod p) =

 1, if a is CR,
ε, ε2, if a is CNR,

0, otherwise,
(3)

where ε is a primitive cubic root of unity.

3 Elliptic curve and ECDLP

In this section, we review the definition of an elliptic curve over a prime field and the fundamental
property of rational points on the curve. In addition, a brief review of the rho method with the skew
Frobenius mapping is given.

3.1 BN curve

BN curve [10] is a class of non-supersingular pairing friendly elliptic curve whose embedding degree
is 12. For a prime p, a BN curve is defined over Fq where q = p12. For simplicity, a BN curve E can
be defined over Fp where

E : y2 = x3 + b (b 6= 0 ∈ Fp and x, y ∈ Fp). (4)

Fp is a field of prime order p. It is noted that for a certain integer χ, integers p and r is given by

p = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (5)

r = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1.

Let E(Fp) be the set of rational points including the point at infinity which is denoted by O. Then,
we have r = |E(Fp)| and E(Fp) forms an additive cyclic group.

For two rational points Q1(x1, y1) and Q2(x2, y2) ∈ E(Fp), an addition between the rational
points Q1(x1, y1)+Q2(x2, y2) = Q3(x3, y3) ∈ E(Fp) is called an Elliptic Curve Addition (ECA). For
Q1 and Q2, we have an auxiliary parameter λ defined by

λ =


y2−y1
x2−x1

, if Q1 6= Q2 and x1 6= x2,

3x2
1

2y1
, else ifQ1 = Q2 and y1 6= 0,

0, otherwise.

Then, ECA gives x3 and y3 with λ 6= 0 as follows:

x3 = λ2 − x1 − x2,

y3 = (x1 − x3)λ− y1.
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On the other hand, if λ = 0, then we have

Q3 = O.

For two rational points P and Q, and an integer s ∈ Zr, let [s]P denote s− 1 times ECA on P
where

Q = [s]P = P + P + · · ·+ P︸ ︷︷ ︸ .
s

Note that for the case s = 0, we have [s]P = O.
The basic idea of the elliptic curve discrete logarithm problem (ECDLP) is to find a scalar s

such that Q = [s]P from given rational points P and Q.
Generally, computing Q from s and P is relatively easy owing to the ECA, however, the inverse

is considered to be hard for an adequate bit size in most cases. In this sense, the robustness and
hardness against computational attack for an ECDLP are essential aspects of ECC security.

3.2 Skew Frobenius mapping

As a kind of endomorphisms, skew Frobenius endomorphism is known [11]. For a rational point
R(x, y), the skew Frobenius mapping φ is defined as follows:

φ(R) =

(
v

p2−1
3 x, v

p2−1
2 y

)
,

where v is a quadratic and cubic non-residue in Fp2 . In this case, we have φ(R)6 = φ, and v
p2−1

3

becomes a primitive cubic root ε of unity in Fp, and v
p2−1

2 becomes p − 1. Thus, in what follows,
the skew Frobenius map φ in this case is denoted by φ6. Then, φ6 enables an efficient grouping in
the rho method as shown in the next section.

3.3 Grouping of six points on BN curve

Let us consider a rational point Ti as generated in the random-walk process. Then, the rational
points obtained in the random-walk are found to be corresponding to the following six rational points
via skew Frobenius mapping φ.

φ06(Ti) = (xi, yi), (6a)

φ16(Ti) = (εxi,−yi), (6b)

φ26(Ti) = (ε2xi, yi), (6c)

φ36(Ti) = (xi,−yi), (6d)

φ46(Ti) = (εxi, yi), (6e)

φ56(Ti) = (ε2xi,−yi). (6f)

A set of the six points forms an equivalent class. Then, a certain representative point among the
six points is systematically and efficiently determined, which enables the following efficient grouping
attack. When Tj = [αj ]P + [βj ]Q is φt6(Ti) where 0 ≤ t < 6, αj and βj are given as follows:

αj = p2t · αi, βj = p2t · βi (mod r).

For a rational point Ti, let Rep(Ti) be a function that determines the representative element from
Eq.(6). The rational point obtained by the function Rep(Ti) is called the representative point. For
example, the representative point Rep(Ti) is a rational point with the maximum x coordinate and
even y coordinate in the group of the six points.
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Figure 1: Illustration of a random-walk in Pollard’s rho method

4 Pollard’s rho method

In this chapter, Pollard’s rho method and Pollard’s rho method with the skew Frobenius mapping
are described. A typical rho method is used for parallel attacks using one server and many clients.
Generally, though one of the simplest methods requires the server to save numerous points sent from
the clients, here we also review a typical distinguished point method to reduce the burden of the
server.

4.1 Normal Pollard’s rho method

Pollard’s rho method is one of the most efficient methods for solving ECDLP [4]. The seed points
are a set of rational points that are used to generate new rational points in a random-walk path.

The algorithm of the rho method is illustrated in Algorithm 1. Let n denote the number of seed
points. For an integer i where 0 ≤ i < n and two random scalars αi and βi ∈ Zr, let Ti , [αi]P+[βi]Q
denote the seed points. Note that Zr is a set of integers greater than or equal to 0 and less than r.
For a rational point P (x′, y′), let η(P (x′, y′)) = x′ mod n. The procedure of iterations from steps
6 to 11 form a random-walk, and step 10 is for collision detection. When βi is equal to βj in step
12, the random-walk cannot be solved. This case is called a fruitless cycle. In most cases, a client
does not save rational points for a solvable collision detection. Thus, the fruitless cycle cannot be
detected on the client-side and a random-walk on the client side must restart from selecting starting
point after detecting the fruitless cycle by the server with parameters concerning rational points.
Note that for short length fruitless cycles, local collision detection methods can be employed on the
client for practical parallel rho methods.

The fruitless cycles are obviously redundant for attacking and evaluating the robustness of the
ECDLP using parallel rho methods. In this context, the authors propose a method to eliminate
those fruitless cycles through a sophisticated analysis to conducting the parallel rho methods more
efficiently.

In addition, the number of repeats in steps 6-11 in Algorithm 1 is called the random-walk length.
By using a random-walk length, comparisons can be made regardless of the performance of a device.
On the other hand, it is known from the birthday paradox[12] that the rho method has a collision
probability of 50% when

√
πr/2 points are generated. Therefore, the authors compare the random-

walk length and the estimation based on the birthday paradox. The performance of a rho method
would be evaluated by average length of the random-walk path when the rho method stops with a
solvable collision over enough number of trials, and the average length is a probable value.

Figure 1 illustrates the random-walk in a typical single rho method, and the shape of the random-
walk resembles the symbol ρ as the name stand for. That is because the random-walk generates
points randomly, and the rational points form a cyclic set, which is called a cycle. In Figure 1, j − i
is called the cycle length, and i− n is called the foot length.

The random-walk shown in Figure 1 consists of a single staring point, a single foot and a single
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Algorithm 1: Pollard’s rho method

Input : P,Q(=[s]P ) ∈E(Fp) (s ∈ Zr).
Output: s.

1 for i = 0 to n− 1 do
2 αi, βi are assigned two random elements in Zr.
3 Ti ← [αi]P+[βi]Q.

4 αn, βn are assigned two random elements in Zr.
5 Tn ← [αn]P+[βn]Q.
6 for i = n+ 1 to r − 1 do
7 l← η(Ti).
8 αi ← αi−1 + αl, βi ← βi−1 + βl.
9 Ti ← Ti−1 + Tl.

10 if Ti = Tj(n ≤ j < i) then
11 go out this loop.

12 s← −(αi − αj)/(βi − βj).

cycle. In the case, the lengths of the foot and cycle are more than zero, respectively, the random-
walk is translated as a single rho method. Note that a special case is a random-walk path consists
of single cycle without a foot, which draws a shape of ‘o’ character. A typical parallel rho method
consists of massive clients which consist of massive random-walk paths with different starting points
and a collision detection server. In addition, a typical termination state of the parallel rho method
is a solvable collision which is a joining point of two different feet from two starting points. Then,
the two different random-walk paths draw a λ shape, which is not a ρ shape. Note that a special
case is two random-walk paths share a single foot without a cycle.

There is a possibility that the parallel rho method includes several disconnected random-walk
paths which draw standalone ρ shapes with unsolvable collisions, which are the fruitless cycles. In
addition, there is a possibility that the two different random-walk paths, which include a solvable
collision point, result in a fruitless cycle where the cycle can be confirmed by intentionally continuing
the random-walks.

Therefore, in this paper, the authors mainly focus on the rho method which consists of single
starting point to clarify the result of the cycle of the random-walk path. Note that since the length
of the single rho method becomes longer than that of the parallel rho methods, the efficiency of the
ECDLP could not be evaluated by the average length of the random-walk path of the single rho
method.

4.2 Pollard’s rho method with the skew Frobenius mapping

In this section, Pollard’s rho method with the skew Frobenius mapping is explained. In this paper,
this method is also referred to as the previous method [6].

Except the fruitless cycle cases, the normal rho method can solve ECDLP when the same rational
point is generated from the rational points on the curve. The search range is equal to the order r
of the curve. By applying the skew Frobenius mapping, the rational points on the BN curve can be
divided into groups of 6 points each. In this case, each client decides a representative point among
the 6 points, and map to the representative point each time with much smaller computational cost
than that of ECA. Therefore, a client sends only the representative points to the server, and the
server makes collision detection using only the representative points. It immediately enables us to
shrink the search range into r/6, and the average length of the random-walk path with a solvable
collision become shorter than that of the normal rho method on the average.

The algorithm of the previous method is illustrated in Algorithm 2. Same as the normal rho
method, let n denote the number of seed points. For an integer i where 0 ≤ i < n and two random
scalars αi and βi ∈ Zr, let Ti , [αi]P + [βi]Q denote the seed points. For a rational point P (x′, y′),
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Figure 2: Illustration of a random-walk in the previous method

Algorithm 2: Pollard’s rho method with the skew Frobenius mapping

Input : P,Q(=[s]P ) ∈ E(Fp) (s ∈ Zr).
Output: s.

1 for i = 0 to n− 1 do
2 αi, βi are assigned two random elements in Zr.
3 Ti ← [αi]P+[βi]Q.

4 αn, βn are assigned two random elements in Zr.
5 Tn ← [αn]P+[βn]Q.

6 Tn ← Rep(Tn).

7 l← η(Tn).
8 for i = n+ 1 to r − 1 do
9 αi ← αi−1 + αl, βi ← βi−1 + βl.

10 Ti ← T i−1 + Tl.

11 T i ← Rep(Ti).

12 l← η(T i).

13 if T i = T j(n ≤ j < i) then
14 go out this loop.

15 s← −(p2t · αi − p2t
′ · αj)/(p2t · βi − p2t

′ · βj) (mod r), where 0 ≤ t < 6 and 0 ≤ t′ < 6.

let η(P (x′, y′)) = x′ mod n. The procedure of iterations from steps 8 to 14 forms a random-walk,
and step 13 is collision detection. Note that t and t′ are integers between 0 and 5. Note that the
major difference from the normal rho method is to employ representative points of rational points
based on skew Frobenius mapping shown in steps 6 and 11 in Algorithm 2.

In addition, the number of repeats in steps 8-14 in Algorithm 2 is called the random-walk length.
By using a random-walk length, comparisons can be made regardless of the performance of a device.
On the other hand, it is known from the birthday paradox that the rho method with skew Frobenius
mapping has a collision probability of 50% when

√
πr/12 points are generated. Therefore, the

authors compare the random-walk length and the estimation based on the birthday paradox.
Figure 2 illustrates the random-walk of the previous method. In Figure 2, j− i is called the cycle

length, and i− n is called the foot length. For a rational point Ti−1 where Ti−1 6= O, a cycle length
zero is a case where Ti = O. A cycle length one is a case where Ti−1 6= O and Tη(T i−1)

= O.

For two rational points Ti and Tj where Rep(Ti) = Rep(Tj) and n ≤ i < j ≤ r, we call the
situation as a collision of the rho method applied the skew Frobenius mapping. For a collision where
p2t · αi 6= p2t

′ · αj and p2t · βi 6= p2t
′ · βj , the scalar s can be solved by the following:

s = −p
2t · αi − p2t

′ · αj
p2t · βi − p2t′ · βj

(mod r), (7)
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Figure 3: Illustration of a fruitless cycle by the distinguished point method

Figure 4: Illustration of a cycle of length two in the previous method

where 0 ≤ t < 6 and 0 ≤ t′ < 6.

When the denominator is zero in Eq.(7), the scalar s cannot be obtained, and this cycle is also
called a fruitless cycle.

4.3 Distinguished point

In practical rho methods, a distinguished point method might be employed to reduce the number
of rational points to check a collision. For T i(xi, yi), a typical distinguished point method checks
whether lower bits of xi equals zero or not. For a positive integer τ , let the lower τ bits of the
distinguished point method be called thinned bits. In this research, since this is a preliminary study
to solve larger bit ECDLP, the results where the distinguished point method is applied or not is
verified.

In addition, a new fruitless cycle may occur by applying the distinguished point method. An
example is shown in Figure 3. A red cross mark is drawn on rational points that do not meet the
conditions of the distinguished point method. If all the rational points, which draw the cycle, do
not satisfying the distinguished point method, then it results in a fruitless cycle. Detecting this
fruitless cycle is synonymous with solving ECDLP. If the cycle length of the fruitless cycle is short,
it can be detected by saving the rational points on the client, locally. However, most of the long
fruitless cycles cannot be detected by the local collision detection. Therefore, the number of bits
to be thinned out in the distinguished point method and the parameters of the BN curve or a rho
method must be carefully selected.

Note that for the parallel rho methods, the new fruitless cycle can be a solvable cycle if the local
collision detection on the client-side properly handles the collision. The experiments in Chapter 6
do not employ the local collision detection.
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Table 1: The parameters of a BN curve and the value of χ

χ
The parameters of a BN curve

prime(p) Order(r) b in Eq.(4)

3 2143 2089 5
7 75223 74929 7

107 4675038223 4674969529 10

5 Reduction of fruitless cycles

In this chapter, the case of the fruitless cycle in the rho method with the skew Frobenius mapping[8]
is reviewed. The authors propose a method to eliminate the fruitless cycles based on this review.

5.1 Review of the cause of the fruitless cycle

The authors review the cause of fruitless cycles, taking cycle length two which is the most frequent
as an example.

Figure 4 shows the cycle of length two in the previous method. If rational points are calculated
according to the previous method, p2t0 · αi and p2t0 · βi can be expressed as follows:

T i = Rep(Ti) = φt06 (Ti), (8a)

Ti+1 = T i + Tη(T i)
= φt06 (Ti) + Tη(T i)

, (8b)

T i+1 = Rep(Ti+1) = φt16 (Ti+1) = φt16 (T i) + φt16 (Tη(T i)
), (8c)

Ti+2 = T i+1 + Tη(T i+1)
= φt16 (Ti+1) + Tη(T i+1)

, (8d)

T i+2 = Rep(Ti+2) = φt26 (Ti+2) = φt26 (T i+1) + φt26 (Tη(T i+1)
)

= φt2+t16 (T i) + φt26 (φt16 (Tη(T i)
) + Tη(T i+1)

),
(8e)

where 0 ≤ t0, t1, t2, t3 < 6. When φt16 (Tη(T i)
) + Tη(T i+1)

= O where O= [0]P + [0]Q in Eq.(8e), the
cycle becomes the fruitless cycle of length two. For example, the conditions of the fruitless cycle of
length two are t1 = t2 = 3 and Tη(T i+1)

= Tη(T i)
because of φ36(Tη(T i)

) = −Tη(T i)
.

That is, it is possible to eliminate fruitless cycles by preventing to refer the same rational point
in succession.

5.2 Method to eliminate the fruitless cycles

In the previous section, the authors showed that the fruitless cycles can be eliminated by not to refer
to the same rational point in succession. Therefore, in this study, the authors propose a method
that avoids continuous reference of seed points by dividing the set of seed points into two sets, and
referencing the sets alternately.

The proposed method for ruling out fruitless cycles is illustrated in Algorithm 3. Let n be the
number of seed points. For an integer i where 0 ≤ i < n and two random scalars αi and βi ∈ Zr,
let Ti , [αi]P + [βi]Q denote the seed points.

The proposed method does not refer to the same rational points continuously. The condition to
result in a fruitless cycle of length two is to refer to the same rational points continuously in each
of the two seed point tables. In the previous method with one table, it takes at least two steps
to result in a fruitless cycle on the random-walk. On the other hand, since the proposed method
has two tables, it requires at least four steps to result in a fruitless cycle on the random-walk. The
conditions to result in the fruitless cycle become severe and the fruitless cycle can be eliminated.
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Algorithm 3: Proposed method for ruling out fruitless cycles

Input : P,Q(=[s]P ) ∈ E(Fp) (s ∈ Zr).
Output: s.

1 n′ = n/2.
2 for i = 0 to n− 1 do
3 αi, βi are assigned two random elements in Zr.
4 Ti ← [αi]P+[βi]Q.

5 αn, βn are assigned two random elements in Zr.
6 Tn ← [αn]P+[βn]Q.

7 Tn ← Rep(Tn).

8 l← x (mod n′) where Tn(x, y).
9 for i = n+ 1 to r − 1 do

10 αi ← αi−1 + αl, βi ← βi−1 + βl.

11 Ti ← T i−1 + Tl.

12 T i ← Rep(Ti).
13 if i (mod 2) = 0 then
14 l← x′ (mod n′) where T i(x

′, y′)

15 else
16 l← x′ (mod n′) + n′ where T i(x

′, y′)

17 if T i = T j(n ≤ j < i) then
18 go out this loop.

19 s← −(p2t · αi − p2t
′ · αj)/(p2t · βi − p2t

′ · βj) (mod r), where 0 ≤ t < 6 and 0 ≤ t′ < 6.

6 Experimental result

In this chapter, the authors apply the normal rho method and the previous method to the BN curve
and confirm that the fruitless cycle increases. The authors also apply the previous method and the
proposed method to the BN curve and verify the effect. The relationship between the parameters
of the BN curve used in the experiment and the value of χ is shown in Table 1.

6.1 Confirmation of increase in the number of fruitless cycles

The authors compare the normal rho method with the previous rho method. The previous method
is Pollard’s rho method with the skew Frobenius mapping, and the number of seed point tables is
one. The authors consider a BN curve with χ = 3 in Eq.(5) and parameters which include a set of
seed points (n = 16 and 32), and a starting point. The case is a 12-bit ECDLP. The representative
point Rep(Ti) is a rational point with the maximum x coordinate and even y coordinate in the group
of six points. Since the number of combinations is huge, two rational points P and Q, which are the
seed points and the starting point, are randomly selected for each trial, and 100 thousand trials are
executed.

Table 2 shows the relationship between the number of rational points and the cycle length that
can be solved when a collision occurs in the normal rho method where χ = 3, the number of seed
points is 16. The distinguished point method is not applied in the confirmation of the increase in
the number of fruitless cycles. The second column of Table 2 represents the number of combinations
for which the scalar s can be solved. The third column represents the number of combinations that
result in a fruitless cycle in which the scalar s cannot be solved. If the cycle length is 401 or more,
it is indicated as ”else”. The fourth column shows the sum of the second and third columns.

It can be confirmed that the number of fruitless cycles is 56, which is very small. The average
length of a random-walk path of the solvable cases was 59.7. Since the fruitless cycle keeps drawing
the same cycle forever without the detection of the fruitless cycle, the random-walk length cannot
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Table 2: Frequency distribution of cycle length when ECDLP is solvable or unsolvable in the normal
rho method with χ = 3, the number of seed points n = 16, and without thinned bits

cycle length (1) solvable (2) unsolvable (1)+(2)

0 2931 1 2932
1 685 0 685
2 1882 1 1883
3 2476 1 2477
4 2442 3 2445
5 2431 2 2433

6-200 87097 48 87145
201-400 0 0 0
else 0 0 0

all 99944 56 100000

Table 3: Frequency distribution of cycle length when ECDLP is solvable or unsolvable in the previous
method with χ = 3, the number of seed points n = 16, and without thinned bits

cycle length (1) solvable (2) unsolvable (1)+(2)

0 1046 0 1046
1 5325 1 5326
2 5201 19623 24824
3 5229 360 5589
4 4901 173 5074
5 4523 18 4541

6-200 53572 28 53600
201-400 0 0 0
else 0 0 0

all 79797 20203 100000

be defined in this context. On the other hand, with the detection of the fruitless cycle, the length
of the fruitless cycled random-walk path should be defined as the total length of a foot and a cycle.

Table 3 shows the relationship between the number of rational points and the cycle length that
can be solved when a collision occurs in the previous method where χ = 3, the number n of seed
points is 16. The number of fruitless cycles when ECDLP could not be solved was 20203 in the
previous method. The number of fruitless cycles was 360 times that of the normal rho method.
In particular, the increase in fruitless cycles of length two is remarkable. On the other hand, the
average length of the solvable random-walk path is 22.7, and the application of skew Frobenius
mapping achieves a reduction in the time required to solve ECDLP.

Table 4 shows the relationship between the number of rational points and the cycle length that
can be solved when a collision occurs in the normal rho method where χ = 3, the number n of seed
points is 32. Since the number of seed points affects the occurrence of the fruitless cycle, it can
be confirmed that the number of fruitless cycles decreases as the number of seed points increases.
The average length of the solvable random-walk path was 58.3. The random-walk length was not
significantly affected by the number of seed points.

Table 5 shows the relationship between the number of rational points and the cycle length that
can be solved when a collision occurs in the previous method where χ = 3, the number n of seed
points is 32. By increasing the number of seed points, the number of solvable cases of ECDLP
increased. However, the number of fruitless cycles is large. Increasing the number of seed points is
a measure to eliminate the fruitless cycle, but it is equivalent to increasing the conserved quantity
of rational points. Therefore, the authors consider a method that can eliminate the fruitless cycle
without increasing the number of rational points. The average length of the solvable random-walk
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Table 4: Frequency distribution of cycle length when ECDLP is solvable or unsolvable in the normal
rho method with χ = 3, the number of seed points n = 32, and without thinned bits

cycle length (1) solvable (2) unsolvable (1)+(2)

0 2841 2 2843
1 1152 0 1152
2 2364 1 2365
3 2565 2 2567
4 2508 1 2509
5 2375 1 2376

6-200 86146 42 86188
201-400 0 0 0
else 0 0 0

all 99951 49 100000

Table 5: Frequency distribution of cycle length when ECDLP is solvable or unsolvable in the previous
method with χ = 3, the number of seed points n = 32, and without thinned bits

cycle length (1) solvable (2) unsolvable (1)+(2)

0 1062 0 1062
1 5796 2 5798
2 5693 10457 16150
3 5523 47 5570
4 5239 55 5294
5 4866 2 4868

6-200 61229 29 61258
201-400 0 0 0
else 0 0 0

all 89408 10592 100000

path was 23.3.
From the above results, it was confirmed that the number of fruitless cycles increased by applying

the skew Frobenius mapping. In addition, the ratio between the unsolvable cases and the solvable
cases of the previous method, which include the skew Frobenius mapping, becomes much larger than
that of the normal method. The results confirms that the probability of the case where a restarted
random-walk path after a fruitless cycle is non-negligible for the previous method, and a method to
eliminate the fruitless cycle will be a counter measure for the problem.

6.2 Verification of the effect of the proposed method

The authors show the experimental results of applying the previous method and the proposed method
to a BN curve. The previous method is Pollard’s rho method with the skew Frobenius mapping, and
the number of seed point tables is one. On the other hand, the proposed method is also Pollard’s
rho method with the skew Frobenius mapping where the number of seed point tables is two. The
authors consider a BN curve with χ = 3, 7 and 107 in Eq.(5) and parameters which include a set
of seed points (n = 16, 32, and 64), and a starting point. If the number of seed points is 64, the
experiment is performed for χ = 7 and 107. The cases of χ = 7 and 107 are a 17-bit ECDLP and a
33-bit ECDLP, respectively. The representative point Rep(Ti) is a rational point with the maximum
x coordinate and even y coordinate in the group of six points. In addition, the authors consider a
number of bits to be thinned out (τ = 0, 1, and 2) in the distinguished point method. Since the
number of combinations is huge, two rational points P and Q, which are the seed points and the
starting point, are randomly selected for each trial, and 100 thousand trials are executed.

A rho method is usually used in parallel attacks using a server and massive clients. The clients
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Table 6: The number of solvable or unsolvable cases and average random-walk length with χ = 3,
the number of seed points n = 16 and 32, and thinned bits τ = 0, 1, and 2 in the previous method

n τ
unsolvable average random-walk length

solvable 〈1〉 〈2〉 solvable 〈1〉 solvable+〈1〉
0 79797 20203 0 22.7 15.8 21.3

16 1 60141 20765 19094 23.1 15.8 21.2
2 38356 21037 40607 23.1 15.6 20.4

0 89408 10592 0 23.3 16.4 22.6
32 1 67228 10998 21774 23.7 16.3 22.7

2 43325 11381 45294 23.7 16.3 22.2

Table 7: The number of solvable or unsolvable cases and average random-walk length with χ = 3,
the number of seed points n = 16 and 32, and thinned bits τ = 0, 1, and 2 in the proposed method

n τ
unsolvable average random-walk length

solvable 〈1〉 〈2〉 solvable 〈1〉 solvable+〈1〉
0 99131 (47304) 869 0 24.1 18.6 24.1

16 1 83397 (47977) 1111 15492 27.9 23.1 27.8
2 59398 (35960) 1203 39399 30.0 22.9 29.9

0 99725 (47718) 275 0 24.0 18.8 24.0
32 1 84107 (48464) 306 15587 27.7 36.5 27.7

2 59595 (36166) 373 40030 30.0 25.2 30.0

send only the rational points that satisfy the distinguished point method and the server detects a
collision. Only the server saves the received rational points. In order to analyze the structure of the
rho method, the authors focus on one server and one client, and the rational points generated on
the client are also saved separately in this experiment. If the server detects a collision, ECDLP can
be solved. If the generated rational points colliding over the client and continue to draw the same
cycle, ECDLP cannot be solved.

Table 6 shows the frequency distribution among the solving ratio, the number of seed points
(n = 16 and 32), the number of thinned bits, and the random-walk length in the previous method
with χ = 3. The first column of Table 6 represents the number of seed points n. The second column
of Table 6 represents the condition of the distinguished point method and represents the number of
bits that is 0 from the least significant bit of the x coordinate of the rational point that the client
sends to the server. The third column of Table 6 represents the number of combinations for which
the scalar s can be solved. The fourth and fifth column represents the number of combinations that
result in a fruitless cycle in which the scalar s cannot be solved. The fourth column 〈1〉 is the number
of fruitless cycles described in Section 5.1. The fifth column 〈2〉 shows the number of solvable cycles
that include rational points that do not satisfy the condition of the distinguished point method
among the unsolvable cases. That is, it is a cycle that can be solved when the distinguished point
method is not applied and cannot be solved on the server when the distinguished point method is
applied, and we call the new fruitless cycle case. From the sixth to the eighth columns are the average
lengths of the random-walk path. The sixth column is the average length of solvable random-walk
paths. The seventh column is the average length of the unsolvable random-walk paths, since the
cases are the old fruitless cycle cases, the average length of the cases is shorter than of the solvable
cases. The eighth column is the average length of the stoppable random-walk paths, which include
both the solvable cases and the old fruitless cycle cases.

As the number of thinned bits increases, the solvable cases decrease. The result of adding the
number in the third column and the number in the fifth column is almost the same regardless of the
thinned bit. Therefore, it can be confirmed that the solvable cycles when the distinguished point
method is not applied became unsolvable cycles because the condition of the distinguished point
method was not satisfied. The average random-walk length was slightly increased by applying the
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Table 8: The number of solvable or unsolvable cases and average random-walk length with χ = 7,
the number of seed points n = 16, 32 and 64, and thinned bits τ = 0, 1, and 2 in the previous
method

n τ
unsolvable average random-walk length

solvable 〈1〉 〈2〉 solvable 〈1〉 solvable+〈1〉
0 28711 71289 0 96.7 57.1 68.5

16 1 21552 71354 7094 97.7 56.7 66.2
2 12641 71229 16130 97.8 56.5 62.7

0 51007 48993 0 116.4 70.9 94.1
32 1 38872 48426 12702 116.5 71.7 91.6

2 22218 48772 29010 116.3 71.4 85.5

0 70980 29020 0 127.3 80.8 113.8
64 1 52910 29527 17563 128.7 80.6 111.5

2 30718 29410 39872 127.8 80.8 104.8

Table 9: The number of solvable or unsolvable cases and average random-walk length with χ = 7,
the number of seed points n = 16, 32, and 64, and thinned bits τ = 0, 1, and 2 in the proposed
method

n τ
unsolvable average random-walk length

solvable 〈1〉 〈2〉 solvable 〈1〉 solvable+〈1〉
0 94020 (46890) 5980 0 130.1 91.7 127.8

16 1 77971 (46463) 6910 15119 160.9 105.4 156.4
2 50483 (32035) 7588 41929 175.8 115.0 167.9

0 98512 (48749) 1488 0 140.9 94.3 140.2
32 1 81990 (48756) 1732 16278 162.4 105.6 161.2

2 53544 (33942) 1889 44567 177.9 116.1 175.8

0 99652 (49505) 348 0 140.9 85.2 140.7
64 1 83284 (49522) 450 16266 162.9 105.5 162.6

2 54438 (34271) 530 45032 177.4 113.8 176.8

distinguished point method.

Table 7 shows the distribution among the solving ratio, the number of seed points (n = 16 and
32), the number of thinned bits, and the random-walk length in the proposed method with χ = 3.
Since the proposed method has two seed point tables, it does not always continue to collide even if
it results in the collision once. Therefore, the numbers in parentheses in the third column represent
the numbers that continue to collide on a cycle. Note that the case of the first collision point is not
a distinguished point, the random-walk continues until the first collision occurs with a distinguished
point. The fourth column in Table 7 shows the number of fruitless cycles, and it can be confirmed
that the number of fruitless cycles has been reduced by 94.2% or more compared to Table 6. The
authors compare the case where the number of seed points is 16 and the distinguished point method
is not applied. The number that can be solved ECDLP on the server is 79797 in the previous method
and 99131 in the proposed method. When the number of bits to be thinned out in the distinguished
point method was two, the number of solvable cases of the proposed method is 1.55 times of the
previous method. In addition, the larger the number of the seed points, the smaller the occurrence
rate of the fruitless cycle. The average length of the random-walk paths of the proposed method
is slightly longer than that of the previous method. The authors consider the cause is that the
eliminated fruitless cycle appeared as a random-walk of other lengths. From the values estimated
by the birthday paradox, the average random-walk length is

√
πr/12. Therefore, it is considered

that the average length of the random-walk paths of the proposed method has become longer, and
the result is theoretically acceptable. In addition, since a practical rho method is usually used in
parallel attacks, which stops with a λ shaped collision before drawing a cycle, the effect of increased
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Table 10: The number of solvable or unsolvable cases and average random-walk length with χ = 107,
the number of seed points n = 16, 32, and 64, and thinned bits τ = 0 and 1 in the previous method

n τ
unsolvable average random-walk length

solvable 〈1〉 〈2〉 solvable 〈1〉 solvable+〈1〉
0 0 1000 0 N/A 92.7 92.7

16
1 0 518 482 N/A 96.2 96.2

0 0 1000 0 N/A 189.4 189.4
32

1 0 507 493 N/A 197.7 197.7

0 0 1000 0 N/A 387.7 387.7
64

1 0 481 519 N/A 352.1 352.1

Table 11: The number of solvable or unsolvable cases and average random-walk length with χ = 107,
the number of seed points n = 16, 32, and 64, and thinned bits τ = 0 and 1 in the proposed method

n τ
unsolvable average random-walk length

solvable 〈1〉 〈2〉 solvable 〈1〉 solvable+〈1〉
0 6(4) 994 0 2879.2 2076.0 2080.8

16
1 4(1) 505 491 5171.0 2157.8 2181.5

0 83(40) 917 0 13163.8 7488.4 7959.5
32

1 61(41) 497 460 14353.1 8416.6 9087.29

0 435(227) 565 0 27718.3 16361.9 21301.9
64

1 357(235) 329 314 30915.2 17164.4 24320.4

average random-walk length is considered to be small.
Then, the authors show the experimental results when χ = 7. Table 8 shows the distribution

among the solving ratio, the number of seed points (n = 16, 32, and 64), the number of thinned
bits, and the random-walk length in the previous method with χ = 7. As the parameters of the
BN curve become larger, the search range of ECDLP becomes larger. Therefore, the random-walk
length becomes longer and the number of solvable cases becomes smaller. The estimated value by
the birthday paradox is

√
πr/12 ; 140.1, but the experimental results show that the random-walk

length is smaller than the estimated value. The longer the random-walk length, the higher the
frequency of fruitless cycles described in Section 5.1. Therefore, the number of long random-walks
that can solve ECDLP is reduced, and the random-walk length is shortened. In addition, the more
seed points, the longer the random-walk length. The authors consider that the more seed points,
the less likely it is to have a fruitless cycle, making it possible to decipher long random-walks.

Table 9 shows the distribution among the solving ratio, the number of seed points (n = 16, 32,
and 64), the number of thinned bits, and the random-walk length in the proposed method with χ = 7.
Compared with the previous method, the proposed method succeeded in reducing the fruitless cycle
by 89.3% or more. On the other hand, the random-walk length became longer. It is considered that
the eliminated fruitless cycle resulted in a long random-walk that can solve ECDLP.

Tables 10 and 11 are the distribution among the solving ratio, the number of seed points (n = 16,
32, and 64), the number of thinned bits, and the random-walk length in the previous method and
proposed method, respectively, with χ = 107 over 1000 trials. Though the number of trials is small,
we can observe that the solvable cases are successfully increased by the proposed method, especially
for the 64 seed points. The results indicate that the effectiveness to increase the ratio of the solvable
cases is large for the large χ with the large number of seed points. Roughly speaking, effectiveness
of the proposed method could be equivalent to increase the number of parallel random-walk paths
at the starting time of the attack.

In order to further compare the previous method and the proposed method, the authors focus on
cycle lengths in Pollard’s rho method with χ = 7, the number n of seed points is 64 and the number
τ of thinned bits is zero.

Table 12 shows the relationship between the number of rational points and the cycle length that
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Table 12: Frequency distribution of cycle length when ECDLP is solvable or unsolvable in the
previous method with χ = 7, the number of seed points n = 64, and without thinned bits

cycle length (1) solvable (2) unsolvable (1)+(2)

0 154 0 154
1 815 0 815
2 868 28824 29692
3 833 134 967
4 896 59 928
5 910 1 911

6-200 64819 2 64821
201-400 1710 0 1710
else 2 0 2

all 70980 29020 100000

Table 13: Frequency distribution of cycle length when ECDLP is solvable or unsolvable in the
proposed method with χ = 7, the number of seed points n = 64, and without thinned bits

cycle length (1) solvable (2) unsolvable (1)+(2)

0 192 0 192
1 1002 0 1002
2 1035 0 1035
3 1117 0 1117
4 1052 345 1397
5 1076 3 1079

6-200 90609 0 90609
201-400 3557 0 3557
else 12 0 12

all 99652 348 100000

can be solved when a collision occurs in previous method where χ = 7 and the number of seed points
is 64. The second column of Table 12 represents the number of combinations for which the scalar
s can be solved. The third column represents the number of combinations that result in a fruitless
cycle in which the scalar s cannot be solved. If the cycle length is 401 or more, it is indicated as
”else”. The fourth column shows the sum of the second and third columns.

Table 13 shows the relationship between the number of rational points and the cycle length that
can be solved when a collision occurs in the proposed method where χ = 7 and the number of seed
points is 64. In the proposed method, the number of the fruitless cycles of length two and three were
reduced, and the number of the fruitless cycles of length four were increased. In the next section,
the authors consider why the fruitless cycle of length four has increased.

From the above, the proposed method succeeded in significantly eliminating the fruitless cycle.
Since the major cost of the proposed method is to switch the two seed tables, the benefit of the
proposed method can be estimated by the number of the increased solvable random-walk paths
which increase the probability of the solvable collision for the parallel rho method. However, there
are still problems such as the long random-walk length of the proposed method. The effectiveness of
the long random-walks would be confirm by the experiments for the parallel rho method as a future
work.

6.3 Consideration of the proposed method

The proposed method eliminated the fruitless cycles of lengths two and three and increased the
number of fruitless cycles of length four. The authors consider the cause of the increased fruitless
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cycle of length four. From Ti+1 to Ti+4 are expressed as follows, as in (8):

T i = Rep(Ti) = φt06 (Ti), (9)

Ti+1 = T i + Tη1(T i)
= φt06 (Ti) + Tη1(T i)

, (10)

T i+1 = Rep(Ti+1) = φt16 (Ti+1) = φt16 (T i) + φt16 (Tη1(T i)
), (11)

Ti+2 = T i+1 + Tη2(T i+1)
= φt16 (Ti+1) + Tη2(T i+1)

, (12)

T i+2 = Rep(Ti+2) = φt26 (Ti+2) = φt26 (T i+1) + φt26 (Tη2(T i+1)
), (13)

Ti+3 = T i+2 + Tη1(T i+2)
= φt26 (Ti+2) + Tη1(T i+2)

, (14)

T i+3 = Rep(Ti+3) = φt36 (Ti+3) = φt36 (T i+2) + φt36 (Tη1(T i+2)
), (15)

Ti+4 = T i+3 + Tη2(T i+3)
= φt36 (Ti+3) + Tη2(T i+3)

, (16)

T i+4 = Rep(Ti+4) = φt46 (Ti+4) = φt46 (T i+3) + φt46 (Tη2(T i+3)
),

= φt4+t3+t2+t1+t06 (Ti) + φt4+t36 {φt2+t16 (Tη1(T i)
) + Tη1(T i+2)

}

+ φt46 {φ
t3+t2
6 (Tη2(T i+1)

) + Tη2(T i+3)
},

(17)

where 0 ≤ t0, t1, t2, t3, t4 < 6. In order to distinguish the table of seed points to be added, the η
function is distinguished as the η1 function and the η2 function. Let the η1 and η2 functions be the
same functions as the η function.

From Eq.(17), the condition to achieve a fruitless cycle is that the added tables of seed points
cancel each other out. Therefore, the condition to achieve the fruitless cycle is that the following
equations hold:

t1 + t2 + t3 + t4 = 0 (mod 6), (18a)

t1 + t2 = 3 (mod 6), (18b)

t2 + t3 = 3 (mod 6), (18c)

η1(T i) = η1(T i+2), (18d)

η2(T i+1) = η2(T i+3), (18e)

where 0 ≤ t1, t2, t3, t4 < 6. If even one of these conditions is not met, the fruitless cycle of length two
will not occur. The number of conditions to achieve the fruitless cycles of the proposed method is
greater than those of the previous method, and it is difficult to satisfy all conditions of the proposed
method. Therefore, the authors succeeded in greatly eliminating the fruitless cycles. Although most
of the eliminated fruitless cycles become solvable cycles only on the client, it is difficult to avoid or
detect these cycles when the distinguished point method is applied.

Note that there may be cases where a fruitless cycle occurs due to the combination of seed points
added and the skew Frobenius mapping even when the conditions of Eq.(18) is not satisfied. A
part of this fruitless cycle will be eliminated by the method proposed in [8], but the occurrence rate
depends on the order r of the curve. Even with the 17-bit parameter, since this fruitless cycle hardly
occurs, it is not necessary to consider the occurrence of this fruitless cycle of curves with larger
parameters.

7 Conclusion

The authors applied Pollard’s rho method with the skew Frobenius mapping to a BN curve with
χ = 3, 7, and 107, and proposed and theoretically considered a method for eliminating fruitless
cycles. The increase of the probability of the fruitless cycles for the single rho method with the skew
Frobenius mapping is confirmed by the experiments. The effectiveness of the proposed method was
confirmed by the experiments with the single rho methods for the small prime orders 12, 17, and
33-bits of BN curves. However, most of the eliminated fruitless cycles became the cycles that could
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be solved ECDLP only on the client-side when the distinguished point method was applied for the
small order BN curves, and the cases are defined as the new fruitless cycles.

One of future works is to confirm the effectiveness of the proposed method by experiments of the
parallel rho method for a large prime order BN curve. To consider a method to eliminate the new
fruitless cycles in a practical parallel rho method is also a future work. In contrast, the length of a
typical random-walk path with an old style fruitless cycle becomes shorter than that with a solvable
cycle, to confirm the possibility of a collision of two different random-walk paths with the old style
fruitless cycle is also a future work. In addition, since the behavior of Pollard’s rho method changes
depending on the parameters, it is also a future work to consider the optimum parameters such as
the seed points or thinning out bits.

8 Acknowledgment

The authors thank the anonymous reviewers to improve this work. This work was supported by the
JSPS KAKENHI Challenging Research (Pioneering) 19H05579.

References

[1] D.Boneh, B.Lynn, and H.Shacham, “Short Signatures from the Weil Pairing,” ASI-
ACRYPT2001, LNCS, vol.2248, pp.514–532, Springer, Berlin, Heidelbelg, 2001.

[2] D.Boneh, G.D.Crescenzo, R.Ostrovsky, and G.Persiano, “Public Key Encryption with Keyword
Search,” EUROCRYPT2004, LNCS, vol.2248, pp.506–522, Springer, Berlin, Heidelbelg, 2004.

[3] T.Kim and R.Barbulescu, “Extended Tower Number Field Sieve: A New Complexity for the
Medium Prime Case,” Advances in Cryptology - CRYPTO 2016., LNCS, vol.9814, pp.543–571,
Springer, Berlin, Heidelbelg, 2016.

[4] J.M.Pollard, “Monte Carlo Methods for Index Computation (mod p),” Mathematics of compu-
tation, 32(143):918–924, 1978.

[5] E.Teske, “On Random Walks for Pollard’s Rho Method,” Mathematics of computation,
70(234):809–825, 2000.

[6] T.Kusaka, S.Joichi, K.Ikuta, M.A.-A.Khandaker, Y.Nogami, S.Uehara, and N.Yamai, “Solv-
ing 114-bit ECDLP for a Barreto-Naehrig Curve,” Information Security and Cryptol-
ogy(ICISC2017), pp.231–244, 2017.

[7] E.Teske, “speeding up pollard’s rho method for computing discrete logarithms,” ANTS 1998,
LNCS, vol.1423, pp.541–554, Springer, Berlin, Heidelbelg, 1998.

[8] H.Miura, R.Matsumura, K.Ikuta, S.Joichi, T.Kusaka, and Y.Nogami, “A Preliminary Study
on Methods to Eliminate Short Fruitless Cycles for Pollard’s Rho Method for ECDLP over
BN Curves,” 2019 7th International Symposium on Computing and Networking Workshops
(CANDARW), pp.353–359, IEEE, 2019.

[9] H.Miura, K.Ikuta, S.Joichi, T.Kusaka, and Y.Nogami, “Analysis of the fruitless cycle of Pol-
lard’s rho method based attack for solving ECDLP over Barreto-Naehrig curves,” 2019 34th In-
ternational Technical Conference on Circuits/Systems, Computers and Communications (ITC-
CSCC), pp.162–165, IEEE, 2019.

[10] P.S.Barreto and M.Naehrig, “Pairing-Friendly Elliptic Curves of Prime Order,” SAC 2005,
LNCS, vol.3897, pp.319–331, Springer, Berlin, Heidelbelg, 2005.

[11] Y.Sakemi, Y.Nogami, K.Okeya, H.Kato, and Y.Morikawa, “Skew Frobenius Map and Efficient
Scalar Multiplication for Pairing-Based Cryptography,” CANS 2008, LNCS, vol.5339, pp.226–
239, Springer, Berlin, Heidelbelg, 2008.

249



Sophisticated analysis of a method to eliminate fruitless cycles for Pollard’s rho method

[12] J.Patarin and A.Montreuil, “Benes and Butterfly Schemes Revisited,” ICISC 2005, LNCS,
vol.3935, pp.92–116, Springer, Berlin, Heidelbelg, 2005.

250


