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Abstract

Ananth and Sahai proposed the projective arithmetic functional encryption (PAFE) and
showed that PAFE derives a single-key selective secure functional encryption with the help of the
randomizing polynomials scheme (RP), namely PAFE with RP achieves the indistinguishability
obfuscation (iO). Their PAFE considers a secret-key type functional encryption only and a
public-key counterpart is not known.

We propose the public-key version: pkPAFE, and show that pkPAFE with RP derives
a public-key functional encryption which is single-key selective secure. This means that our
pkPAFE achieves iO as well as the original PAFE by Ananth and Sahai.

Keywords: Projective Arithmetic Functional Encryption, Randomizing Polynomials Scheme,
Indistinguishability Obfuscation

1 Introduction

An obfuscator is the complier which takes a program and outputs another program such that the
resulting program maintains the functionality and its internal execution or code is obfuscated. The
formal definition of the obfuscator was firstly given by Barak, Goldreich, Impagliazzo, Rudich,
Sahai, Vadhan, Yang [5]. They proposed the notion of the natural and ideal obfuscator, the virtual
black-box obfuscation (VBB), however, they showed that the VBB cannot be implemented for any
circuits.
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The indistinguishability obfuscator (iO) [5, 10] is a weaker notion of obfuscator rather than the
VBB. The iO only requires that for the obfuscations of two circuits of the same size and functionality,
the distributions of outputs of them are computationally indistinguishable. Although the iO does not
satisfy the ideal definition of obfuscator, a candidate of iO was firstly found by Garg, Gentry, Halevi,
Raykova, Sahai and Waters [9]. Moreover, it is shown that iO can derive many other cryptographic
primitives such as the public-key encryption and the digital signature [14] [7]. Therefore, iO becomes
one of the most attractive cryptographic primitives in the modern cryptography, and constructing
iO from the standard assumptions or primitives is an important open problem.

One of the main strategies to construct iO is to employ the functional encryption [8]. In the
functional encryption, the decryption algorithm outputs the circuit value C(x) of the message x for
the circuit C from the ciphertext CT, whereas the decryption algorithm outputs the message x in
the ordinary encryption. There are several results for constructing iO from the functional encryption
[2, 6, 11, 12, 13]. In [6], Bitansky and Vaikuntanathan showed that iO can be derived from a public-
key single-key selective secure functional encryption for NC1 which is the class of polynomial-size
and logarithmic-depth circuits. The public-key single-key selective secure functional encryption can
be constructed from the secret-key single-key selective secure functional encryption [11]. These
results suggest that a single-key selective secure functional encryption serves as an interface which
connects iO to other cryptographic primitives. In fact, Lin and Tessaro [13] showed that a single-
key selective secure functional encryption for NC1 can be converted from a fully selective secure
functional encryption for NC0 which is the class of polynomial-size and constant-depth circuits, for
public-key and secret-key cases. Their result suggests that the strength of the security of functional
encryption can relax the target class of circuits of functional encryption.

Ananth and Sahai [3] presented another direction of the research. They proposed the projective
arithmetic functional encryption (PAFE) and showed that PAFE derives a single-key selective secure
functional encryption. PAFE differs from the functional encryption in its decryption procedure. In
PAFE, the ciphertext is partially decrypted by the projective decryption algorithm. Then multiple
partially decrypted values are combined to retrieve the circuit value by the recover algorithm. We
note that the conversion from PAFE to a single-key FE can be done for any class of circuits although
PAFE is instantiated for NC0. The result of [3] considered the secret-key type functional encryption
only, whereas [6] deals with both the secret-key and the public-key functional encryption.

In this paper we consider PAFE in the public-key setting. In the previous paper [3], the public-
key version of PAFE is mentioned, however, the construction is not given. Therefore we aim to
show the construction. We give a definition and a syntax of the public-key projective arithmetic
functional encryption (pkPAFE). We also show that pkPAFE can derive a single-key selective secure
public-key functional encryption with the help of the randomizing polynomials scheme (RP) [4][1],
as in the secret-key case of [3]. RP is a conversion protocol which outputs a sequence of polynomials
from an input circuit such that the output of the target circuit is maintained to polynomials.

We briefly describe here our conversion from pkPAFE to a public-key FE. The resulting public-
key FE consists of four algorithms, setup, key generation, encryption and decryption. The setup
algorithm coincides with the one of pkPAFE. It outputs a pair of a public key and a secret key.
The key generation computes a functional key for the input circuit. In the computation of the
functional key, the input circuit is converted to the sequence of polynomials by using RP. These
polynomials are converted to the equivalent circuits, then the key generation of pkPAFE computes a
tuple of functional keys for these circuits and outputs them as the functional key of a public-key FE.
The encryption computes a ciphertext for the input message. For the input message, it is encoded
by using RP. Then the encryption of pkPAFE encrypts the encoded message and outputs it as
the ciphertext. The decryption is done by combining the decryption of pkPAFE and the decoding
algorithm of RP. First, partially decrypted values are computed by using the projective decryption
algorithm of pkPAFE. Then, these partially decrypted values are recovered to the circuit value by
using the recovering algorithm of pkPAFE and the decoding algorithm of RP.

pkPAFE with RP derives a single-key selective secure public-key functional encryption. By
combining the results of [6], it means that pkPAFE and RP can achieve iO. However, we do not
give an instantiation of pkPAFE from other cryptographic primitives as the secret-key case of [3].
It is an important problem to find cryptographic primitives which lead to pkPAFE.
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2 Preliminaries

We introduce notions and notations used in this paper. For a finite set X, x ← X means that x is
chosen uniformly at random from X. For any algorithm A, let y ← A(x) denote that A outputs y
on input x. When A is probabilistic, A(x) denotes a random variable for the output of A on input
x, where the probability is taken over the internal coin flips of A. We allow that A can output the
special symbol ⊥ to indicate that A rejects the input and halts with no outputs. We say that a
function ε is negligible in λ, if for any polynomial p, there exists a natural number λ0 such that for
any λ > λ0, ε(λ) < 1/p(λ).

2.1 Circuits

A circuit is expressed by a directed non-cyclic graph. Nodes in a graph are classified as (normal)
gates, input gates or output gates. Input gates are labeled by variables x1, . . . , xn, and these are
the input for a circuit. In a circuit, at least one gate is set as the output gate, and the output of it
is the output of a circuit. Other gates are normal gates and they execute the operation which is set
to the gate. Edges in a graph is considered as wires which connect each node in a circuit. When all
gates in a circuit execute an arithmetic operation, we call it an arithmetic circuit. The size |C| of a
circuit C is the number of gates in C.

In this paper, we consider a family of circuits C = {Cλ}λ∈N. Cλ is indexed by a natural number
λ and Cλ is the set of all circuits C : {0, 1}λ → {0, 1}λ. For a circuit C ∈ Cλ, an input for C is a
λ-bit string x ∈ {0, 1}λ, and the output of C on the input x is a λ-bit string C(x) ∈ {0, 1}λ. We
call C(x) the circuit value of C on x. Note that the circuit values are often a single bit, not a string.
However, single-bit circuit values are naturally regarded as a subset of multi-bit circuit values. We
use a class of circuits of multi-bit circuit values to treat arithmetic circuits as below.

Let q be a prime of λ-bit length and let Fq be a finite field of characteristic q, respectively. A
polynomial p over Fq means that all coefficients of p are in Fq and p(x) is in Fq for any input x ∈ Fq.
We consider a family of arithmetic circuits over Fq. For a family of arithmetic circuits C = {Cλ}λ∈N,
C is said to be over Fq if for any λ ∈ N and C ∈ Cλ, C takes x ∈ Fq as a λ-bit string and the circuit
value C(x) ∈ {0, 1}λ is interpreted as an element of Fq. We use the expression “over Fq” on not
only a family C but also an individual circuit C.

We finally note about the equivalence between polynomials over Fq and circuits over Fq. We
say that a polynomial p over Fq and an arithmetic circuit C over Fq are equivalent if p(x) = C(x)
holds for any x ∈ Fq. We also note that we can construct an arithmetic circuit Cp ∈ Cλ over Fq for
a polynomial p over Fq such that Cp and p are equivalent in polynomial time in λ for any q of bit
length λ [3].

2.2 Public-Key Functional Encryption

We consider the public-key functional encryption (FE) for circuits in this paper. We first give a
brief description. The public-key functional encryption for a family of circuits C = {Cλ}λ∈N consists
of four algorithms FE.Setup, FE.KeyGen, FE.Enc and FE.Dec. FE.Setup is the setup algorithm. It
generates a pair of a public key MPK and a secret key MSK on input security parameter λ. MPK is
used to encrypt a message and MSK is used to produce a functional key for the associated circuit,
respectively. We note that a security parameter λ is input of form 1λ to make the input size be λ.
FE.KeyGen is the key generation algorithm. It produces a functional key SKC for the input circuit
C ∈ Cλ by using the secret key MSK. SKC is used to decrypt the circuit value C(x) of the message
x from the ciphertext CT. FE.KeyGen is the encryption algorithm. FE.KeyGen encrypts the input
message x to a ciphertext CT by using MPK. FE.Dec is the decryption algorithm. It computes
the circuit value C(x) of the message x from the ciphertext CT by using the functional key SKC
associated the circuit C.

The formal definition of the public-key functional encryption is given as follows.

Definition 1. Let X = {Xλ}λ∈N be a message space where Xλ = {0, 1}λ, and let C = {Cλ}λ∈N be
a family of circuits, respectively. A public-key functional encryption FE = (FE.Setup, FE.KeyGen,
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FE.Enc, FE.Dec) for C consists of the following four algorithms.

• FE.Setup(1λ): The setup algorithm takes as input a security parameter 1λ and outputs a public
key MPK and a corresponding secret key MSK.

• FE.KeyGen(MSK, C): The key generation algorithm takes as input the secret key MSK and a
circuit C ∈ Cλ, and outputs a functional key SKC .

• FE.Enc(MPK, x): The encryption algorithm takes as input the public key MPK and a message
x ∈ Xλ, and outputs a ciphertext CT.

• FE.Dec(SKC ,CT): The decryption algorithm takes as input a functional key SKC and a cipher-
text CT, and outputs out.

The completeness of the functional encryption is defined as follows.
Completeness : For any λ ∈ N, message x ∈ Xλ and circuit C ∈ Cλ, it holds that

FE.Dec(FE.KeyGen(MSK, C),FE.Enc(MPK, x)) = C(x),

where (MPK,MSK)← FE.Setup(1λ).
We consider the selective security on the functional encryption.

Definition 2. The security game ExpselA (1λ, b) for b ∈ {0, 1} between the adversary A and the
challenger I is defined as follows.

• Setup: The challenger I takes as input a security parameter 1λ. I generates a public key and
a secret key (MPK,MSK)← FE.Setup(1λ) and sends MPK to A.

• Challenge: The adversary A chooses two messages (x0, x1) ∈ Xλ and sends them to I. I
computes CT∗ ← FE.Enc(MPK, xb) and sends it to A.

• Query: A chooses a circuit C ∈ Cλ where C(x0) = C(x1) and sends C to I. I computes
SKC ← FE.KeyGen(MSK, C) and sends it to A.

• Output: A outputs b′ as the output of ExpselA (1λ, b).

Note that Setup phase, Challenge phase and Output phase are done only one time. Query
phase is repeated at most polynomially many times.

The advantage AdvselA of A on ExpselA (1λ, b) is defined as follows:

AdvselA (λ) = |Pr[ExpselA (1λ, 0) = 1]− Pr[ExpselA (1λ, 1) = 1]|.

We say that FE is selective secure if for any polynomial-time adversary A, there exists a negligible
function εselA such that

AdvselA (λ) ≤ εselA (λ)

holds.

A single-key variant of the selective security is defined as follows.

Definition 3. Consider the Expsel1,A(1λ, b), a variant of ExpselA (1λ, b) in which Query phase is done

at most one time. If FE is selective secure under the game Expsel1,A(1λ, b), we call FE a single-key
selective secure.

Concerning the efficiency of the functional encryption, we introduce the notion of the sublinearity.

Definition 4. Let FE = (Setup,KeyGen,Enc,Dec) be a public-key functional encryption for C. We
call FE sublinear if there exists a polynomial pSLFE such that the computation time tFE of Enc satisfies
the following formula,

tFE ≤ (lC)ε · pSLFE(λ),

where 0 < ε < 1 and lC = maxC∈Cλ{|C|}.
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2.3 Randomizing Polynomials Scheme

We introduce the randomizing polynomials scheme (RP) [4][1]. The RP is defined with the target
arithmetic circuit family. The RP aims to express a circuit by a sequence of polynomials. We
first give a brief description. The randomizing polynomials scheme for a family of arithmetic circuits
C = {Cλ}λ∈N consists of three algorithms CEncd, InpEncd and Decd. CEncd is the encoding algorithm
for circuits. It encodes the input circuit C ∈ Cλ to the sequence of polynomials (p1, . . . , pN ). InpEncd
is the encoding algorithm for messages. It encodes the input message x ∈ Xλ to the encoded message
x̂. Decd the decoding algorithm. It aims to compute the circuit value C(x) from (p1, . . . , pN ) and
x̂.

We use the RP as the auxiliary component in the construction of the public-key functional
encryption from the public-key projective arithmetic functional encryption which will be described
later.

The formal definition of the randomizing polynomials scheme is given as follows.

Definition 5. Let X = {Xλ}λ∈N be the space of messages where Xλ = {0, 1}λ, and C = {Cλ}λ∈N be
a family of arithmetic circuits over the finite field Fq with a prime q, respectively. Let N and d be
fixed naturals and let pR be a polynomial in λ.

A randomizing polynomials scheme RP = (CEncd, InpEncd,Decd) over Fq for C = {Cλ}λ∈N con-
sists of the following three deterministic algorithms.

• CEncd(1λ, C): The encoder for circuits takes a security parameter 1λ and a circuit C ∈ Cλ. It
outputs the sequence of polynomials (p1, . . . , pN ) over Fq.

• InpEncd(x,R): The encoder for messages takes a message x ∈ Xλ and a randomness R ∈
{0, 1}lR , where lR = pR(λ). It outputs the encoded message x̂ ∈ Fq.

• Decd(p1(x̂), . . . , pN (x̂)): The decoder takes as input the sequence of values (p1(x̂), . . . , pN (x̂))
and outputs y.

The completeness and the security of the randomizing polynomials scheme is defined as follows.
Completeness : For any λ ∈ N, message x ∈ Xλ, circuit C ∈ Cλ and randomness R ∈ {0, 1}lR , it
holds that

Decd(p1(x̂), · · · , pN (x̂)) = C(x),

where (p1, . . . , pN )← CEncd(1λ, C) and x̂← InpEncd(x,R).

Definition 6. The security game ExpRPA (1λ, b) for b ∈ {0, 1} between the adversary A and the
challenger I is defined as follows.

• Setup: The adversary A chooses a circuit C ∈ Cλ and a message x ∈ Xλ. A computes the
encoded message x̂← InpEncd(x,R) for R ∈ {0, 1}lR . Then A sends them to the challenger I.

• Challenge: I computes (p1, . . . , pN )← CEncd(1λ, C). Then I sets (θb1, . . . , θ
b
N ) according to

the input bit b. Namely, (θb1, . . . , θ
b
N ) is set as

(θ01, . . . , θ
0
N ) = (p1(x̂), . . . , pN (x̂)) when b = 0,

(θ11, . . . , θ
1
N ) = Sim(1λ, C, C(x)) when b = 1,

where Sim is a randomized algorithm called the simulator. I sends (θb1, . . . , θ
b
N ) to A.

• Output: A outputs b′ as the output of ExpRPA (1λ, b).

The advantage AdvRPA of A on ExpRPA (1λ, b) is defined as follows.

AdvRPA (λ) = |Pr[ExpRPA (1λ, 0) = 1]− Pr[ExpRPA (1λ, 1) = 1]|.
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We say that RP is secure if there exist a negligible function εRP and a polynomial-time simulator
Sim such that for any polynomial-time adversary A,

AdvRPA (λ) ≤ εRP(λ)

holds.

In this paper, we assume the following two properties on the randomizing polynomials scheme.
The first one is concerning the length of encoded messages. The property requires the length |x̂| of
the encoded message x̂ is sublinear for any message x ∈ Xλ.

Definition 7. Let RP = (CEncd, InpEncd,Decd) be a randomizing polynomials scheme. We call RP
sublinear if there exists a polynomial pSLRP such that the length |x̂| of the encoded message x̂ satisfies
the following formula for any message x ∈ Xλ,

|x̂| ≤ |C|ε · pSLRP(λ),

where 0 < ε < 1.

The second property is concerning the decoder Decd. B-linearity requires that the decoder Decd
can be expressed by a sequence of linear polynomials.

Definition 8. Let B ∈ Fq be a constant and let (p1, . . . , pN ) be the encode of a circuit C and x̂ be
the encode of a message x. If the decoder Decd runs as below for a tuple L = (p1(x̂), . . . , pN (x̂)),
we call Decd B-linear:

1. initializes the counter i = 0.

2. For i = k, chooses a linear polynomial fk and computes fk(L) = vk.

3. output vk if vk ∈ {0, . . . , B}, or outputs ⊥ if otherwise.

4. repeats the steps 2 and 3 until i = T , outputs y = vT as the output.

3 Public-Key Projective Arithmetic Functional Encryption

In this section, we define the public-key projective arithmetic functional encryption (pkPAFE). We
give a syntax of pkPAFE and definitions of security notions.

We first give a brief description of pkPAFE. The public-key projective arithmetic functional
encryption for a family of arithmetic circuits C = {Cλ}λ∈N consists of five algorithms pkPAFE.Setup,
pkPAFE.KeyGen, pkPAFE.Enc, pkPAFE.ProjectDec and pkPAFE.Recover. The first three algorithms
are the same as the corresponding algorithm of the public-key functional encryption. On the other
hand, the decryption procedure differs from the public-key FE. In pkPAFE, the decryption is done
by the combination of two algorithms pkPAFE.ProjectDec and pkPAFE.Recover. First, the ciphertext
CT is decrypted to the by the partial decrypted value ι by the projective decryption algorithm
pkPAFE.ProjectDec. Then multiple partial decrypted values are combined to retrieve the linear
combination of the circuit values by the recover algorithm pkPAFE.Recover.

The formal definition of public-key projective arithmetic functional encryption is given as follows.

3.1 Definition

Definition 9. Let X = {Xλ}λ∈N be a message space such that Xλ ⊆ Fq with λ-bit prime q,
and let C = {Cλ}λ∈N be a family of arithmetic circuits over Fq, respectively. A public-key pro-
jective arithmetic functional encryption pkPAFE = (pkPAFE.Setup, pkPAFE.KeyGen, pkPAFE.Enc,
pkPAFE.ProjectDec, pkPAFE.Recover) for C consists of the following five algorithms.

• pkPAFE.Setup(1λ): The setup algorithm takes as input a security parameter 1λ and outputs a
public key MPK and a corresponding secret key MSK.
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• pkPAFE.KeyGen(MSK, C): The key generation algorithm takes as input the secret key MSK
and an arithmetic circuit C ∈ Cλ, and outputs a functional key SKC .

• pkPAFE.Enc(MPK, x): The encryption algorithm takes as input the public key MPK and a
message x ∈ Xλ, and outputs a ciphertext CT.

• pkPAFE.ProjectDec(SKC ,CT): The projective decryption algorithm takes as input a functional
key SKC and a ciphertext CT, and outputs a partial decrypted value ι.

• pkPAFE.Recover(c1, ι1, . . . , c`, ι`): The recover algorithm takes as input coefficients c1, . . . , c` ∈
Fq and partial decrypted values ι1, . . . , ι`, and outputs out.

We note that a linear polynomial f(x1, ..., x`) = c1x1+· · ·+c`x` can be input for pkPAFE.Recover
instead of coefficients c1, . . . , c`.

The completeness of pkPAFE is defined as follows.

Completeness : For any λ ∈ N, any message x ∈ Xλ and any arithmetic circuits C1, . . . , C`, let

• (MPK,MSK)← pkPAFE.Setup(1λ),

• CT← pkPAFE.Enc(MPK, x),

• SKCi ← pkPAFE.KeyGen(MSK, Ci) for all 1 ≤ i ≤ `,

• ιi ← pkPAFE.ProjectDec(SKCi ,CT) for all 1 ≤ i ≤ `,

where SKCi denotes the functional key for the arithmetic circuit Ci and ιi denotes the partial
decrypted value of CT with respect to Ci.

Then pkPAFE satisfies the completeness if

pkPAFE.Recover(c1, ι1, . . . , c`, ι`) =
∑̀
i=1

ci · Ci(x)

holds for any c1, . . . , c` ∈ Fq.

On the efficiency of pkPAFE, we introduce the following notion.

Definition 10. Let pkPAFE = (pkPAFE.Setup, pkPAFE.KeyGen, pkPAFE.Enc, pkPAFE.ProjectDec,
pkPAFE.Recover) be a public-key projective arithmetic functional encryption for C. We say that
pkPAFE satisfies the multiplicative overhead in encryption complexity if there exists a polynomial
ppkPAFE such that the computation time tpkPAFE of pkPAFE.Enc satisfies the following formula for any
message x ∈ Xλ,

tpkPAFE ≤ |x| · ppkPAFE(λ).

3.2 Security Notions

In order to define the security of pkPAFE, we introduce the following two algorithms.

• sfKG(MSK, C, θ): The semi-functional key generation algorithm takes as input the secret key
MSK, a circuit C ∈ Cλ and a value θ associated with C, and outputs a semi-functional key
sfSKC .

• sfEnc(MPK, 1`inp): The semi-functional encryption algorithm takes as input the public key MPK
and the size of input 1`inp , and outputs a semi-functional ciphertext sfCT.

We consider two notions of indistinguishability concerning functional keys and ciphertexts as the
security notions for pkPAFE. The formal definitions are as follows.
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Definition 11. The security game ExpKeyIndA (1λ, b) for b ∈ {0, 1} between the adversary A and the
challenger I is defined as follows.

• Setup: The challenger I takes as input a security parameter 1λ. I generates a public key and
a secret key (MPK,MSK)← pkPAFE.Setup(1λ) and sends MPK to A.

• Adversary’s Query: The adversary A queries the following items:

– a tuple of circuits and associated values (C0
1 , θ1, . . . , C

0
` , θ`) where θj ∈ Fq for all 1 ≤ j ≤

`.

– a tuple of circuits (C1
1 , . . . , C

1
`′).

– a challenge circuit and an associated value (C∗, θ∗).

• Challenger’s Response: The challenger I computes the following items for all j:

– SKC0
j
← sfKG(MSK, C0

j , θj),

– SKC1
j
← pkPAFE.KeyGen(MSK, C1

j ).

I also computes SKC∗ according to the input bit b as follows:

SKC∗ ← sfKG(MSK, C∗, θ∗) when b = 0,

SKC∗ ← pkPAFE.KeyGen(MSK, C∗) when b = 1.

Then I returns ((SKC0
1
, . . . , SKC0

`
), (SKC1

1
, . . . , SKC1

`
),SKC∗).

• Output: A outputs b′ as the output of ExpKeyIndA (1λ, b).

The advantage AdvKeyIndA of A on ExpKeyIndA (1λ, b) is defined as follows.

AdvKeyIndA (λ) = |Pr[ExpKeyIndA (1λ, 0) = 1]− Pr[ExpKeyIndA (1λ, 1) = 1]|.

We say that pkPAFE has the indistinguishability of semi-functional keys if there exists a negligible
function εKeyInd such that for any polynomial-time adversary A,

AdvKeyIndA (λ) ≤ εKeyInd(λ)

holds

Definition 12. The security game ExpCTIndA (1λ, b) for b ∈ {0, 1} between the adversary A and the
challenger I is defined as follows.

• Setup: The challenger I takes as input a security parameter 1λ. I generates a public key and
a secret key (MPK,MSK)← pkPAFE.Setup(1λ) and sends MPK to A.

• Challenge: The adversary A sends a challenge message x∗ to the challenger. Then the
challenger I returns CT∗ according to the input bit b as follows:

CT∗ ← sfEnc(MPK, 1|x
∗|) when b = 0,

CT∗ ← pkPAFE.Enc(MPK, x∗) when b = 1.

• Adversary’s Query: The adversary queries a tuple of circuits and associated values
(C1, θ1, . . . , C`, θ`) where θj = Cj(x

∗) for all 1 ≤ j ≤ `.

• Challenger’s Response: The challenger I returns SKCj ← sfKG(MSK, Cj , θj) for all 1 ≤
j ≤ `.

• Output: A outputs b′ as the output of ExpCTIndA (1λ, b).
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The advantage AdvCTIndA of A on ExpCTIndA (1λ, b) is defined as follows.

AdvCTIndA (λ) = |Pr[ExpCTIndA (1λ, 0) = 1]− Pr[ExpCTIndA (1λ, 1) = 1]|.

We say that pkPAFE has the indistinguishability of semi-functional ciphertexts if there exists a
negligible function εCTInd such that for any polynomial-time adversary A,

AdvCTIndA (λ) ≤ εCTInd(λ)

holds

4 Single-Key Selective Secure Functional Encryption from
pkPAFE

We show that a single-key selective secure sublinear functional encryption can be derived from a
public-key projective arithmetic functional encryption. Since it is known that the indistinguishability
obfuscation can be constructed from a single-key selective secure sublinear functional encryption, our
result means that an iO is constructed from a public-key projective arithmetic functional encryption.

We give a construction of a functional encryption from pkPAFE and then prove that the resulting
functional encryption is single-key selective secure and sublinear.

4.1 Construction

Let X = {Xλ}λ∈N be a message space such that Xλ ⊆ Fq with λ-bit prime q, and let C = {Cλ}λ∈N be
a family of arithmetic circuits over Fq, respectively. Let pkPAFE = (pkPAFE.Setup, pkPAFE.KeyGen,
pkPAFE.Enc, pkPAFE.ProjectDec, pkPAFE.Recover) be a public-key projective arithmetic functional
encryption for C, and let RP = (CEncd, InpEncd,Decd) be a randomizing polynomials scheme such
that Decd is 0-linear.

The functional encryption FEours = (FEours.Setup,FEours.KeyGen,FEours.Enc,FEours.Dec) for C is
constructed as follows.

• FEours.Setup(1λ): The setup algorithm takes as input a security parameter 1λ and computes
pkPAFE.Setup(1λ)→ (MPK,MSK). Then FEours.Setup outputs a public key MPK and a secret
key MSK.

• FEours.KeyGen(MSK, C): The key generation algorithm takes as input the secret key MSK and
a circuit C ∈ Cλ. FEours.KeyGen runs as follows:

1. computes CEncd(1λ, C)→ (p1, . . . , pN ).

2. constructs an arithmetic circuit Cpi which is equivalent to the polynomial pi for all 1 ≤
i ≤ N .

3. computes pkPAFE.KeyGen(MSK, Cpi)→ SKCpi for all 1 ≤ i ≤ N .

4. outputs a functional key SKC = (SKCp1 , . . . , SKCpN ).

• FEours.Enc(MPK, x): The encryption algorithm takes as input the public key MPK and a mes-
sage x ∈ Xλ. FEours.Enc runs as follows:

1. chooses a randomness R← {0, 1}lR uniformly at random.

2. computes InpEncd(x,R)→ x̂.

3. computes pkPAFE.Enc(MPK, x̂)→ CT.

4. outputs a ciphertext CT.
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• FEours.Dec(SKC ,CT): The decryption algorithm takes as input a functional key SKC and a
ciphertext CT. FEours.Dec runs as follows:

1. computes pkPAFE.ProjectDec(SKCpi ,CT)→ ιi, for all 1 ≤ i ≤ N .

2. initializes a counter i = 0.

3. For i = k, chooses a linear polynomial fk by using Decd.

4. computes pkPAFE.Recover(fk, ι1, . . . , ιN )→ outk.

5. repeats the steps 3 and 4 until i = T .

6. outputs out = outT .

The proposed scheme FEours satisfies the completeness and is sublinear by the following theorems.

Theorem 1. Assume that pkPAFE satisfies the completeness and RP satisfies the completeness. Let
Decd be 0-linear. Then FEours satisfies the completeness.

Proof. Let λ be a security parameter, x ∈ Xλ be a message and C ∈ Cλ be a circuit. Then, the
functional SKC is SKC = (SKCp1 , . . . , SKCpN ), where SKCpi ← pkPAFE.KeyGen(MSK, Cpi) and Cpi
is a circuit which is equivalent to the polynomial pi for (p1, . . . , pN ) ← CEncd(1λ, C). Namely,
it holds that Cpi(x) = pi(x) for any x ∈ Xλ and all 1 ≤ i ≤ N . The ciphertext CT is CT ←
pkPAFE.Enc(MPK, x̂) where x̂← InpEncd(x,R) for a randomness R ∈ {0, 1}lR .

Let SKC and CT be the input for FEours.Dec. The decryption algorithm computes
pkPAFE.ProjectDec(SKCpi ,CT)→ ιi, for all 1 ≤ i ≤ N , where ι1, . . . , ιN are partial decrypted values.
For the counter i = k, FEours.Dec computes pkPAFE.Recover(fk, ι1, . . . , ιN ) → outk with a linear
polynomial fk which is chosen by the 0-linear decoder Decd. Then outk = fk(Cp1(x̂), . . . , CpN (x̂)) =
fk(p1(x̂), . . . , pN (x̂)) = vk follows form the completeness of pkPAFE. Since RP is complete, out =
outT = vT = Decd(p1(x̂), · · · , pN (x̂)) = C(x) follows.

Theorem 2. Assume that pkPAFE satisfies the multiplicative overhead in encryption complexity
and RP is sublinear. Then FEours is sublinear.

Proof. We evaluate the computation time tFEours of the encryption algorithm FEours.Enc for input x.
Since pkPAFE satisfies the multiplicative overhead in encryption complexity, we have

tFEours ≤ |x̂| · ppkPAFE(λ)

for the polynomial ppkPAFE.
For |x̂|, the following holds from the sublinearity of RP,

|x̂| ≤ |C|ε · pSLRP(λ),

for 0 < ε < 1 with the polynomial pSLRP.
By Xλ ⊆ Fq, we have

tFEours ≤ |x̂| · ppkPAFE(λ)

≤ |C|ε · pSLRP(λ) · ppkPAFE(λ)

≤ |C|ε · p∗(λ)

for the polynomial p∗ = pSLRP · ppkPAFE. Then the statement follows.

4.2 Security

We show that our proposed scheme is single-key selective secure.

Theorem 3. Assume that pkPAFE has the indistinguishability of semi-functional keys and the in-
distinguishability of semi-functional ciphertexts, and RP is secure. Then FEours is single-key selective
secure.
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Proof. We prove the theorem by the hybrid argument. For the games Hybk (1 ≤ k ≤ 6) except
k = 2 and 5, we denote by Succk the event that the adversary outputs 1 in Hybk. For k = 2 and 5,
Succk,i (1 ≤ i ≤ N + 1) denotes the event that the adversary outputs 1 in Hyb2,i and Hyb5,i.

Hyb1: The description of the game is as follows.

• Setup: The challenger I runs as follows.

1. computes FEours.Setup(1λ)→ (MPK,MSK).

2. sends MPK to the adversary A.

• Challenge: A chooses two messages (x0, x1) ∈ Xλ and sends them to I. I computes CT ←
FEours.Enc(MPK, x0) and sends CT to A.

• Query: A chooses a circuit C ∈ Cλ where C(x0) = C(x1) and sends C to I. I computes
SKC ← FEours.KeyGen(MSK, C) and sends SKC to A.

• Output: A outputs b.

For this game Hyb1, the following lemma holds.

Lemma 1.

Pr[Succ1] = Pr[Expsel1,A(1λ, 0) = 1]. (1)

Proof. By Definition 2, Definition 3 and the description of Hyb1, Hyb1 coincides with Expsel1,A(1λ, 0).

Therefore Pr[Succ1] = Pr[Expsel1,A(1λ, 0) = 1] follows.

Hyb2,i (1 ≤ i ≤ N + 1): Hyb2,i proceeds in the same way as Hyb1 except Query phase. Query
phase is changed as follows.

Query phase: A chooses a circuit C ∈ Cλ where C(x0) = C(x1) and sends C to I. I computes SKC
as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpj which is equivalent to the polynomial pj for all 1 ≤ j ≤ N .

3. sets θj = pj(x̂0) for all 1 ≤ j ≤ N , where x̂0 is the one computed during FEours.Enc(MPK, x0)
in Challenge phase.

4. sets

{
sfSKCpj ← sfKG(MSK, Cpj , θj) for j < i

SKCpj ← PAFE.KeyGen(MSK, Cpj ) for j ≥ i

5. sets SKC = (sfSKCp1 , . . . , sfSKCpi−1
, SKCpi , . . . , SKCpN ).

6. outputs SKC .

For the difference between Hyb1 and Hyb2,1, we have the following lemma.

Lemma 2.

Pr[Succ2,1] = Pr[Succ1]. (2)

Proof. The difference between Hyb1 and Hyb2,1 is Query phase which outputs SKC on input a
circuit C. In Hyb2,1, all SKCpj (1 ≤ j ≤ N) is computed as SKCpj ← PAFE.KeyGen(MSK, Cpj ).

Then, SKC = (SKCp1 , . . . , SKCpN ) follows. This means that Hyb2,1 coincides with Hyb1 because
SKC ← FEours.KeyGen(MSK, C) in Hyb1. Therefore Pr[Succ2,1] = Pr[Succ1] follows.

The indistinguishability of semi-functional keys on pkPAFE implies that the difference among
Hyb2,i is negligible.
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Lemma 3. Assume that pkPAFE has the indistinguishability of semi-functional keys. Then for all
1 ≤ i ≤ N ,

|Pr[Succ2,i+1]− Pr[Succ2,i]| ≤ εKeyInd(λ). (3)

Proof. Fix an index i (1 ≤ i ≤ N). We construct an adversary B2 against the indistinguishability of
semi-functional keys of pkPAFE. Let A be an adversary on the games Hyb2,i and Hyb2,i+1. B2 plays

a role of the adversary in the game ExpKeyIndB2
(1λ, b), and a role of the challenger in the games Hyb2,i

and Hyb2,i+1. The description of B2 is as follows.

Setup: B2 takes an input MPK from the challenger I of ExpKeyIndB2
(1λ, b) then sends MPK to A as

the input.

Challenge: For messages (x0, x1) from A, B2 computes CT ← FEours.Enc(MPK, x0) and sends CT
to A.

Query: For a circuit C from A, B2 computes SKC as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpj which is equivalent to the polynomial pj for all 1 ≤ j ≤ N .

3. sets θj = pj(x̂0) for all 1 ≤ j ≤ N , where x̂0 is the one computed during FEours.Enc(MPK, x0)
in Challenge phase.

4. sends the following items to the challenger I:

• circuits and corresponding associated values (Cp1 , θ1, . . . , Cpi−1 , θi−1),

• circuits (Cpi+1
, . . . , CpN ), and

• the challenge circuit and its associated value (Cpi , θi).

5. receives SKC from I, then sends SKC to A.

Output: For the output b′ of A, B2 outputs b′.

For SKC computed by B2, it follows from Definition 11 that

• SKCpk = sfSKCpk ← sfKG(MSK, Cpk , θk) for 1 ≤ k ≤ i− 1,

• SKCpk ← pkPAFE.KeyGen(MSK, Cpk) for i+ 1 ≤ k ≤ N ,

•

{
SKCpi = sfSKCpi ← sfKG(MSK, Cpi , θi) if b = 0

SKCpi ← pkPAFE.KeyGen(MSK, Cpi) if b = 1
.

Namely, SKC = (sfSKCp1 , . . . , sfSKCpi ,SKCpi+1
, . . . , SKCpN ) if b = 0,

or SKC = (sfSKCp1 , . . . , sfSKCpi−1
,SKCpi , . . . , SKCpN ) otherwise. Therefore B2 coincides with the

challenger of Hyb2,i+1 when b = 0, and coincides with the challenger of Hyb2,i when b = 1.
Then we have

Pr[ExpKeyIndB2
(1λ, 0) = 1]

= Pr
[
b′ = 1 | SKC = (sfSKCp1 , . . . , sfSKCpi ,SKCpi+1

, . . . , SKCpN )
]

= Pr[Succ2,i+1],

and

Pr[ExpKeyIndB2
(1λ, 1) = 1]

= Pr
[
b′ = 1 | SKC = (sfSKCp1 , . . . , sfSKCpi−1

,SKCpi , . . . , SKCpN )
]

= Pr[Succ2,i].
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The advantage AdvKeyIndB2
(λ) of B2 on the indistinguishability of semi-functional keys is computed

by

AdvKeyIndB2
(λ) = |Pr[ExpKeyIndB2

(1λ, 0) = 1]− Pr[ExpKeyIndB2
(1λ, 1) = 1]|

= |Pr[Succ2,i+1]− Pr[Succ2,i]|.

By the assumption on the statement that pkPAFE has the indistinguishability of semi-functional
keys, AdvKeyIndB2

(λ) ≤ εKeyInd(λ) follows. Thus we have

|Pr[Succ2,i+1]− Pr[Succ2,i]| ≤ εKeyInd(λ).

Hyb3: Hyb3 proceeds in the same way as Hyb2,N+1 except Challenge phase. The description of
Challenge phase in Hyb3 is as follows.

Challenge phase: A chooses two messages (x0, x1) ∈ Xλ and sends them to I. I computes
x̂0 ← InpEncd(x0, R) for a randomness R ← {0, 1}lR . Then I computes CT ← sfEnc(MPK, 1|x̂0|)
and sends CT to A.

The indistinguishability of semi-functional ciphertexts on pkPAFE implies that the difference
between Hyb2,N+1 and Hyb3 is negligible.

Lemma 4. Assume that pkPAFE has the indistinguishability of semi-functional ciphertexts. Then

|Pr[Succ3]− Pr[Succ2,N+1]| ≤ εCTInd(λ). (4)

Proof. We construct an adversary B23 against the indistinguishability of semi-functional ciphertexts
of pkPAFE. Let A be an adversary on the games Hyb2,N+1 and Hyb3. B23 plays a role of the

adversary in the game ExpCTIndB23
(1λ, b), and a role of the challenger in the games Hyb2,N+1 and Hyb3.

The description of B23 is as follows.

Setup: B23 takes an input MPK from the challenger I of ExpCTIndB23
(1λ, b) then sends MPK to A as

the input.

Challenge: For messages (x0, x1) from A, B23 computes x̂0 ← InpEncd(x0, R) for a randomness
R← {0, 1}lR . B23 sends x̂0 to the challenger I. After B23 receives CT from I, B23 returns CT to A.

Query: For a circuit C from A, B23 computes SKC as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpj which is equivalent to the polynomial pj for all 1 ≤ j ≤ N .

3. sets θj = pj(x̂0) for all 1 ≤ j ≤ N , where x̂0 is the one computed in Challenge phase.

4. sends (Cp1 , θ1, . . . , CpN , θN ) to I.

5. receives SKC from I, then sends SKC to A.

Output: For the output b′ of A, B23 outputs b′.

For SKC computed by B23, it follows from Definition 12 that SKC = (sfSKCp1 , . . . , sfSKCpN )
for sfSKCpj ← sfKG(MSK, Cpj , θj) (1 ≤ j ≤ N). This coincides with the computation of SKC in

Hyb2,N+1.

For CT, CT is computed by CT = sfCT← sfEnc(MPK, 1|x̂0|) if b = 0, or CT← pkPAFE.Enc(MPK, x̂0)
if b = 1 from Definition 12. Therefore B23 coincides the challenger of Hyb3 when b = 0, and coincides
the challenger of Hyb2,N+1 when b = 1.
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Then we have

Pr[ExpCTIndB23
(1λ, 0) = 1]

= Pr
[
b′ = 1 | CT = sfCT← sfEnc(MPK, 1|x̂0|)

]
= Pr[Succ3],

and

Pr[ExpCTIndB23
(1λ, 1) = 1]

= Pr [b′ = 1 | CT← pkPAFE.Enc(MPK, x̂0)]

= Pr[Succ2,N+1].

The advantage AdvCTIndB23
(λ) of B23 on the indistinguishability of semi-functional ciphertexts is

computed by

AdvCTIndB23
(λ) = |Pr[ExpCTIndB23

(1λ, 0) = 1]− Pr[ExpCTIndB23
(1λ, 1) = 1]|

= |Pr[Succ3]− Pr[Succ2,N+1]|.

By the assumption on the statement that pkPAFE has the indistinguishability of semi-functional
ciphertexts, AdvCTIndB23

(λ) ≤ εCTInd(λ). Thus we have

|Pr[Succ3]− Pr[Succ2,N+1]| ≤ εCTInd(λ).

Hyb4: Hyb4 proceeds in the same way as Hyb3 except Challenge phase Query phase. The descrip-
tion of Challenge phase and Query phase in Hyb4 is as follows.

Challenge phase: A chooses two messages (x0, x1) ∈ Xλ and sends them to I. I computes
x̂1 ← InpEncd(x1, R) for a randomness R ← {0, 1}lR . Then I computes CT ← sfEnc(MPK, 1|x̂1|)
and sends CT to A.

Query phase: A chooses a circuit C ∈ Cλ where C(x0) = C(x1) and sends C to I. I computes SKC
as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpi which is equivalent to the polynomial pi for all 1 ≤ i ≤ N .

3. sets θj = pj(x̂1) for all 1 ≤ j ≤ N , where x̂1 is the one computed in Challenge phase.

4. sets sfSKCpj ← sfKG(MSK, Cpj , θj) for all 1 ≤ j ≤ N .

5. sets SKC = (sfSKCp1 , . . . , sfSKCpN ).

6. outputs SKC .

The security property of RP implies that the difference between Hyb3 and Hyb4 is negligible.

Lemma 5. Assume that RP is secure. Then ,

|Pr[Succ4]− Pr[Succ3]| ≤ 2εRP(λ). (5)

Proof. We construct an adversary B34 against the security of RP. Let A be an adversary on the
games Hyb3 and Hyb4. B34 plays a role of the adversary in the game ExpRPB34

(1λ, b), and a role of the
challenger in the games Hyb3 and Hyb4. The description of B34 is as follows.

Setup: B34 generates (MPK,MSK)← FEours.Setup(1λ), then sends MPK to A as the input.

Challenge: For messages (x0, x1) from A, B34 computes x̂1 ← InpEncd(x1, R) for a randomness
R← {0, 1}lR . Then B34 computes CT = sfCT← sfEnc(MPK, 1|x̂1|) and sends CT to A.

Query: For a circuit C from A, B34 computes SKC as following steps:
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1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpj which is equivalent to the polynomial pj for all 1 ≤ j ≤ N .

3. sends (C, x1, x̂1) to the challenger I of ExpRPB34
(1λ, b).

4. receives (θb1, . . . , θ
b
N ) from I.

5. computes sfSKCpj ← sfKG(MSK, Cpj , θ
b
j) for all 1 ≤ j ≤ N .

6. sends SKC = (sfSKCp1 , . . . , sfSKCpN ) to A.

Output: For the output b′ of A, B34 outputs b′.

The computation of CT by B34 coincides the one in Hyb4. Moreover it also coincides the in Hyb3.
This is because |x̂0| = |x̂1| follows from |x0| = |x1|.

For SKC = (sfSKCp1 , . . . , sfSKCpN ) computed by B34, it follows from Definition 6 that sfSKCpj ←
sfKG(MSK, Cpj , θ

0
j ) for θ0j = pj(x̂1) for all 1 ≤ j ≤ N . Namely the computation of SKC by B34

coincides the one in Hyb4 if b = 0. Therefore, we have

Pr[ExpRPB34
(1λ, 0) = 1 | B34 uses x1] = Pr[Succ4].

Let us consider the case B34 uses x0 instead of x1 in Query phase. In this case, we have
sfSKCpj ← sfKG(MSK, Cpj , θ

0
j ) for θ0j = pj(x̂0). Then the computation of SKC by B34 when b = 0

and x0 is used coincides the one in Hyb3. Therefore, we have

Pr[ExpRPB34
(1λ, 0) = 1 | B34 uses x0] = Pr[Succ3].

We consider the case where b = 1. When b = 1, SKC computed by sfSKCpj ← sfKG(MSK, Cpj , θ
1
j )

for θ1j = Sim(1λ, C, C(x1)) for all 1 ≤ j ≤ N . Since C(x0) = C(x1), the computation of θ1j does not
changed if x0 is used instead of x1. The computation of CT is also unchanged when x0 is used as
we have observed above. Thus we have

Pr[ExpRPB34
(1λ, 1) = 1 | B34 uses x1] = Pr[ExpRPB34

(1λ, 1) = 1 | B34 uses x0].

We consider the advantage AdvRPB34
when x1 or x0 is used. For both cases, we have

AdvRPB34
[B34 uses x1]

= |Pr[ExpRPB34
(1λ, 0) = 1 | B34 uses x1]− Pr[ExpRPB34

(1λ, 1) = 1 | B34 uses x1]|
= |Pr[Succ4]− Pr[ExpRPB34

(1λ, 1) = 1 | B34 uses x1]|,
AdvRPB34

[B34 uses x0]

= |Pr[ExpRPB34
(1λ, 0) = 1 | B34 uses x0]− Pr[ExpRPB34

(1λ, 1) = 1 | B34 uses x0]|
= |Pr[Succ3]− Pr[ExpRPB34

(1λ, 1) = 1 | B34 uses x0]|.

By the assumption on the statement that RP is secure, both advantages are bounded the negligible
function εRP. Thus we have

|Pr[Succ4]− Pr[Succ3]|
≤ AdvRPB34

[B34 uses x1] + AdvRPB34
[B34 uses x0]

≤ εRP(λ) + εRP(λ) = 2εRP(λ).
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Hyb5,i (1 ≤ i ≤ N + 1): Hyb5,i proceeds in the same way as Hyb4 except Challenge phase and
Query phase. The description of Challenge and Query phases in Hyb5,i is as follows.

Challenge phase: A chooses two messages (x0, x1) ∈ Xλ and sends them to I. I computes
CT← FEours.Enc(MPK, x1) and sends CT to A.

Query phase: A chooses a circuit C ∈ Cλ where C(x0) = C(x1) and sends C to I. I computes SKC
as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpi which is equivalent to the polynomial pi for all 1 ≤ i ≤ N .

3. sets θj = pj(x̂1) for all 1 ≤ j ≤ N , where x̂1 is the one computed during FEours.Enc(MPK, x1)
in Challenge phase.

4. sets

{
SKCpj ← PAFE.KeyGen(MSK, Cpj ) for j < i

sfSKCpj ← sfKG(MSK, Cpj , θj) for j ≥ i

5. sets SKC = (SKCp1 , . . . , SKCpi−1
, sfSKCpi , . . . , sfSKCpN ).

6. outputs SKC .

The indistinguishability of semi-functional ciphertexts on pkPAFE implies that the difference
between Hyb4 and Hyb5,1 is negligible.

Lemma 6. Assume that pkPAFE has the indistinguishability of semi-functional ciphertexts. Then

|Pr[Succ5,1]− Pr[Succ4]| ≤ εCTInd(λ). (6)

Proof. We construct an adversary B45 against the indistinguishability of semi-functional ciphertexts
of pkPAFE. Let A be an adversary on the games Hyb4 and Hyb5,1. B45 plays a role of the adversary in

the game ExpCTIndB45
(1λ, b), and a role of the challenger in the games Hyb4 and Hyb5,1. The description

of B45 is as follows.

Setup: B45 takes an input MPK from the challenger I of ExpCTIndB45
(1λ, b) then sends MPK to A as

the input.

Challenge: For messages (x0, x1) from A, B45 computes x̂1 ← InpEncd(x1, R) for a randomness
R← {0, 1}lR . B45 sends x̂1 to the challenger I. After B45 receives CT from I, B45 returns CT to A.

Query: For a circuit C from A, B45 computes SKC as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpj which is equivalent to the polynomial pj for all 1 ≤ j ≤ N .

3. sets θj = pj(x̂1) for all 1 ≤ j ≤ N , where x̂1 is the one computed in Challenge phase.

4. sends (Cp1 , θ1, . . . , CpN , θN ) to I.

5. receives SKC from I, then sends SKC to A.

Output: For the output b′ of A, B45 outputs b′.

For SKC computed by B45, it follows from Definition 12 that SKC = (sfSKCp1 , . . . , sfSKCpN ) for
sfSKCpj ← sfKG(MSK, Cpj , θj) (1 ≤ j ≤ N). This coincides with the computation of SKC in Hyb4
and Hyb5,1.

For CT, CT is computed by CT = sfCT← sfEnc(MPK, 1|x̂1|) if b = 0, or CT← pkPAFE.Enc(MPK, x̂1)
if b = 1 from Definition 12. Therefore B45 coincides the challenger of Hyb4 when b = 0, and coincides
the challenger of Hyb5,1 when b = 1.
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Then we have

Pr[ExpCTIndB45
(1λ, 0) = 1]

= Pr
[
b′ = 1 | CT = sfCT← sfEnc(MPK, 1|x̂1|)

]
= Pr[Succ4],

and

Pr[ExpCTIndB45
(1λ, 1) = 1]

= Pr [b′ = 1 | CT← pkPAFE.Enc(MPK, x̂1)]

= Pr[Succ5,1].

The advantage AdvCTIndB45
(λ) of B45 on the indistinguishability of semi-functional ciphertexts is

computed by

AdvCTIndB45
(λ) = |Pr[ExpCTIndB45

(1λ, 0) = 1]− Pr[ExpCTIndB45
(1λ, 1) = 1]|

= |Pr[Succ4]− Pr[Succ5,1]|.

By the assumption on the statement that pkPAFE has the indistinguishability of semi-functional
ciphertexts, AdvCTIndB45

(λ) ≤ εCTInd(λ). Thus we have

|Pr[Succ4]− Pr[Succ5,1]| ≤ εCTInd(λ).

The indistinguishability of semi-functional keys on pkPAFE implies that the difference among
Hyb5,i is negligible.

Lemma 7. Assume that pkPAFE has the indistinguishability of semi-functional keys. Then for all
1 ≤ i ≤ N ,

|Pr[Succ5,i]− Pr[Succ5,i+1]| ≤ εKeyInd(λ). (7)

Proof. Fix an index i (1 ≤ i ≤ N). We construct an adversary B5 against the indistinguishability of
semi-functional keys of pkPAFE. Let A be an adversary on the games Hyb5,i and Hyb5,i+1. B5 plays

a role of the adversary in the game ExpKeyIndB5
(1λ, b), and a role of the challenger in the games Hyb5,i

and Hyb5,i+1. The description of B5 is as follows.

Setup: B5 takes an input MPK from the challenger I of ExpKeyIndB5
(1λ, b) then sends MPK to A as

the input.

Challenge: For messages (x0, x1) from A, B5 computes CT ← FEours.Enc(MPK, x1) and sends CT
to A.

Query: For a circuit C from A, B5 computes SKC as following steps:

1. computes (p1, ..., pN )← CEncd(1λ, C).

2. constructs an arithmetic circuits Cpj which is equivalent to the polynomial pj for all 1 ≤ j ≤ N .

3. sets θj = pj(x̂1) for all 1 ≤ j ≤ N , where x̂1 is the one computed during FEours.Enc(MPK, x1)
in Challenge phase.

4. sends the following items to the challenger I:

• circuits and corresponding associated values (Cpi+1 , θi+1, . . . , CpN , θN ),

• circuits (Cp1 , . . . , Cpi−1), and
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• the challenge circuit and its associated value (Cpi , θi).

5. receives SKC from I, then sends SKC to A.

Output: For the output b′ of A, B5 outputs b′.

For SKC computed by B5, it follows from Definition 11 that

• SKCpk = sfSKCpk ← sfKG(MSK, Cpk , θk) for i+ 1 ≤ k ≤ N ,

• SKCpk ← pkPAFE.KeyGen(MSK, Cpk) for 1 ≤ k ≤ i− 1,

•

{
SKCpi = sfSKCpi ← sfKG(MSK, Cpi , θi) if b = 0

SKCpi ← pkPAFE.KeyGen(MSK, Cpi) if b = 1
.

Namely, SKC = (SKCp1 , . . . , SKCpi−1
, sfSKCpi , . . . , sfSKCpN ) if b = 0,

or SKC = (SKCp1 , . . . , SKCpi , sfSKCpi+1
, . . . , sfSKCpN ) otherwise. Therefore B5 coincides with the

challenger of Hyb5,i when b = 0, and coincides with the challenger of Hyb5,i+1 when b = 1.
Then we have

Pr[ExpKeyIndB5
(1λ, 0) = 1]

= Pr
[
b′ = 1 | SKC = (SKCp1 , . . . , SKCpi−1

, sfSKCpi , . . . , sfSKCpN )
]

= Pr[Succ5,i],

and

Pr[ExpKeyIndB5
(1λ, 1) = 1]

= Pr
[
b′ = 1 | SKC = (SKCp1 , . . . , SKCpi , sfSKCpi+1

, . . . , sfSKCpN )
]

= Pr[Succ5,i+1].

The advantage AdvKeyIndB5
(λ) of B5 on the indistinguishability of semi-functional keys is computed

by

AdvKeyIndB5
(λ) = |Pr[ExpKeyIndB5

(1λ, 0) = 1]− Pr[ExpKeyIndB5
(1λ, 1) = 1]|

= |Pr[Succ5,i]− Pr[Succ5,i+1]|.

By the assumption on the statement that pkPAFE has the indistinguishability of semi-functional
keys, AdvKeyIndB5

(λ) ≤ εKeyInd(λ) follows. Thus we have

|Pr[Succ5,i]− Pr[Succ5,i+1]| ≤ εKeyInd(λ).

Hyb6: Hyb6 proceeds in the same way as Hyb5,N+1 except Query phase. Query phase in Hyb6 is
changed as follows.

Query phase: A chooses a circuit C ∈ Cλ where C(x0) = C(x1) and sends C to I. I computes
SKC ← FEours.KeyGen(MSK, C) and sends SKC to A.

For the difference between Hyb5,N+1 and Hyb6, we have the following lemma.

Lemma 8.

Pr[Succ6] = Pr[Succ5,N+1]. (8)
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Proof. The difference between Hyb5,N+1 and Hyb6 is Query phase. In Hyb5,N+1, all SKCpj (1 ≤ j ≤
N) is computed as SKCpj ← PAFE.KeyGen(MSK, Cpj ). Then, SKC = (SKCp1 , . . . , SKCpN ) follows.

This means that Hyb5,N+1 coincides with Hyb6 because SKC ← FEours.KeyGen(MSK, C) in Hyb6.
Therefore Pr[Succ5,N+1] = Pr[Succ6] follows.

For the game Hyb6, the following lemma holds.

Lemma 9.

Pr[Succ6] = Pr[Expsel1,A(1λ, 1) = 1]. (9)

Proof. By Definition 2, Definition 3 and the description of Hyb6, Hyb6 coincides with Expsel1,A(1λ, 1).

Putting together Eqs. (1), (2), (3), (4), (5), (6), (7), (8), (9), we have

AdvselA (λ) = |Pr[Expsel1,A(1λ, 0) = 1]− Pr[Expsel1,A(1λ, 1) = 1]|
≤ NεKeyInd(λ) + εCTInd(λ) + 2εRP(λ) + εCTInd(λ) +NεKeyInd(λ)

= 2(NεKeyInd(λ) + εCTInd(λ) + εRP(λ)).

Since 2(NεKeyInd(λ) + εCTInd(λ) + εRP(λ)) is negligible in λ, the statement holds.

5 Conclusion

We have proposed the public-key projective arithmetic functional encryption (pkPAFE). We have
given the definition and the syntax of pkPAFE, and shown that pkPAFE derives a public-key func-
tional encryption which is single-key selective secure with the help of the randomizing polynomials
scheme. Namely our results imply that the indistinguishability obfuscation can be obtained from
pkPAFE.

In this paper, we only consider the abstract notion of pkPAFE and a generic construction of
a public-key FE from pkPAFE and RP. Thus an instantiation of pkPAFE is not given like in the
case of the secret-key PAFE [3], and every parameters of the resulting FE cannot be set unless the
concrete construction of pkPAFE is given. It is an important open question to propose a concrete
construction of pkPAFE with the appropriate setting of every parameters.
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