
International Journal of Networking and Computing – www.ijnc.org, ISSN 2185-2847
Volume 11, Number 2, pages 319–337, July 2021

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

Masayuki Fukumitsu

Faculty of Information Media
Hokkaido Information University

Nishi-Nopporo 59–2, Ebetsu, Hokkaido, 069–8585, Japan

Shingo Hasegawa

Graduate School of Information Sciences
Tohoku University

41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980–8576, Japan

Received: February 3, 2021
Revised: April 30, 2021
Accepted: June 14, 2021

Communicated by Yasuyuki Nogami

Abstract

From the birth of the blockchain technology, multisignatures attract much attention as a
tool for handling blockchain transactions. Concerning the application to the blockchain, mul-
tisignatures with public-key aggregation, which can compress public keys of signers to a single
public key, is preferable to the standard multisignature because the public keys and the sig-
nature used in a transaction are stored to verify the transaction later. Several multisignature
schemes with public key aggregation are proposed, however, there are no known schemes having
a tight security reduction.

We propose a first multisignature with public-key aggregation whose security is proven to
be tightly secure under the DDH assumption in the random oracle model. Our multisignature
is based on the DDH-based multisignature by Le, Yang, and Ghorbani, however, our security
proof is different from theirs. The idea of our security proof originates from another DDH-based
multisignature by Le, Bonnecaze, and Gabillon whose security proof is tightly one. By tailoring
their security proof to a setting which admits the public-key aggregation, we can prove the tight
security of our multisignature.

Keywords: Multisignature, Key Aggregation, DDH Assumption, Tight Security, Blockchain

1 Introduction

The multisignature enables multiple signers to sign a common single message in an interactive
manner. It attracts much attention as a tool for handling the blockchain transactions because the
multisignature can authenticate the participation of multiple signers to the signature generation by
a single signature. Since the size of a signature by multisignatures is independent of the number of
signers generally, the storage for signatures can be much reduced rather than the case where each
signer issues their own signature individually by using ordinary signatures.

Concerning the application to the blockchain, the multisignatures with public-key aggregation
is preferable to the standard multisignture. The public-key aggregation property can compress the

319

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

public keys of involving signers to a single aggregated public key as well as a signature. On the
blockchain transaction, both signers’ public keys and a signature are stored in the blockchain to
verify the transaction. Thus the multisignature with public-key aggregation can reduce the storage
for public keys used in the generation of a signature.

There exist multisignature schemes which support the public-key aggregation. Maxwell, Poelstra,
Seurin, and Wuille [18] proposed the first multisignature with public-key aggregation based on the
discrete logarithm (DL) assumption. Following their work, several multisignatures with public-key
aggregation based on the DL assumption are constructed [7, 6, 13]. Not only the DL-based schemes
but also lattice-based multisignatures with public-key aggregation are given [16, 10].

All multisignatures described above are proven to be secure in the random oracle model (ROM)
[3] with respect to the plain public-key model [2], which does not require any assumption on the
key generation. However, their security proofs are loose ones. Namely, the success probability of
attacking a scheme is less than that of breaking the underlying cryptographic assumption with some
polynomial factor, whereas the running time of attacking the scheme is almost the same as that of
breaking the assumption. Such a polynomial loss factor requires us to set a long or large parameter
of the scheme, and hence the size efficiency of the scheme becomes worse, even though a public key
and a signature are aggregated. In this sense, the tight security is desirable, which implies that
both probabilities of attacking the scheme or the assumption are almost the same as well as the
running times. Thus a tight security proof makes the parameter of the scheme be compact as that
of the underlying cryptographic assumption. Although several multisignature schemes with tight
security have been proposed in [1, 19, 8, 9, 21], none of them support the public-key aggregation.
Therefore, constructing a multisignature with public-key aggregation having a tight security proof
is an important open question.

1.1 Our Contribution

We propose a first multisignature with public-key aggregation whose security is proven to be tightly
secure. We show that the security of our scheme reduces to the DDH assumption via a tight security
proof in ROM with respect to the plain public-key model. The construction of our multisignature
is almost the same as the DDH-based multisignature (LYG multisignature) by [13]. However, our
security proof is totally different from theirs. The idea of our proof originates from a multisignature
by Le, Bonnecaze, and Gabillon [12] whose security reduces to the DDH assumption tightly. By
tailoring their security proof to a setting which admits the public-key aggregation, we can prove the
tight security of our multisignature.

The construction of our multisignature scheme is almost the same as that of the LYG multisig-
nature except for the number of hash values transferred in the first round communication, which is
used to commit temporary randomness of each signer. Namely, the communication efficiency of ours
is a little better than theirs and the size of keys and signatures are identical in both schemes. Our
result, therefore, suggests that we give tight security while maintaining the public-key aggregation
functionality and the efficiency of the LYG multisignature.

As an application of our multisignature scheme, we give an interactive aggregate signature with
the public-key aggregation. The interactive aggregate signature enables each signer to choose their
own message instead of the common message. Namely, the interactive aggregate signature can be
considered as a generalization of the multisignature. We show that our proposed multisignature
can be converted into the interactive aggregate signature with a slight modification based on the
idea of [17]. Surprisingly, this modification does not affect the security proof at all since we employ
the random oracle model. Therefore we can obtain the security proof of our interactive aggregate
signature as a corollary of the one of our proposed multisignature.

1.2 Proof Technique

We briefly explain the idea of the security proof of our proposed scheme. Before that, we now
recap that of the LYG multisignture. Le, Yang, and Ghorbani proved that the security of their
multisignature reduces to the DDH assumption via a loose security reduction in ROM. To break the

320

International Journal of Networking and Computing

Table 1: Summary of multisignatures with public-key aggregation

Scheme Assumption Rounds Security Model Reduction
[18] DL 3 PPK ROM loose
[7] DL 2 PPK ROM loose
[6] coCDH 1 PPK ROM loose
[13] DDH 3 PPK ROM loose
[16] Ring-SIS, DCK, Re-DCK 4 PPK ROM loose
[10] SIS, Re-DCK 1 PPK ROM loose

[ours] DDH 3 PPK ROM tight

The column Assumption means the security assumptions required in each scheme. The column
Rounds means the number of interactions among signers in the signing protocol. All schemes are
proven to be secure with respect to the plain public-key model in the random oracle model. All
security reductions are loose reductions except ours.

DDH assumption by utilizing an adversary A against the LYG multisignature scheme, a reduction
R was constructed to extract information about a given DDH instance from the aggregated public
key under which A forges. This can be done by using the general forking lemma [2], and it is known
that the (general) forking lemma induces loose security. Due to the same reason, the security of
other multisignatures [18, 7, 6, 16] is also loose.

To avoid the general forking lemma, we aim to employ the lossy proof technique introduced by
Katz and Wang [11]. [11] proposed an ordinary signature scheme whose security reduces to the
DDH assumption via a tight reduction. They constructed their reduction R in a way that it decides
that a given instance is a yes-instance with the probability which is almost the same as the success
probability of A if R is indeed given a yes-instance, whereas it does with negligible probability if
it is given a no-instance. This technique is also applied to construct the tight security reduction of
the LBG multisignature [12]. However, their approach cannot be applied to our case immediately,
since we now consider the multisignatures with public-key aggregation. In our case, an aggregated
public key under which A forges can be controlled by A, whereas a public key under which it forges
is decided by R in the Katz-Wang signature case. For this difficulty, we find desirable features of an
aggregated public key of the LYG multisignature on which our proposed scheme is based. The first
one is that such an aggregated public key can be regarded as a single public key of the Katz-Wang
signature scheme. The second one is that an aggregated public key which includes an irregular
public key, i.e. a no-instance, is also a no-instance with high probability. This enables us to prove
the tight security of our proposed scheme by directly applying the lossy proof technique, and hence
we no longer use the general forking lemma even in the public-key aggregation setting.

1.3 Related Works

The multisignature by Maxwell, Poelstra, Seurin, and Wuille [18] is the first multisignature which
supports the public-key aggregation. Their scheme is based on Schnorr signature [20], and the
signing protocol involves 3-round interaction. Its security is proven under the DL assumption in
ROM. Drijvers, Edalatnejad, Ford, Kiltz, Loss, Neven, and Stepanovs [7] proposed another DL-
based multisignature. Their scheme requires 2-round interaction only in the signing protocol. For
the pairing-based multisignature with public-key aggregation, Boneh, Drijvers, and Neven [6] con-
structed a non-interactive multisignature in the sense that the signing protocol can be done in
1-round. Le, Yang, and Ghorbani [13] proposed a multisignature with public-key aggregation under
the DDH assumption. Concerning the schemes except for the DL or DDH assumptions, Ma and
Jiang [16] and Kansal and Dutta [10] proposed a lattice-based multisignature with public-key aggre-
gation, respectively. Although their multisignatures are expected as quantum-resistant ones, there
exists a disadvantage such that the size of the signature is proportional to the number of signers
involved in the signing protocol. We note that the attack to the multisignature scheme [10] was

321

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

Table 2: Comparison of component size among multisignatures with public-key aggregation when
using a cyclic group of order q and hash functions with `-bit outputs.

Scheme Public Parameter Component Size Communication Size Signature Size
pk sk 1st 2nd 3rd

[18] (G, q, g) |G| |Zq| ` |G| |Zq| 2|Zq|
[7] (G, q, g) |G|+ 2|Zq| |Zq| 2|G| 3|Zq| - 2|G|+ 3|Zq|
[6] (G1,G2,GT , q, g1, g2, e) |G2| |Zq| |G1| - - |G1|
[13] (G, q, g, h) 2|G| |Zq| 2|Zq| 2|G| |Zq| 2|Zq|

[ours] (G, q, g, h) 2|G| |Zq| ` 2|G| |Zq| 2|Zq|

The column Public Parameter displays a public parameter of each scheme. The public parameter of
DL-based scheme [18, 7] consists of the group description G of a prime order q and its generator g. In
the DDH-based scheme [13] and ours, the additional generator h is appended. For the pairing-based
scheme [6], three groups G1,G2,GT of a prime order q are given. g1 and g2 are generators of G1

and G2, respectively. e is a non-degenerate bilinear pairing from G1 ×G2 to GT .
The column Component Size displays the storage of each component. |G| means the size of one
element in G. |G1|, |G2| and |Zq| are also defined in the same manner. The column Communication
Size displays the traffic expended in each round of the signing protocol. The column Signature Size
displays the size of the signature.

Table 3: Comparison of computation time among multisignatures with public-key aggregation when
using a cyclic group of order q.

Scheme Signing Time per Signer Verification Time
[18] ExpG +SMulG +S(ExpG + MulG) S(ExpG + MulG) + 2 ExpG + MulG
[7] 5 ExpG +3(S + 1) MulG 6 ExpG +(S + 4) MulG
[6] ExpG1

+SMulG1 S(ExpG2
+ MulG2) + 2 Pair + MulGT

[13] 2 ExpG +2SMulG +2S(ExpG + MulG) 2S(ExpG + MulG) + 4 ExpG +2 MulG
[ours] 2 ExpG +2SMulG +2S(ExpG + MulG) 2S(ExpG + MulG) + 4 ExpG +2 MulG

The columns Signing Time per Signer and Verification Time display the computation time of the
signing algorithm and that of the verification algorithm, respectively. ExpG and MulG means the
time for required the exponentiation and the multiplication in the group G, respectively. Pair means
the time of pairing computation. S is the number of signers involved in the signing protocol. Note
that we omit the operations done over Zq from the evaluation because the operations done over the
group G are dominant rather than the ones over Zq.

pointed out in [14].

The summary of multisignature schemes with public-key aggregation including ours is given in
Table 1. All schemes listed in Table 1 are proven to be secure in the PPK model and ROM, however,
only our scheme achieves the tight security.

We compare the efficiency of our proposed multisignature scheme with the existing multisignature
scheme based on a cyclic group of prime order. The result is given in Table 2 and Table 3. In Table
2, we evaluate the size efficiency. This table shows that the size of components of the DDH-based
scheme [13] and ours is twice that of the DL-based scheme [18]. Although the scheme by [7] is also
based on the DL assumption, the scheme requires a larger component size to achieve the two-round
signing protocol. The pairing-based scheme [6] has the highest size efficiency.

Table 3 represents the comparison of the time efficiency. The DL-based scheme [18] achieves
the fastest computation time in both the signing and the verification. The DDH-based scheme [13]
and ours take twice the time of [18]. The time efficiency of [6] is worst among the multisiganture
schemes in the table although it achieves the best size efficiency. This is because the scheme requires

322

International Journal of Networking and Computing

the computation of the bilinear pairing to make the signing protocol non-interactive. This can be
considered as a tradeoff.

We finally consider the applicability of our proof technique to other multisignature schemes. The
targets are the CDH-based tightly secure multisignature schemes by [12] and [21]. Since our proposed
scheme is based on the DDH assumption, it is natural to consider whether or not our technique is
applicable to the CDH-based schemes. Both CDH-based multisignature schemes [12, 21] have a
3-round signature generation protocol as well as our DDH-based scheme. However, our technique
seems not to employ them. This is because our technique utilizes the property that the aggregated
public key becomes irregular in a sense that it has no corresponding secret key with an overwhelming
probability, if it is generated from a group of public keys which includes at least one irregular public
key. In the security proof, we set the challenge public key to be irregular to use this property. On
the other hand, on the CDH-based schemes, the challenge public key has to be regular because a
CDH-instance is embedded into the challenge public key to extract a solution of the CDH-instance
from the forgery.

We also note the security model used in the original proof of the CDH-based scheme by [12].
In the paper [12], the security proof is claimed under the PPK model. However, we find that the
proof requires actually the knowledge of the secret key model [4, 15] which is a more restricted
security model than the PPK model employed in this paper. This is because their security reduction
needs secret keys corresponding to the public keys which the adversary outputs with the forgery to
compute a solution of the given CDH-instance. Although the multisignature scheme of [21] achieves
the security in the PPK model, it employs the bilinear pairing.

As described above, our technique cannot be applied to the CDH-based multisignature schemes
immediately. Thus we need another proof technique to make these schemes support the public key
aggregation. It is an important open question.

2 Preliminaries

For any algorithm A, we denote by y ← A(x) that A outputs y on input x. In particular, A(x)
stands for a random variable for A’s output on input x, where the probability is taken over the
internal coin flips in A. For a finite set X, x ∈U X means that x is chosen from X uniformly at
random.

2.1 Multisignature

We recap the notion of a multisignature MSig. MSig with the public-key aggregation consists of six
components (Setup,KGen,KAgg,KAVer,Sig,Ver) [13]. We consider the situation where a group of
signers (S1, . . .SS) signs a message M . After a public parameter pp is generated by the probabilistic
polytime algorithm Setup(1κ) for a security parameter κ, each signer Si generates a secret and
public key pair (ski, pki) by using the probabilistic polytime key generator KGen(pp). Then, the
set L = {pk1, . . . , pkS} of public keys can be aggregated as apk = KAgg(L) by the deterministic
polytime algorithm KAgg, and one can ensure that the aggregated public key apk is given by the
set L by executing the deterministic polytime algorithm KAVer(apk, L). To issue a multisignature
σ of M under the public-key set L, the signing protocol is executed by running the probabilistic
polytime signing algorithm Sig(pp, ski, L,M) by each signer Si. Then, the validation of σ can be
evaluated by executing the polytime algorithm Ver(pp, L,M, σ).

The security under the plain public-key (ppk) model is defined by the ppk game of MSig depicted
in Figure 1. Without loss of generality, we suppose that C plays a roll of the first signer S1 during
the ppk game. For any polynomial T and any function ε, we say that MSig is (T, ε,QS)-ppk secure
if for any adversary A which runs in time at most T (κ) and makes at most QS(κ) queries in Sign
phase, A can win the ppk game of MSig with probability ε(κ) for sufficiently large κ.

MSig is (T, ε,QS , Q1, Q2, Q3, . . .)-ppk secure in the random oracle model (ROM) if MSig is
(T, ε,QS)-ppk secure where A makes at most Qn(κ) queries to the random oracle Hn for any n
and sufficiently large κ. In the security proof, the random oracle model is generally emulated by the

323

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

• Init: A challenger C generates pp ← Setup(1κ) and (sk∗, pk∗) ← KGen(1κ), and then sends
(pp, pk∗) to an adversary A.

• Sign: Given a public-key set L(t) and a message M (t), C and A run the signing protocol in

which C plays a role of the signer S1 which owns pk
(t)
1 = pk∗, whereas A does that of the other

signers Si (2 ≤ i ≤ S).

• Chal: Given (L∗,M∗, σ∗) from A finally, A wins the ppk game of MSig if the followings hold:

(W.1) pk∗1 = pk∗ for L∗ = {pk∗1 , . . . , pk∗S}.
(W.2) (L∗,M∗) does not appeared in Sign phase.

(W.3) Ver(pp, L∗,M∗, σ∗) = 1.

Figure 1: Plain public-key game of MSig between a challenger C and an adversary A

LS(L,R, ξ):

• return (L, υ) if there exists υ ∈ R such that (ξ, υ) ∈ L.

• return (L ∪ {(ξ, υ)}, υ) for υ ∈U R otherwise.

Figure 2: Lazy sampling algorithm LS given a list L of previous pairs of an input and its output on
H, the description of the set R and an input ξ ∈ D

lazy sampling algorithm. For the function H : D→ R, the lazy sampling algorithm LS is defined as
in Figure 2. Here, we will directly write the set R instead of its description.

3 DDH Assumption

In this section, we define the decisional Diffie-Hellman (DDH) assumption [5]. We consider a
polytime group parameter generator GGen defined in Figure 3. We define the two instance generators
GenDDH

reg and GenDDH
loss depicted in Figure 4. For any polynomial T and ε, the (T, ε)-DDH assumption

states that for any adversary D which runs in time at most T , D can distinguish the distributions
between Dreg(κ) and Dloss(κ), which are defined below, with probability ε(κ) for sufficiently large
κ.

Dreg(κ): (G, q, g, h, y1, y2) such that

• (G, q, g, h)← GGen(1κ), and

• (x, (y1, y2))← GenDDH
reg (G, q, g, h),

Dloss(κ): (G, q, g, h, y1, y2) such that

• (G, q, g, h)← GGen(1κ), and

• ((x1, x2), (y1, y2))← GenDDH
loss (G, q, g, h).

For pairs (y1,1, y1,2), (y2,1, y2,2) ∈ G2, we define the multiplication of pairs (y1,1, y1,2)× (y2,1, y2,2)
by (y1,1 × y2,1, y1,2 × y2,2) ∈ G2, namely the element-wise multiplication. Then, the following lemma
holds.

Lemma 1. For any κ, let (G, q, g, h)← GGen(1κ) and let ((x1,1, x1,2), (y1,1, y1,2))← GenDDH
loss (G, q, g, h).

Let S be a polynomial in κ. For any 2 ≤ i ≤ S, let (yi,1, yi,2, ai) ∈ G × G × Zq. If a1 ∈U Zq, then
with probability 2/q, there exists x ∈ Zq such that

S∏
i=1

(
yaii,1, y

ai
i,2

)
= (gx, hx).

324

International Journal of Networking and Computing

GGen(1κ): return (G, q, g, h) such that

• G is the description of the group of prime order q,

• q is polynomial-length in κ, and

• g and h are its generators.

Figure 3: Group parameter generator GGen

GenDDH
reg (G, q, g, h):

• x ∈U Zq.

• (y1, y2) = (gx, hx).

• return (x, (y1, y2)).

GenDDH
loss (G, q, g, h):

• x1, x2 ∈U Zq.

• (y1, y2) = (gx1 , hx2).

• return ((x1, x2), (y1, y2)).

Figure 4: Regular DDH instance generator GenDDH
reg and Lossy DDH instance generator GenDDH

loss

Proof. For any 2 ≤ i ≤ S, there exists (xi,1, xi,2) ∈ Z2
q such that (yi,1, yi,2) = (gxi,1 , hxi,2). This is

because yi,1, yi,2 ∈ G, and g and h are generators of G. On the other hand, it follows from GenDDH
loss

that (y1,1, y1,2) = (gx1,1 , hx1,2). Then,
∏S
i=1

(
yaii,1, y

ai
i,2

)
can be expressed as follows:

S∏
i=1

yaii,1 =

S∏
i=1

(gxi,1)
ai =

S∏
i=1

gaixi,1 = g
∑S

i=1 aixi,1 ,

S∏
i=1

yaii,2 =

S∏
i=1

(hxi,2)
ai =

S∏
i=1

haixi,2 = h
∑S

i=1 aixi,2 .

(1)

We now evaluate the probability that there exists x ∈ Zq such that
∏S
i=1

(
yaii,1, y

ai
i,2

)
= (gx, hx)

under the condition x1,1 6= x1,2. By Eq. (1), this means that
∑S
i=1 aixi,1 ≡ x ≡

∑S
i=1 aixi,2

(mod q). This can be represented as a1(x1,1 − x1,2) ≡
∑S
i=2 ai(xi,2 − xi,1) (mod q). It follows from

the condition x1,1 6= x1,2 that

a1 ≡
∑S
i=2 ai(xi,2 − xi,1)

x1,1 − x1,2
(mod q). (2)

Namely, in order that such x exists, Eq. (2) must holds. Since a1 ∈U Zq, the probability of it under
the condition x1,1 6= x1,2 is 1/q. On the other hand, the probability that x1,1 = x1,2 is 1/q since
x1,1, x1,2 ∈U Zq. Thus, the probability of the existence of such x is bound by the following:(

1− 1

q

)
· 1

q
+

1

q
<

2

q
.

We fix (G, q, g, h)← GGen(1κ). For any z1, z2 ∈ G, consider the following set:

S(z1,z2) = {(gr, hr)× (z1, z2) | r ∈ Zq} ⊆ G2.

For the identity e of G, we write S = S(e,e).

Lemma 2. Let r ∈U Zq, and let y1, y2 ∈ G and s ∈ Zq. Then, it holds that

• r + s mod q is uniformly distributed over Zq.

325

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

• (gr · y1, hr · y2) is uniformly distributed over S(y1,y2).

• The cardinality of S(y1,y2) is q.

Proof. Consider the map r ∈ Zq to r+ s mod q for fixed s, and the map r ∈ Zq to (gr · y1, hr · y2) ∈
S(y1,y2) for fixed (y1, y2). It is obvious that both maps are bijective because g and h are generators
of G. Since r is chosen uniformly from Zq, r + s mod q is uniformly distributed over Zq, and
(gr · y1, hr · y2) is uniformly distributed over S(y1,y2), respectively. Moreover, since the map r to
(gr · y1, hr · y2) is bijective and the cardinality of Zq is q, the cardinality of S(y1,y2) is also q.

4 Proposed Multisignature

In this section, we describe the proposed multisignature and then prove the tight security of their
multisignature.

4.1 Protocol

The proposed multisignature MSigours involves three hash functions Hagg : {0, 1}∗ → Zq, Hcmt :

G×G→ {0, 1}` and Hsig : {0, 1}∗ → Zq. The construction is depicted in Figure 5.

4.2 Correctness

In a similar manner to [13], the correctness of MSigours can be estimated in the following way.
Suppose the situation where a group of signers (S1, . . . ,SS) signs a message M . Let pp← Setup(1κ)
for a security parameter κ. Each signer Si generates a secret and public key pair (ski, pki) =
(xi, (yi,1, yi,2))← KGen(pp), and then runs Sig(pp, ski, L,M) to issue a multisignature σ = (c, z) of
M under the public-key set L = {pk1, . . . , pkS}.

KGen(pp), (R1.1) and (R3.6) imply that for each 1 ≤ i ≤ S,

(gzi , hzi) =
(
gri+ski·ci , hri+ski·ci

)
=
(
wi,1 · ycii,1, wi,2 · y

ci
i,2

)
, (3)

where ci is set as in (R3.5). Since apk = (y1, y2) =
∏S
i=1

(
y
Hagg(pki,L)
i,1 , y

Hagg(pki,L)
i,2

)
as in KAgg(L)

and ci = Hagg(pki, L) · c mod q as in (R3.5) for each 1 ≤ i ≤ S, we have

(yc1, y
c
2) =

S∏
i=1

((
y
Hagg(pki,L)
i,1

)c
,
(
y
Hagg(pki,L)
i,2

)c)
=

S∏
i=1

(
y
Hagg(pki,L)·c
i,1 , y

Hagg(pki,L)·c
i,2

)
=

S∏
i=1

(
ycii,1, y

ci
i,2

)
.

326

International Journal of Networking and Computing

• Setup(1κ) generates (G, q, g, h)← GGen(1κ) as a public parameter pp.

• KGen(pp) is run by each signer Si. The procedure is the same as that of GenDDH
reg (pp). We

denote by (ski, pki) = (xi, (yi,1, yi,2))← KGen(pp) Si’s secret key and public key pair.

• KAgg(L) returns the aggregated key apk = (y1, y2) of the set L = {pk1, . . . , pkS} of public

keys of all the signers Si by (y1, y2) =
∏S
i=1

(
y
Hagg(pki,L)
i,1 , y

Hagg(pki,L)
i,2

)
.

• KAVer(apk, L) returns 1 if apk = KAgg(L).

• Sig(pp, ski, L,M) is run by each signer Si to issue a multisignature σ = (c, z) for the message
M as follows:

R1: Si broadcasts hi after the followings:

(R1.1) ri ∈U Zq; (wi,1, wi,2) = (gri , hri).

(R1.2) hi = Hcmt(wi,1, wi,2).

R2: Si receives {hj}j 6=i from the co-signers. Then Si broadcasts (wi,1, wi,2).

R3: Si receives {(wj,1, wj,2)}j 6=i from the co-signers. Then Si broadcasts zi after the followings:

(R3.1) abort if there exists an index j 6= i such that hj 6= Hcmt(wj,1, wj,2).

(R3.2) (w1, w2) =
∏S
i=1 (wi,1, wi,2).

(R3.3) apk ← KAgg(L).

(R3.4) c = Hsig(apk, L,w1, w2,M).

(R3.5) ci = Hagg(pki, L) · c mod q.

(R3.6) zi = ri + ski · ci mod q.

R4: Si receives {zj}j 6=i from the co-signers. Then Si outputs σ = (c, z) as a multisignature,

where z =
∑S
i=1 zi mod q.

• Ver(pp, L,M, σ) returns 1 if it satisfies that c = Hsig(apk, L,w
′
1, w

′
2,M), where

– apk = (y1, y2)← KAgg(L), and

– (w′1, w
′
2) =

(
gzy−c1 , hzy−c2

)
.

Figure 5: Proposed multisignature MSigours

It follows from (R3.2) and R4 that in Ver(pp, L,M, σ),

(w′1, w
′
2) =

(
gzy−c1 , hzy−c2

)
=

(
g
∑S

i=1 zi

S∏
i=1

y−cii,1 , h
∑S

i=1 zi

S∏
i=1

y−cii,2

)

=

(
S∏
i=1

gzi
S∏
i=1

y−cii,1 ,

S∏
i=1

hzi
S∏
i=1

y−cii,2

)

=

S∏
i=1

(
gziy−cii,1 , h

ziy−cii,2

)
=

S∏
i=1

(wi,1, wi,2)

= (w1, w2).

By (R3.4), we have c = Hsig(apk, L,w1, w2,M) = Hsig(apk, L,w
′
1, w

′
2,M), and hence Ver always

327

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

returns 1.

4.3 Tight Security

We prove the tight security of MSigours.

Theorem 1. Let T be a polynomial and let ε be a function. Assume that the (T, ε)-DDH assumption
holds. Then, MSigours is (T ′, ε′, QS , Qagg, Qcmt, Qsig)-ppk secure in ROM, where

T ′ = T −O(Qagg +Qcmt +Qsig +QS · S),

ε′ ≤ ε+
(Qcmt +QS)2

q
+

1

2`
+

(Qsig +QS)2

q
+

3

q
,

where QS, Qagg, Qcmt and Qsig are some polynomials which represent the numbers of queries to Sign
phase, Hagg, Hcmt and Hsig, respectively.

Proof. We prove the statement by the hybrid argument. For each 0 ≤ n ≤ 5, let Winn be the
probability that A wins Gamen. The description of each game is depicted in Figures 6 to 11.

The role and the overview of each game are as follows. Game0 is just the original ppk game of
MSigours. Game1 excludes the possibility that A finds a collision on Hcmt. Namely we can ensure
that all hash values hi computed in (R1.2) of Sig are distinct. In Game2, the timing and the way
that C computes answers for signing queries is changed. C computes signatures for signing queries
by using the list of hash queries for Hcmt. Game3 excludes the possibility that A predetermines the
challenge value c. This change enables C to program the hash value of Hsig. In Game4, Sign phase
is changed to the one so that C can compute signatures without the secret key. In other words,
Sign phase is replaced with the simulated one. Moreover, we can show this simulation is perfect.
In Game5, the public key is replaced with the one which is generated by the lossy DDH instance
generator. This change is justified by the DDH assumption.

We show that the changes of games can be done in a way that A cannot distinguish the changes.
We also show that the winning probability ofA in Game5 is bounded by some negligible probability.

Game0 This game is identical to the ppk game of MSigours. Namely, this is described as in Figure 6.
Since any adversary A of running time T ′ wins the ppk game of MSigours with probability ε′, we
have

Win0 = ε′. (4)

Game1 This game excludes the possibility that A finds a collision on Hcmt. Namely, this is the
same as Game0 except that the abort condition depicted in Figure 7 is added in Hcmt phase. The
difference between Game0 and Game1 is whether or not C aborts when a collision on Hcmt is found.
For each t-th query to Hcmt phase, this probability is evaluated by (t − 1)/q. This is because LS
samples any hash value uniformly at random from the range Zq of Hcmt. Since A and C make
at most Qcmt and QS queries to Hcmt phase, respectively, the abort probability in this game is∑Qcmt+QS

t=1 (t− 1)/q ≤ (Qcmt +QS)2/q. Thus, we have

|Win1 −Win0| ≤
(Qcmt +QS)2

q
. (5)

Game2 In this game, the timing and the way that C computes answers for signing queries is
changed. More precicely, this game is the same as Game1 except that R2 and R3 of Sign phase

are replaced as in Figure 8. Namely,
(
w

(t)
1 , w

(t)
2

)
is generated at R2 instead of R3 by finding{(

w
(t)
j,1, w

(t)
j,2

)}
from the hash list Lcmt.

328

International Journal of Networking and Computing

• Init: C sets Lagg = Lcmt = Lsig = ∅, generates pp = (G, q, g, h) ← Setup(1κ) and (sk∗, pk∗) ←
KGen(pp), and then sends (pp, pk∗).

• Hagg: Given a pair ξ(t) =
(
pk(t), L(t)

)
, return a(t) for

(
Lagg, a

(t)
)
← LS

(
Lagg,Zq, ξ(t)

)
.

• Hcmt: Given a pair ξ(t) =
(
w

(t)
1 , w

(t)
2

)
, return h(t) for

(
Lcmt, h

(t)
)
← LS

(
Lcmt, {0, 1}`, ξ(t)

)
.

• Hsig: Given a tuple ξ(t) =
(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
, return c(t) for

(
Lsig, c

(t)
)
←

LS
(
Lsig,Zq, ξ(t)

)
.

• Sign: Given a public-key set L(t) =
{
pk

(t)
1 , . . . , pk

(t)
S

}
and a message M (t), C and A run the

signing protocol in which C plays a role of the signer S1 which owns pk
(t)
1 = pk∗. Namely, C

executes Sig(pp, sk∗, L(t),M (t)) as follows:

R1: C broadcasts h
(t)
1 after the followings:

(R1.1) r
(t)
1 ∈U Zq;

(
w

(t)
1,1, w

(t)
1,2

)
=
(
gr

(t)
1 , hr

(t)
1

)
.

(R1.2) h
(t)
1 = Hcmt(w

(t)
1,1, w

(t)
1,2).

R2: Receiving
{
h
(t)
j

}S
j=2

from A, C broadcasts
(
w

(t)
1,1, w

(t)
1,2

)
.

R3: Receiving
{(
w

(t)
j,1, w

(t)
j,2

)}S
j=2

from A, C broadcasts z
(t)
1 after the followings:

(R3.1) abort if there exists an index 2 ≤ j ≤ S such that h
(t)
j 6= Hcmt(w

(t)
j,1, w

(t)
j,2).

(R3.2)
(
w

(t)
1 , w

(t)
2

)
=
∏S
i=1

(
w

(t)
i,1 , w

(t)
i,2

)
.

(R3.3) apk(t) ← KAgg(L(t)).

(R3.4) c(t) = Hsig(apk
(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)).

(R3.5) c
(t)
1 = Hagg(pk

∗
, L

(t)) · c(t) mod q.

(R3.6) z
(t)
1 = r

(t)
1 + sk∗ · c(t)1 mod q.

R4: Receiving
{
z
(t)
j

}S
j=2

from A, C returns σ(t) =
(
c(t), z(t)

)
, where z(t) =

∑S
i=1 z

(t)
i mod q.

• Chal: Given (L∗,M∗, σ∗) from A finally, A wins Game0 if the followings hold:

(W.1) pk∗1 = pk∗ for L∗ = {pk∗1 , . . . , pk∗S}.
(W.2) (L∗,M∗) does not appeared in Sign phase.

(W.3) Ver(pp, L∗,M∗, σ∗) = 1, namely it satisfies that c∗ = Hsig(apk
∗, L∗, w∗1 , w

∗
2 ,M

∗), where

– σ∗ = (c∗, z∗),

– apk∗ = (y∗1 , y
∗
2)← Hagg(L

∗), and

– (w∗1 , w
∗
2) =

(
gz
∗
(y∗1)

−c∗
, hz

∗
(y∗2)

−c∗
)

.

Figure 6: Description of Game0

In Hcmt phase, the following abort condition is added: C aborts if a collision is found, namely LS
samples h(t) ∈U {0, 1}` which is already contained in Lcmt for some input ξ.

Figure 7: Changed processes in Game1 from Game0

329

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

C generates
(
w

(t)
1 , w

(t)
2

)
in R2 instead of R3. The R2 and R3 are replaced as follows:

R2: Receiving
{
h
(t)
j

}S
j=2

from A, C broadcasts
(
w

(t)
1,1, w

(t)
1,2

)
after the followings:

(R2.1) For each 2 ≤ j ≤ S, find
((
g
(t)
j,1, g

(t)
j,2

)
, h

(t)
j

)
from Lcmt. It aborts if there is no such pair.

(R2.2)
(
w

(t)
1 , w

(t)
2

)
=
(
w

(t)
1,1, w

(t)
1,2

)
·
∏S
j=2

(
g
(t)
j,1, g

(t)
j,2

)
.

(R2.3) apk(t) ← KAgg(L(t)).

(R2.4) c(t) = Hsig(apk
(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)).

(R2.5) c
(t)
1 = Hagg(pk

∗, L(t)) · c(t) mod q.

(R2.6) z
(t)
1 = r

(t)
1 + sk∗ · c(t)1 mod q.

R3: Receiving
{(
w

(t)
j,1, w

(t)
j,2

)}S
j=2

from A, C broadcasts z
(t)
1 after the following:

(R3.1) abort if there exists an index 2 ≤ j ≤ S such that
(
w

(t)
j,1, w

(t)
j,2

)
6=
(
g
(t)
j,1, g

(t)
j,2

)
.

Figure 8: Changed processes in Game2 from the previous games

(R2.4) is replaced with the following processes: c(t) ∈U Zq, and then abort if the “failure” event is

happened, namely the hash value of
(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
is already determined, or Lsig =

Lsig ∪
{(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
, c(t)

}
otherwise.

Figure 9: Changed processes in Game3 from the previous games

We first show that the condition
(
w

(t)
j,1, w

(t)
j,2

)
6=
(
g
(t)
j,1, g

(t)
j,2

)
in (R3.1) of Game2 is equivalent to

h
(t)
j 6= Hcmt(w

(t)
j,1, w

(t)
j,2) which is the abort condition in (R3.1) of Game1. We fix an index 1 ≤ t ≤ Qsig,

and assume that for each 2 ≤ j ≤ S, there exists
(
g
(t)
j,1, g

(t)
j,2

)
such that

((
g
(t)
j,1, g

(t)
j,2

)
, h

(t)
j

)
is in the

list Lcmt in (R2.1). Since the non-abortion in Hcmt phase guarantees that there is no collision in

Hcmt,
(
w

(t)
j,1, w

(t)
j,2

)
6=
(
g
(t)
j,1, g

(t)
j,2

)
holds if and only if h

(t)
j 6= Hcmt(w

(t)
j,1, w

(t)
j,2) holds.

We next evaluate the abort probability in (R2.1), which does not exist in Game1, for some

t-th query to Sign phase. The non-existence of
((
g
(t)
j,1, g

(t)
j,2

)
, h

(t)
j

)
means that A sends h

(t)
j which

is not obtained from Hcmt in R1. On the other hand, A is required to broadcast
(
w

(t)
j,1, w

(t)
j,2

)
such

that h
(t)
j = Hcmt(w

(t)
j,1, w

(t)
j,2) in R2, and hence A needs to guess such a pair. Since the hash value of(

g
(t)
j,1, g

(t)
j,2

)
is determined by LS, A can get such a pair with probability 1/2`. Thus, we have

|Win2 −Win1| ≤
1

2`
. (6)

Game3 This game excludes the possibility that A predetermines the challenge value c. Namely,
this is the same as Game2 except that the hash value c(t) is directly sampled from Zq instead of
using LS as in Figure 9. Game3 behaves like Game2 unless the “failure” event is happened: for

some t-th query to Sign phase, the tuple
(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
, which is determined before

running (R2.4), is already contained in Lsig as some input. We now focus on the pair
(
w

(t)
1 , w

(t)
2

)
. As

330

International Journal of Networking and Computing

R1 and R2 are replaced with the followings:

R1: C broadcasts h
(t)
1 after the followings:

(R1.1) c(t) ∈U Zq; z(t)1 ∈U Zq.

(R1.2) c
(t)
1 = Hagg(pk

∗, L(t)) · c(t) mod q.

(R1.3)
(
w

(t)
1,1, w

(t)
1,2

)
=

(
gz

(t)
1

(
y∗1,1
)−c(t)1 , hz

(t)
1

(
y∗1,2
)−c(t)1

)
, where

(
y∗1,1, y

∗
1,2

)
= pk∗.

(R1.4) h
(t)
1 = Hcmt(w

(t)
1,1, w

(t)
1,2).

R2: Receiving
{
h
(t)
j

}S
j=2

from A, C broadcasts
(
w

(t)
1,1, w

(t)
1,2

)
after the following:

(R2.1) For each 2 ≤ j ≤ S, find
((
g
(t)
j,1, g

(t)
j,2

)
, h

(t)
j

)
from Lcmt. It aborts if there is no such pair.

(R2.2)
(
w

(t)
1 , w

(t)
2

)
=
(
w

(t)
1,1, w

(t)
1,2

)
·
∏S
j=2

(
g
(t)
j,1, g

(t)
j,2

)
.

(R2.3) apk(t) ← KAgg(L(t)).

(R2.4) Lsig = Lsig ∪
{(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
, c(t)

}
.

Figure 10: Changed processes in Game4 from the previous games

in (R1.1), the pair
(
w

(t)
1,1, w

(t)
1,2

)
of
(
w

(t)
1 , w

(t)
2

)
=
(
w

(t)
1,1, w

(t)
1,2

)
·
∏S
j=2

(
g
(t)
j,1, g

(t)
j,2

)
is set as

(
gr

(t)
1 , hr

(t)
1

)
for r

(t)
1 ∈U Zq. Lemma 2 implies that

(
w

(t)
1 , w

(t)
2

)
is uniformly distributed over S∏S

j=2

(
g
(t)
j,1,g

(t)
j,2

),

and
(
w

(t)
1 , w

(t)
2

)
is uniquely determined by r

(t)
1 only. Therefore, the probability of the failure event

is evaluated by (t− 1)/q for each t-th query in the similar manner to the evaluation of Win1. Since
A makes at most Qsig queries to Hsig and C appends pairs to Lsig in (R2.4) at most QS times, the

total probability of failure in this game is evaluated by
∑Qsig+QS

t=1 (t − 1)/q = (Qsig +QS)
2
/q. Thus

we have

|Win3 −Win2| ≤
(Qsig +QS)2

q
. (7)

Game4 In this game, Sign phase is changed to the one so that C can computes signatures without

the secret key. This is the same as Game3 except that the generation process of
(
w

(t)
1,1, w

(t)
1,2

)
and

that of z(t) are replaced as in Figure 10. We now show that these replacements do not affect the
winning probability.

We first show that
((
w

(t)
1 , w

(t)
2

)
, c

(t)
1 , z

(t)
1

)
induces the acceptance on Ver. As shown in Eq. (3),(

gz
(t)
1 , hz

(t)
1

)
=

(
w

(t)
1,1

(
y∗1,1
)c(t)1 , w

(t)
1,2

(
y∗1,2
)c(t)1

)
for pk∗ =

(
y∗1,1, y

∗
1,2

)
is required. The process (R1.3) of

Game4 implies that the same condition holds. Hence
((
w

(t)
1 , w

(t)
2

)
, c

(t)
1 , z

(t)
1

)
in Game4 is accepted

by Ver.

We next estimate the distributions of the broadcasted values
(
h
(t)
1 ,
(
w

(t)
1,1, w

(t)
1,2

)
, z

(t)
1

)
by C in

Game3 and Game4.
(
w

(t)
1,1, w

(t)
1,2

)
is set as

(
gr

(t)
1 , hr

(t)
1

)
for r

(t)
1 ∈U Zq in Game3. Lemma 2

implies that this is uniformly distributed over S. On the other hand, it is set as
(
w

(t)
1,1, w

(t)
1,2

)
=(

gz
(t)
1

(
y∗1,1
)−c(t)1 , hz

(t)
1

(
y∗1,2
)−c(t)1

)
in Game4. Since

(
y∗1,1, y

∗
1,2

)
is generated as

(
gsk
∗
, hsk

∗)← KGen(pp)

331

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

Game5: In Init phase, C generates pk∗ from GenDDH
loss (pp) instead of KGen(pp).

Figure 11: Changed processes in Game5 from the previous games

as described in Init phase, we have
(
w

(t)
1,1, w

(t)
1,2

)
=
(
gz

(t)
1 −sk

∗·c(t)1 , hz
(t)
1 −sk

∗·c(t)1

)
. It follows from

z
(t)
1 ∈U Zq and Lemma 2 that z

(t)
1 − sk∗ · c

(t)
1 mod q is uniformly distributed over Zq, and hence(

w
(t)
1,1, w

(t)
1,2

)
is also uniformly distributed over S. The distributions of h

(t)
1 are the same in both

games, because h
(t)
1 is sampled uniformly from {0, 1}` by LS in both games. In (R2.6) of Game3,

z
(t)
1 is set as r

(t)
1 + sk∗ · c(t)1 mod q for r

(t)
1 ∈U Zq, whereas it is chosen uniformly at random from Zq

in (R1.1) of Game4. Lemma 2 implies that z
(t)
1 of Game3 is also uniformly distributed over Zq.

Therefore, the distributions of
(
h
(t)
1 ,
(
w

(t)
1 , w

(t)
2

)
, z

(t)
1

)
in Game3 and Game4 are identical. Thus,

we have

Win4 = Win3. (8)

Game5 In this game, the public key is replaced with the one which is generated by the lossy DDH
instance generator. This game is the same as Game4 except that pk∗ is generated from GenDDH

loss

instead of KGen = GenDDH
reg . Then, the difference between Win4 and Win5 can be evaluated by

constructing the DDH adversary D in a way that D proceeds in the same way as the challenger C of
Game4 (and Game5) except that D sets (pp, pk) to the pair ((G, q, g, h), (y1, y2)) given by the DDH
challenger. The formal description is given in Figure 12. Observe that the process of D coincides with
Game4 when the given pair ((G, q, g, h), (y1, y2)) is chosen according to the distribution Dreg(κ),
whereas this does with Game5 when the given pair ((G, q, g, h), (y1, y2)) is chosen according to the
distribution Dloss(κ). Since A makes queries to Hagg, Hcmt, Hsig, and Sign phases at most Qagg, Qcmt,
Qsig, and QS times, respectively, and Sign phase is run in time O(S) for each query from A, D runs
in time T ′ + O(Qagg + Qcmt + Qsig + QS · S) = T , the (T, ε)-DDH assumption implies that it can
distinguish these distributions Dreg and Dloss with probability at most ε. Thus, we have

|Win5 −Win4| ≤ ε. (9)

The upper bound of Win5 Let (M∗, L∗, (c∗, z∗)) be a final output by A in Game5 and let

(w∗1 , w
∗
2) =

(
gz
∗
(y∗1)

−c∗
, hz

∗
(y∗2)

−c∗
)

, where L∗ = {pk∗1 , pk∗2 , . . . , pk∗S} and apk∗ = (y∗1 , y
∗
2) ←

KAgg(L∗).
For c∗ ∈ Zq of the signature, we now estimate the probability of the existence of a hash value

c∗ ∈ Zq which induces the acceptance of Ver concerning the fixed (w∗1 , w
∗
2). Assume that there exist

distinct hash values c∗ 6= c′ such that both c∗ and c′ induce the acceptance. Then, it holds that for
some z∗, z′ ∈ Zq,

w∗1 = gz
∗
(y∗1)

−c∗
= gz

′
(y∗1)

−c′
,

w∗2 = hz
∗
(y∗2)

−c∗
= hz

′
(y∗2)

−c′
.

This implies that y∗1 = g(z∗−z′)/(c∗−c′) and y∗2 = h(z∗−z′)/(c∗−c′). It follows from the definition

of KAgg that y∗1 =
∏S
i=1

(
y∗i,1
)a∗i and y∗2 =

∏S
i=1

(
y∗i,2
)a∗i , where pk∗i =

(
y∗i,1, y

∗
i,2

)
and a∗i =

Hagg(pk
∗
i , L

∗) for any 1 ≤ i ≤ S. pk∗1 = pk∗ is generated by GenDDH
loss . Then, Lemma 1 implies

that the probability that distinct c∗ and c′ exist is 2/q.
On the other hand, the probability that A get an accepting hash value c∗ under the condition

that there is at most one accepting hash value is 1/q since any hash value is chosen uniformly at
random from Zq. Thus, we have

Win5 ≤
2

q
+

(
1− 2

q

)
· 1

q
<

3

q
. (10)

332

International Journal of Networking and Computing

Eventually, we can evaluate from Eqs. (4)–(10) that

ε′ ≤ ε+
(Qcmt +QS)2

q
+

1

2`
+

(Qsig +QS)2

q
+

3

q
.

5 Application to Interactive Aggregate Signature

We consider the interactive aggregate signature with the public-key aggregation which is a general-
ization of the multisignature in this section. As opposed to the multisignature case, the interactive
aggregate signature enables each signer to choose their own message instead of the common message.

We show that our proposed multisignature can be converted into the interactive aggregate signa-
ture with a slight modification. The conversion is based on the idea of [17] in which the conversion of
the multisignature by [2] is considered. In the interactive aggregate signature, each signer can choose
their own message. Thus one can consider that the interactive aggregate signature can be obtained
from the multisignature by regarding the set of pairs of each signer’s public key and message as
the common message. However, as discussed in [17], the observation above is insufficient. This is
because the interactive aggregate signature has to authenticate the correspondence between signers
and messages correctly. In order to solve the problem, we change the signing algorithm slightly so
that the signing algorithm takes the signer’s index in the ordered set of public key/message pairs
as input. More precisely, we add the signer’s index to the input for the hash function. Surprisingly,
this modification does not affect the security proof at all since we employ the random oracle model.
Therefore we can apply Theorem 1 in the interactive aggregate signature case.

We start with the definition of the interactive aggregate signature with the public-key aggre-
gation. Based on the syntax by [17], the interactive aggregate signature IAS with the public-key
aggregation is defined by the six algorithms (Setup,KGen,KAgg,KAVer,Sig,Ver). In a similar manner
to the multisignature case, we consider the group of signers (S1, . . .SS). The setup algorithm Setup
generates a public parameter pp for input security parameter κ. Each signer Si computes a secret and
public key (ski, pki) by the key generation algorithm KGen from pp. Let L = {pk1, . . . , pkS} be an or-
dered set of public keys of signers, namely, the signer Si has the public key pki. The deterministic key
aggregation algorithm KAgg computes the aggregated public key apk = KAgg(L) and the validation
of apk is verified by the deterministic algorithm KAVer for (apk, L). The signers issue an aggregated
signature σ on the ordered set of public key and message pairs K = {(pk1,m1), . . . , (pkS ,mS)}.
In the signing protocol, the signer Si executes the signing algorithm Sig(pp, ski,K, i). The index i
represents that Si corresponds the key and message pair (pki,mi). The deterministic verification
algorithm Ver checks whether or not the signature σ is valid on (pp, S, σ).

The security of the interactive aggregate signature is defined in the same way as the multisigna-
ture case. The security game in the ppk model is depicted in Figure 13. For any polynomial T and
any function ε, we say that IAS is (T, ε,QS)-ppk secure if for any adversary A which runs in time
at most T (κ) and makes at most QS(κ) queries in Sign phase, A can win the ppk game of IAS with
probability ε(κ) for sufficiently large κ. We also say that IAS is (T, ε,QS , Q1, Q2, Q3, . . .)-ppk secure
in ROM if IAS is (T, ε,QS)-ppk secure where A makes at most Qn(κ) queries to the random oracle
Hn for any n and sufficiently large κ.

The description of our interactive aggregate signature is given in Figure 14. The security IAS is
proven in the same way as Theorem 1. As described above, the security proof is just all the same
as the one of Theorem 1, thus we omit the proof.

Theorem 2. Let T be a polynomial and let ε be a function. Assume that the (T, ε)-DDH assumption
holds. Then, IAS is (T ′, ε′, QS , Qagg, Qcmt, Qsig)-ppk secure in ROM, where

T ′ = T −O(Qagg +Qcmt +Qsig +QS · S),

ε′ ≤ ε+
(Qcmt +QS)2

q
+

1

2`
+

(Qsig +QS)2

q
+

3

q
,

333

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

where QS, Qagg, Qcmt and Qsig are some polynomials which represent the numbers of queries to Sign
phase, Hagg, Hcmt and Hsig, respectively.

6 Concluding Remarks

We have proposed a first multisignature with public-key aggregation whose security is proven to
be tightly secure under the DDH assumption in ROM with respect to the plain public-key model.
Although our construction MSigours is almost the same as the DDH-based multisignature by [13], our
security proof is totally different from theirs. Namely, we have given tight security while maintaining
the public-key aggregation functionality and the efficiency of the LYG multisignature.

As an application of our multisignature scheme, we have shown that our proposed multisignature
can be converted into the interactive aggregate signature with a slight modification. This modifica-
tion does not affect the security proof at all due to the random oracle model. Then we can obtain
the security proof of our interactive aggregate signature as a corollary of the one of our proposed
multisignature.

Acknowledgment

We would like to thank the anonymous reviewers for their valuable comments and suggestions. This
work was supported in part by JSPS KAKENHI Grant Numbers JP18K11288 and JP19K20272.

References

[1] Ali Bagherzandi and Stanis law Jarecki. Multisignatures using proofs of secret key possession,
as secure as the Diffie-Hellman problem. In Rafail Ostrovsky, Roberto De Prisco, and Ivan
Visconti, editors, Security and Cryptography for Networks, pages 218–235, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[2] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS ’06, pages 390–399, New York, NY, USA, 2006. ACM.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM.

[4] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
Gap-Diffie-Hellman-group signature scheme. In Yvo G. Desmedt, editor, Public Key Cryptog-
raphy — PKC 2003, pages 31–46, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[5] Dan Boneh. The decision Diffie-Hellman problem. In Joe P. Buhler, editor, Algorithmic Number
Theory, pages 48–63, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[6] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASI-
ACRYPT 2018, pages 435–464, Cham, 2018. Springer International Publishing.

[7] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1084–1101, 2019.

[8] Masayuki Fukumitsu and Shingo Hasegawa. A tightly-secure lattice-based multisignature. In
Proceedings of the 6th on ASIA Public-Key Cryptography Workshop, APKC ’19, pages 3–11,
New York, NY, USA, 2019. ACM.

334

International Journal of Networking and Computing

[9] Masayuki Fukumitsu and Shingo Hasegawa. Linear lossy identification scheme derives tightly-
secure multisignature. In 2020 15th Asia Joint Conference on Information Security (AsiaJCIS),
pages 24–31, 2020.

[10] Meenakshi Kansal and Ratna Dutta. Round optimal secure multisignature schemes from lattice
with public key aggregation and signature compression. In Abderrahmane Nitaj and Amr
Youssef, editors, Progress in Cryptology - AFRICACRYPT 2020, pages 281–300, Cham, 2020.
Springer International Publishing.

[11] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight secu-
rity reductions. In Proceedings of the 10th ACM Conference on Computer and Communications
Security, CCS ’03, pages 155–164, New York, NY, USA, 2003. ACM.

[12] Duc-Phong Le, Alexis Bonnecaze, and Alban Gabillon. Multisignatures as secure as the Diffie-
Hellman problem in the plain public-key model. In Hovav Shacham and Brent Waters, editors,
Pairing-Based Cryptography – Pairing 2009, pages 35–51, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[13] Duc-Phong Le, Guomin Yang, and Ali Ghorbani. A new multisignature scheme with public key
aggregation for blockchain. In 2019 17th International Conference on Privacy, Security and
Trust (PST), pages 1–7, 2019.

[14] Zi-Yuan Liu, Yi-Fan Tseng, and Raylin Tso. Cryptanalysis of a round optimal lattice-based
multisignature scheme. Cryptology ePrint Archive, Report 2020/1172, 2020. https://eprint.
iacr.org/2020/1172.

[15] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggre-
gate signatures and multisignatures without random oracles. In Serge Vaudenay, editor, Ad-
vances in Cryptology - EUROCRYPT 2006, pages 465–485, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[16] Changshe Ma and Mei Jiang. Practical lattice-based multisignature schemes for blockchains.
IEEE Access, 7:179765–179778, 2019.

[17] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-
signatures with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018.
https://eprint.iacr.org/2018/068.

[18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-
signatures with applications to bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164,
2019.

[19] Jong Hwan Park and Young-Ho Park. A tightly-secure multisignature scheme with improved
verification. IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, E99.A(2):579–589, 2016.

[20] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’ 89 Proceedings, pages 239–252, New York, NY,
1990. Springer New York.

[21] Naoto Yanai. Meeting tight security for multisignatures in the plain public key model. IE-
ICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E101.A(9):1484–1493, 2018.

335

A Tightly Secure DDH-based Multisignature with Public-Key Aggregation

Given a tuple pp = (G, q, g, h) and (y1, y2), proceeds as follows:

• Init: D sets Lagg = Lcmt = Lsig = ∅, and then sends (pp, pk∗ = (y1, y2)) to A.

• Hagg: Given a pair ξ(t) =
(
pk(t), L(t)

)
, return a(t) for

(
Lagg, a

(t)
)
← LS

(
Lagg,Zq, ξ(t)

)
.

• Hcmt: Given a pair ξ(t) =
(
w

(t)
1 , w

(t)
2

)
, return h(t) for

(
Lcmt, h

(t)
)
← LS

(
Lcmt, {0, 1}`, ξ(t)

)
. D

aborts if a collision is found, namely LS samples h(t) ∈U {0, 1}` which is already contained in
Lcmt for some input ξ.

• Hsig: Given a tuple ξ(t) =
(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
, return h(t) for

(
Lsig, h

(t)
)
←

LS
(
Lsig,Zq, ξ(t)

)
.

• Sign: Given a public-key set L(t) =
{
pk

(t)
1 , . . . , pk

(t)
S

}
and a message M (t), D and A run the

signing protocol in which D plays a role of the signer S1 which owns pk
(t)
1 = pk∗. Namely, D

executes Sig(pp, sk∗, L(t),M (t)) as follows:

R1: D broadcasts h
(t)
1 after the followings:

(R1.1) c(t) ∈U Zq; z(t)1 ∈U Zq.
(R1.2) c

(t)
1 = Hagg(pk

∗, L(t)) · c(t) mod q.

(R1.3)
(
w

(t)
1,1, w

(t)
1,2

)
=

(
gz

(t)
1

(
y∗1,1
)−c(t)1 , hz

(t)
1

(
y∗1,2
)−c(t)1

)
, where

(
y∗1,1, y

∗
1,2

)
= pk∗.

(R1.4) h
(t)
1 = Hcmt(w

(t)
1,1, w

(t)
1,2).

R2: Receiving
{
h
(t)
j

}S
j=2

from A, D broadcasts
(
w

(t)
1,1, w

(t)
1,2

)
after the following:

(R2.1) For each 2 ≤ j ≤ S, find
((
g
(t)
j,1, g

(t)
j,2

)
, h

(t)
j

)
from Lcmt. It aborts if there is no such

pair.

(R2.2)
(
w

(t)
1 , w

(t)
2

)
=
(
w

(t)
1,1, w

(t)
1,2

)
·
∏S
j=2

(
g
(t)
j,1, g

(t)
j,2

)
.

(R2.3) apk(t) ← KAgg(L(t)).

(R2.4) Lsig = Lsig ∪
{(
apk(t), L(t), w

(t)
1 , w

(t)
2 ,M (t)

)
, c(t)

}
.

R3: Receiving
{(
w

(t)
j,1, w

(t)
j,2

)}S
j=2

from A, D broadcasts z
(t)
1 after the following:

(R3.1) abort if there exists an index 2 ≤ j ≤ S such that
(
w

(t)
j,1, w

(t)
j,2

)
6=
(
g
(t)
j,1, g

(t)
j,2

)
.

R4: Receiving
{
z
(t)
j

}S
j=2

from A, D returns σ(t) =
(
c(t), z(t)

)
, where z(t) =

∑S
i=1 z

(t)
i mod q.

• Chal: Given (L∗,M∗, σ∗) from A finally, D returns 1 if the followings hold:

(W.1) pk∗1 = pk∗ for L∗ = {pk∗1 , . . . , pk∗S}.
(W.2) (L∗,M∗) does not appeared in Sign phase.

(W.3) Ver(pp, L∗,M∗, σ∗) = 1, namely it satisfies that c∗ = Hsig(apk
∗, L∗, w∗1 , w

∗
2 ,M

∗), where

– σ∗ = (c∗, z∗),

– apk∗ = (y∗1 , y
∗
2)← Hagg(L

∗), and

– (w∗1 , w
∗
2) =

(
gz
∗
(y∗1)

−c∗
, hz

∗
(y∗2)

−c∗
)

.

Figure 12: Description of D

336

International Journal of Networking and Computing

• Init: A challenger C generates pp ← Setup(1κ) and (sk∗, pk∗) ← KGen(1κ), and then sends
(pp, pk∗) to an adversary A.

• Sign: Given an ordered set of public key and message pairs K(t), C and A run the signing

protocol in which C plays a role of the signer S1 which owns pk
(t)
1 = pk∗, whereas A does that

of the other signers Si (2 ≤ i ≤ S).

• Chal: Given (K∗, σ∗) from A finally, A wins the ppk game of IAS if the followings hold:

(W.1) pk∗1 = pk∗ for K∗ = {(pk∗1 ,m∗1), . . . , (pk∗S ,m
∗
S)}.

(W.2) K∗ does not appeared in Sign phase.

(W.3) Ver(pp,K∗, σ∗) = 1.

Figure 13: Plain public-key game of IAS between a challenger C and an adversary A

• Setup(1κ) generates (G, q, g, h)← GGen(1κ) as a public parameter pp.

• KGen(pp) is run by each signer Si. The procedure is the same as that of GenDDH
reg (pp). We

denote by (ski, pki) = (xi, (yi,1, yi,2))← KGen(pp) Si’s secret key and public key pair.

• KAgg(L) returns the aggregated key apk = (y1, y2) of the ordered set L = {pk1, . . . , pkS} of

public keys of all the signers Si by (y1, y2) =
∏S
i=1

(
y
Hagg(pki,L,i)
i,1 , y

Hagg(pki,L,i)
i,2

)
.

• KAVer(apk, L) returns 1 if apk = KAgg(L).

• Sig(pp, ski, S, i) is run by each signer Si to issue an aggregate signature σ = (c, z) for the
ordered set K = {(pk1,m1), . . . , (pkS ,mS)} as follows:

R1: Si broadcasts hi after the followings:

(R1.1) ri ∈U Zq; (wi,1, wi,2) = (gri , hri).

(R1.2) hi = Hcmt(wi,1, wi,2).

R2: Si receives {hj}j 6=i from the co-signers. Then Si broadcasts (wi,1, wi,2).

R3: Si receives {(wj,1, wj,2)}j 6=i from the co-signers. Then Si broadcasts zi after the followings:

(R3.1) abort if there exists an index j 6= i such that hj 6= Hcmt(wj,1, wj,2).

(R3.2) (w1, w2) =
∏S
i=1 (wi,1, wi,2).

(R3.3) apk ← KAgg(L).

(R3.4) c = Hsig(apk,K,w1, w2).

(R3.5) ci = Hagg(pki, L, i) · c mod q.

(R3.6) zi = ri + ski · ci mod q.

R4: Si receives {zj}j 6=i from the co-signers. Then Si outputs σ = (c, z) as a multisignature,

where z =
∑S
i=1 zi mod q.

• Ver(pp, S, σ) returns 1 if it satisfies that c = Hsig(apk, S, w
′
1, w

′
2), where

– apk = (y1, y2)← KAgg(L), and

– (w′1, w
′
2) =

(
gzy−c1 , hzy−c2

)
.

Figure 14: Proposed interactive aggregate signature IAS

337

